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Abstract

It is demonstrated that, for the recently introduced classical magnetized Kepler problems in dimension

2k + 1, the non-colliding orbits in the “external configuration space” R2k+1 \ {0} are all conics, moreover,

a conic orbit is an ellipse, a parabola, and a branch of a hyperbola according as the total energy is negative,

zero, and positive. It is also demonstrated that the Lie group SO+(1, 2k+1)×R+ acts transitively on both

the set of oriented elliptic orbits and the set of oriented parabolic orbits.

Introduction

The Kepler problem for planetary motion is a two-body dynamic problem with an attractive force obeying the
inverse square law. Mathematically it can be reduced to the one-body dynamic problem with the equation of
motion

r′′ = − r

r3
, (0.1)

where r is a function of t taking value in R3
∗ := R3 \ {0}, r′′ is the acceleration vector and r is the length of r.

A surprising discovery due to D. Zwanziger [1] and to H. McIntosh and A. Cisneros [2] independently
in the late 1960s is that there exist magnetized companions for the Kepler problem. These extra dynamic
problems plus the Kepler problem, referred to as MICZ-Kepler problems, are indexed by the magnetic charge
µ, with µ = 0 for the Kepler problem. The parameter µ can take any real number at the classical mechanics
level, a half of any integer at the quantum mechanics level.

Since the Kepler problem has long been known to exist in all dimensions, one naturally wonders whether
there are magnetized Kepler problems in higher dimensions. By realizing [3] that the MICZ-Kepler problems
are the U(1)-symmetric reductions of the isotropic oscillator in space R4 = C2, T. Iwai [4] obtained the
magnetized Kepler problems in dimension five (referred to as the SU(2)-Kepler problems), as the SU(2)-
symmetric reductions of the isotropic oscillator in space R8 = H2. For quite a while the magnetized Kepler
problems were thought to exist only in dimensions three, five and (possibly) nine, corresponding to the division
algebras C, H and O respectively.

This talk is about the recently introduced [5] classical magnetized Kepler problems in dimension 2k + 1

(k = 1, 2, · · · ) and a description of their non-colliding orbits. These magnetized Kepler problems are the
MICZ-Kepler problems in dimension three and Iwai’s SU(2)-Kepler problems in dimension five.



1 Equation of Motion

The equation of motion for the magnetized Kepler problems in odd dimension n ≥ 3 is the n-dimensional
analogue of the equation of motion

r′′ = − r

r3
+ µ2 r

r4
− r′ × µ

r

r3
(1.1)

for the MICZ-Kepler problems [1, 2], where the parameter µ is the magnetic charge.
It turns out that the high dimensional analogue of Eq. (1.1) is far from straightforward. The reason is that,

if k > 1, instead of governing motions on R2k+1
∗ := R2k+1 \ {0}, the equation of motion governs motions on

a manifold Pµ which fibers over R2k+1
∗ .

To describe the fiber bundle Pµ → R2k+1
∗ , we let G = SO(2k) and consider the canonical principal

G-bundle over S2k:
SO(2k + 1)y

S2k.

This bundle comes with a natural connection

ω(g) := Prso(2k)
(
g−1dg

)
,

where g−1dg is the Maurer-Cartan form for SO(2k + 1), so it is an so(2k + 1)-valued differential one form
on SO(2k + 1), and Prso(2k) denotes the orthogonal projection of so(2k + 1) onto g := so(2k).

Under the map

π : R2k+1
∗ → S2k

r 7→ r

r
, (1.2)

the above bundle and connection are pulled back to a principal G-bundle

Py
X := R2k+1

∗

(1.3)

with a connection which is usually referred to as the generalized Dirac monopole [6]. Now

Pµ → R2k+1
∗

is the associated fiber bundle with fiber being a certain co-adjoint orbit Oµ of G, the so-called magnetic orbit
with magnetic charge µ ∈ R.

To describe Oµ, let us use γab (1 ≤ a, b ≤ 2k) to denote the element of ig such that in the defining
representation of g, Ma,b := iγab is represented by the skew-symmetric real symmetric matrix whose ab-entry
is −1, ba entry is 1, and all other entries are 0. For the invariant metric (, ) on g, we take the one such that
Ma,b (1 ≤ a < b ≤ 2k) form an orthonormal basis for g. Via this invariant metric, one can identify g∗ with g,
hence co-adjoint orbits with adjoint orbits. By definition, for any µ ∈ R,

Oµ := SO(2k) · 1√
k
(|µ|M1,2 + · · ·+ |µ|M2k−3,2k−2 + µM2k−1,2k). (1.4)

It is easy to see that Oµ = {0} if µ = 0 and is diffeomorphic to SO(2k)
U(k) if µ ̸= 0.
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We are now ready to describe the equation of motion for the magnetized Kepler problem in dimension
2k + 1. Let r: R → X be a smooth map, and ξ be a smooth lifting of r:

Pµ

ξ ↗
y

R r−→ X

(1.5)

Let AdP be the adjoint bundle P ×G g → X , d∇ be the canonical connection, i.e., the generalized Dirac
monopole on R2k+1

∗ = X . Then the curvature Ω := d2∇ is a smooth section of the vector bundle ∧2T ∗X ⊗
AdP . (With a trivialization of P → X , locally Ω can be represented by 1

2

√
−1Fjk dx

j ∧ dxk.) The equation
of motion is 

r′′ = − r
r3 + µ2

k
r
r4 + (ξ, r′yΩ),

D
dtξ = 0.

(1.6)

Here D
dtξ is the covariant derivative of ξ, (, ) refers to the inner product on the fiber of the adjoint bundle

coming from the invariant inner product on g, and 2-forms are identified with 2-vectors via the standard
euclidean structure of R2k+1. Eq. (1.6) defines a super integrable model, referred to as the classical Kepler
problem with magnetic charge µ in dimension 2k+1, which generalize the classical MICZ-Kepler problem.
Indeed, in dimension 3, the bundle is topological trivial, ξ = µM12, and Ω =

∗(
∑3

i=1 xi dxi)

r3 M12, then Eq.
(1.6) reduces to Eq. (1.1), i.e., the equation of motion for the MICZ-Kepler problem with magnetic charge µ.
In dimension 5, it is essentially Iwai’s SU(2)-Kepler problem, cf. Ref. [4].

The equation of motion appears to be mysterious, but it doesn’t. As demonstrated in Ref. [5], with a
key input from the work [7] of Sternberg, Weinstein, and Montgomery, it emerges naturally from the notion
of universal Kepler problem in Ref. [8]. As a side remark, we would like to point out that the quantum
magnetized Kepler problems [9] were obtained much earlier.

2 Orbits

While the orbits for the magnetized Kepler problems in dimension three have been thoroughly studied from
the very beginning [2], in higher dimensions, in view of the fact that the equation of motion is a bit more
sophisticated, one might expect that the orbits are a bit more sophisticated, too. That is probably the reason
why the orbits for Iwai’s SU(2)-Kepler problems were never investigated in Ref. [4] and the subsequent papers
[10].

Since the bundle Pµ → X has a canonical connection, an orbit inside Pµ is the the lifting (via the canonical
connection) of its projection onto X . So it suffices to understand the projection of the orbits onto X . Recently
we [11] found that the projection curve is either a part of straight line (colliding orbit) or a conic (non-colliding
orbit).

3 Outlook

An interesting further study is to work out the geometric quantization of the classical models introduced here
so that one can reproduce the quantum models introduced in Ref. [9]. We expect that the earlier work carried
out by I. Mladenov and V. Tsanov [12] for the Kepler problems in higher dimensions or the MICZ Kepler
problems shall serve a good guidance in such a study.
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