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Abstract

Most of mathematical models in physics, engineering sciences, biomath-
ematics, etc. are formulated as systems of nonlinear differential equations.
Accordingly, engineering and science students and researchers routinely
confront problems in mathematical modeling involving solution techniques
for differential equations. Sometimes these solutions can be obtained an-
alytically by numerous traditional ad hoc methods appropriate for inte-
grating particular types of equations. More often, however, the solutions
cannot be obtained by these methods, in spite of the fact that over 400
types of integrable second-order ordinary differential equations were sum-
marized in voluminous catalogues.

On the other hand, the fundamental natural laws and technological
problems formulated in terms of differential equations can be successfully
treated and solved by Lie group methods. For example, Lie group analysis
reduces the classical 400 types of equations to 4 types only! Development
of group analysis furnished ample evidence that the theory provides a uni-
versal tool for tackling considerable numbers of differential equations even
when other means of integration fail. In fact, group analysis is the only
universal and effective method for solving nonlinear differential equations
analytically. The old integration methods rely essentially on linearity as
well as on constant coefficients. Group analysis deals equally easily with
linear and nonlinear equations, as well as with constant and variable coef-
ficients.

Lie group analysis can be called a microscope of mathematical mod-
elling. Just like use of microscope in biology, group analysis allows to
reveal symmetries of nonlinear mathematical models that cannot be seen
otherwise. Numerous physical phenomena can be investigated using Lie
symmetries to unearth various group invariant solutions and conservation
laws that provide significant physical insight into the problem. An exten-
sive compilation of the results of applications of Lie group analysis up to
1995 is given in three volumes [7].

The aim of this lecture course is to provide the wide audience of re-
searchers and students with a comprehensive introduction to modern group
analysis and to illustrate the advantages of Lie group analysis by various
examples.
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