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The purpose of these lectures is to present a unitary vision on the differential

geometry of moving curves and surfaces, and some of their relationships to non-

linear Integrable systems [1]. We begin by discussing the importance of the

compact topology in representation theories. Then, we review the Poincare and

Stokes theorems in a general cohomology language [2]. Next, we return to three-

dimensional Euclidean spaces and introduce surface differential operators [3].

We will provide examples from flow theory, solitons on compact surfaces, and

associated field theories [4]. The lectures will develop into a presentation of

recent topological and geometrical results in Integrable curve dynamics and

evolution [5], and the theory of motions of surfaces. More applications in fluid

dynamics, compact nonlinear patterns [6], dynamics of vortex solitons [7], low

dimensional systems [8], and vortices in mesoscopic superconductors [9] will be

presented. The last topic will be related to applications of these structures in

the dynamics and swimming of cells, flagella and cilia [10].

In the end, we will discuss future trends and mathematical open problems con-

nected to the topic of moving compact boundaries, and possible applications in

nanoscience, space physics and health sciences.
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