Recent Developments On Ricci Solitons And Contact Geometry

Ramesh Sharma Department Of Mathematics University Of New Haven West Haven, Connecticut 06516, USA E-mail: rsharma@newhaven.edu

A Ricci soliton is a natural generalization of an Einstein metric, and is defined on a Riemannian manifold (M, g) by

$$(\pounds_V g)(X,Y) + 2Ric(X,Y) + 2\lambda g(X,Y) = 0$$

where \pounds_{Vg} denotes the Lie derivative of g along a vector field V, λ a constant, and arbitrary vector fields X, Y on M. The Ricci soliton is said to be shrinking, steady, and expanding accordingly as λ is negative, zero, and positive respectively. Actually, a Ricci soliton is a generalized fixed point of Hamilton's Ricci flow [6]: $\frac{\partial}{\partial t}g_{ij} = -2R_{ij}$, viewed as a dynamical system on the space of Riemannian metrics modulo diffeomorphisms and scalings. One may note here that Ricci flow was used by Perelman [10] to prove the celebrated Poincare's conjecture, and more generally, the Thurston's geometrization conjecture.

The vector field V generates the Ricci soliton viewed as a special solution of the Ricci flow, and would be called the generating vector field. A Ricci soliton on a compact manifold of dimensions 2 and 3 has constant curvature (see Hamilton [6] for dimension 2, and Ivey [9]). A Ricci soliton is said to be a gradient Ricci soliton, if $V = -\nabla f$ (up to a Killing vector field) for a smooth function f. A significant result of Perelman [10] says that a Ricci soliton on a compact manifold is a gradient Ricci soliton. For details, we refer to Chow et al. [3]. Ricci solitons are also of interest to physicists who refer to them as quasi-Einstein metrics (for example, see Friedan [5]), and have been studied within the frame-work of general relativity in Reddy-Sharmasivaramakrishnan [11].

In [12], Sharma initiated the study of Ricci solitons as Riemannian metrics associated to a contact structure. By a contact structure we mean a globally defined 1-form η on a smooth manifold M (of odd dimension 2n + 1) such that $\eta \wedge (d\eta)^n \neq 0$ on M. For a contact 1-form η there exists a unique vector field ξ (Reeb vector field) such that $d\eta(\xi, X) = 0$ and $\eta(\xi) = 1$. Polarizing $d\eta$ on the contact subbundle $\eta = 0$, we obtain a Riemannian metric g and a (1,1)-tensor field φ such that

$$d\eta(X,Y) = g(X,\varphi Y), \eta(X) = g(X,\xi), \varphi^2 = -I + \eta \otimes \xi$$

g is called an associated metric of η and (φ, η, ξ, g) a contact metric structure. For details we refer to the classic monograph [1]. A contact metric structure is said to be K-contact if ξ is Killing. The contact metric structure on M is said to be Sasakian if the almost Kaehler structure on the cone manifold $(M \times R^+, r^2g + dr^2)$ over M, is Kaehler. For a Sasakian manifold, the restriction of φ to the contact sub-bundle D ($\eta = 0$) is denoted by J and $(D, J, d\eta)$ defines a Kaehler metric on D, with the transverse Kaehler metric g^T related to the Sasakian metric g as $g = g^T + \eta \otimes \eta$. The transverse Ricci tensor Ric^T of g^T is given by

$$Ric^{T}(X,Y) = Ric(X,Y) + 2g(X,Y)$$

for arbitrary vector fields X, Y in D. The Ricci form ρ and transverse Ricci form ρ^T are defined by

$$\rho(X,Y) = Ric(X,\varphi Y), \quad \rho^T(X,Y) = Ric^T(X,\varphi Y)$$

for $X, Y \in D$. If the basic first Chern class $2\pi c_1^B$ of D, represented by ρ^T , vanishes, then the Sasakian structure is said to be null (transverse Calabi-Yau). We refer to Boyer, Galicki and Matzeu[2] for details. A contact metric manifold M is said to be η -Einstein in the wider sense, if the Ricci tensor can be written as

$$Ric(X,Y) = \alpha g(X,Y) + \beta \eta(X)\eta(Y)$$

for some smooth functions α and β on M. We know that α and β are constant if M is K-contact, and has dimension greater than 3.

A *D*-homothetic deformation $\bar{\eta} = a\eta, \bar{\xi} = \frac{1}{a}\xi, \bar{\varphi} = \varphi, \bar{g} = ag + a(a-1)\eta \otimes \eta$ for a positive constant *a*, transforms a *K*-contact η -Einstein manifold into a *K*-contact η -Einstein manifold such that $\bar{\alpha} = \frac{\alpha+2-2a}{a}$ and $\bar{\beta} = 2n - \bar{\alpha}$. The particular value: $\alpha = -2$ remains fixed under a *D*-homothetic deformation. **Definition 1** A K-contact η -Einstein manifold with $\alpha = -2$ is said to be D-homothetically fixed.

A simple example is a Sasakian space-form with constant φ -sectional curvature -3, identifiable with a (2n + 1)-dimensional Heisenberg group.

In [12] Sharma obtained the following result.

Theorem 1 A complete K-contact gradient Ricci soliton is compact Einstein and Sasakian.

This was also shown later independently by He and Zhu [8] for the Sasakian case. In [7], Ghosh, Sharma and Chow proved the following result.

Theorem 2 If a non-Sasakian (k, μ) -contact metric manifold (a generalization of Sasakian manifold and the trivial sphere bundle $E^{n+1} \times S^n(4)$) is a gradient Ricci soliton, then it is locally flat in dimension 3, and locally isometric to $E^{n+1} \times S^n(4)$ in higher dimensions.

Subsequently, Cho and Sharma obtained the following two results.

Theorem 3 A compact contact Ricci soliton with a generaing vector field point-wise collinear with the Reeb vector field, is Einstein.

Theorem 4 A homogeneous gradient contact Ricci soliton whose Reeb vector field is an eigenvector of the Ricci tensor, is locally isometric to $E^{n+1} \times S^n(4)$.

Recently, Sharma and Ghosh [13] obtained the following result.

Theorem 5 A 3-dimensional Sasakian metric which is a non-trivial Ricci soliton, is homothetic to the standard Sasakian metric on the Heisenberg group nil^3 .

Most recently, Ghosh and Sharma have extended the foregoing result to higher dimensions and answered the following question of H.-D. Cao (cited in [8]): "Does there exist a shrinking Ricci soliton on a Sasakian manifold, which is not Einstein?" in the negative by obtaining the following characterization and classification result. **Theorem 6** If the metric of a (2n + 1)-dimensional Sasakian manifold M (η, ξ, g, φ) is a non-trivial Ricci soliton, then (i) M is null η -Einstein (i.e. D-homothetically fixed and transverse Calabi-Yau), (ii) the Ricci soliton is expanding, and (iii) the generating vector field V leaves the structure tensor φ invariant, and is an infinitesimal contact D-homothetic transformation.

They have also obtained the following result related to the preceding result.

Theorem 7 If an η -Einstein contact metric manifold M admits a vector field V that leaves the structure tensor φ and the scalar curvature invariant, then either V is an infinitesimal automorphism, or M is D-homothetically fixed and K-contact.

Proofs of the last three theorems use the formulas for the commutation between Lie-derivatives and co-variant derivatives of metric tensor, Levi-Civita connection, curvature tensor, Ricci tensor and scalar curvature, as given in Yano [14].

Remark: Note that a Ricci soliton as a Sasakian metric is different from the Sasaki-Ricci soliton in the context of transverse Kaehler structure in a Sasakian manifold, for example see Futaki et al. [4]).

This talk will conclude with some open promising questions on this topic for further developments.

References

- [1] Blair, D.E., *Riemannian geometry of contact and symplectic manifolds*, Progress in Math. 203, Birkhauser, Basel, 2010.
- [2] Boyer, C.P., Galicki, K. and Matzeu, P., On η-Einstein Sasakian geometry, Commun. Math. Phys. 262 (2006), 177-208.
- [3] Chow, B., Chu, S., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F, and Ni, L., *The Ricci flow: Techniques* and Applications, Part I: Geometric Aspects, Mathematical Surveys and Monographs 135, American Math. Soc., 2004.

- [4] Futaki, A., Ono, H. and Wang, G., Transverse Kaehler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom. 83 (2009), 585-635.
- [5] Friedan, D.H., Non-linear models in $2 + \epsilon$ dimensions, Ann. Phys. 163 (1985), 318-419.
- [6] Hamilton, R.S., The Ricci flow on surfaces, Mathematical and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71 (1988), American Math. Soc.
- [7] Ghosh, A., Sharma, R. and Cho, J.T., Contact metric manifolds with η -parallel torsion tensor., Ann. Glob. Anal. Geom. 34 (2008), 287-299.
- [8] He, C. and Zhu, M., Ricci solitons on Sasakian manifolds, http://arXiv:1109.4407v2 [math.DG] 26 Sep 2011.
- [9] Ivey, T., Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993), 301-307.
- [10] Perelman, G., The entropy formula for the Ricci flow and its geometric applications, Preprint, http://arXiv.org/abs/math.DG/02111159.
- [11] Reddy, V.V., Sharma, R. and Sivaramakrishnan, S., Spacetimes through Hawking-Ellis construction with a background Riemannian metric, Class. Quant. Grav. 24 (2007), 3339-3345.
- [12] Sharma, R., Certain results on K-contact and (k, μ) -contact manifolds, J. Geom. 89 (2008), 138-147.
- [13] Sharma, R. and Ghosh, A., Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group, Internat. J. Geom. Methods Mod. Phys. 8 (2011), 149-154.
- [14] Yano, K., Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.