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Nowadays Lie symmetries are widely applied to study partial differential
equations (including multidimensional PDEs), notably, for their reductions
to ordinary differential equations (ODEs) and constructing exact solutions.
There are a huge number of papers and many excellent books (see, e.g.,
the book [3] and papers cited therein) devoted to such applications. Over
recent decades, other symmetry methods, which are based on the classical Lie
method, were derived. The Bluman-Cole method of non-classical symmetry
(other widely used terminology is Q-conditional symmetry) is most well-
known among them and the book [3] summarizes the results obtained by
means of this approach for scalar PDEs. In recent papers [4, 5], this method
are essentially extended and applied to non-linear PDE systems (including
multi-component case).

However, a PDE (a system of PDEs) cannot model any real process with-
out additional condition(s) on the unknown function(s). On the other hand,
boundary-value problems (BVPs) based on the relevant PDEs (systems),
which reflect general physical laws, describe many real processes arising in
nature and society. One may note that the symmetry-based methods were
not widely used for solving BVPs. The obvious reason follows from the fol-
lowing observation: the relevant boundary and initial conditions are usually
not invariant under any transformations, i.e., they don’t admit any symmetry
of the governing PDE(s). Nevertheless, there are some classes of BVPs which
can be solved by means of the Lie symmetry based algorithm. Such algorithm
uses the notion of Lie’s invariance of BVP in question. Probably, the first
rigorous definition of Lie’s invariance for BVPs was formulated by Bluman in
1970s [2] (the definition and several examples are summarized in the book [3]).
This definition was used (explicitly or implicitly) in several papers to derive
exact solutions of some BVPs. It should be noted that Ibragimov’s definition
of BVP invariance [9], which was formulated independently, is equivalent to
Bluman’s. On the other hand, one notes that Bluman’s definition does not
suit to all types of boundary conditions. Notably, the definition doesn’t work
in the case of boundary conditions involving points at infinity (e.g., x → ∞)
and conditions on the moving surfaces such as the Stefan conditions.
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King [10] was probably the first who noted the problem with points at in-
finity and suggested the appropriate substitution to transform such points
to regular those. Pukhnachov [11] and, independently, Benjamin and Olver
[1] proposed how to define Lie’s invariance on the moving boundaries in the
case of some BVPs arising in hydrodynamics.

In our recent papers (see [6] and references therein), a new definition of
Lie’s invariance of BVP with a wide range of boundary conditions (including
those on non-regular manifolds and moving surfaces) was formulated. More-
over, an algorithm of the group classification for the given class of BVPs
was worked out for the first time. In [7] these results were extended in the
multidimensional case. The definition and algorithm were applied to some
classes of nonlinear two-dimensional and multidimensional BVPs of Stefan
type with the aim to show their efficiency. In particular, the group classifi-
cation problem for these classes of BVPs was solved, reductions to BVPs of
lower dimensionality were constructed and examples of exact solutions(with
physical meaning) were found.

Finally, there are many realistic BVPs, which cannot be solved using any
definition of Lie’s invariance of BVP, hence, definitions involving more gen-
eral types of symmetries should be worked out. In [8], a new definition of
conditional invariance for boundary-value problems (BVPs) is proposed. Its
relation with the definitions, which were earlier worked out for Lie’s invari-
ance, is shown and the wider applicability is demonstrated.The definition is
applied for reduction of BVPs with the basic reaction-diffusion-convection
equation, which is used in physically and biologically motivated problems.
The constrains on the functions arising in the boundary conditions are estab-
lished and the nonlinear BVPs in question are thus reduced to those based
on linear second-order ODEs. Moreover, the exact solution of a nonlinear
BVP with zero Neumann conditions is found.

The lecture will be based on the papers [6, 7, 8] and some unpublished
results.
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