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1 Affinely Rigid Body and Affine Invariance in Physics

It was a surprising fact that the two apparently completely different objects were de-

scribed by the same person: Leonhard Euler. And that the corresponding dynamical

equations are now called “Euler equations”. Nobody was then aware of the theory

of Lie groups. But it seems that Euler intuitively felt the corresponding relationship

between two problems. Indeed, today we know that the rigid body and the ideal fluid

are two special, in a sense opposite, cases of dynamical systems on groups. In a sense

“on Lie groups”, although in the case of ideal fluids the term “Lie group” is misused.

First of all one can ask the question why the dynamical systems with Lie groups as

configuration spaces are so physically distinguished. There are two points for that:

so-to speak theoretical and practical ones. From the very theoretical point of view it

is clear that every system on a Lie group is distinguished by the fact that there are Lie



groups which rule the spatial and internal geometry of degrees of freedom. And because

of this the corresponding group becomes relevant for this problem. The corresponding

Lie groups seem to organize and put in a hierarchic way the dynamics of degrees of

freedom. But, what is also not to be neglected, any Lie group is a system ruled with

analytic functions of dynamical variables. This analytical structure seems to suggest

that all physically important results may be obtained explicitly in terms of analytical

functions, first of all, in terms of analytic functions known from the realm of special

functions theory. In a sense, this denotes the “direct solvability”. Rigid body mechan-

ics is based on the kinetic energy (metric tensor) invariant under the space-like rigid

rotations. This is the left-hand-side invariance. At the same time, there is a hierarchy of

right-invariance depending on the symmetries of the co-moving inertial tensor. At the

same time, the right-hand side invariance under all volume-preserving diffeomorphisms

is a characteristic feature of the infinite-dimensional Hamiltonian system describing the

ideal fluid. In our approach to affinely-rigid body there is a finite-dimensional config-

uration space GL(n,R) which also admits some finite-dimensional group of left-acting

and right-acting transformation groups. An important problem which appears then

is the total left- or right- invariance of the kinetic energy. It turns out that unlike

the rigid body case there is no affine invariance of the total kinetic energy (the spatial

metric tensor). But in spite of this one can construct the left- or right- invariant kinetic

energies. It is interesting that the resulting geodetic Hamiltonian systems can describe

elastic vibrations. In a sense this resembles the Maupertuis variational principle which

collects the dynamics in the form of kinetic energy (dynamical metric tensor). It is in-

teresting that in spite of the non-compactness of the configuration space there are both

bounded (quantum: discrete) and decaying solutions. Similar results may be obtained

for systems on the unitary groups and probably for the complex linear group. Our

model is something “between” the rigid body and ideal fluid. It admits deformative

degrees of freedom, but in a finite-dimensional sense. Analytically, we use the po-

lar and two-polar decomposition. This means that formally the problem is reduced to

the two interacting metrically-rigid bodies coupled through the deformation invariants.

An interesting feature is the dissociation threshold appearing in geodetic problems; of

course, one can modify it by the isotropic potential. This problem appears both on

the classical and quantum level. We have also described the related problem on U(n).

It is interesting what will result in the complex case GL(n,C). There exist of course

the matrix-exponential solutions of doubly-affinely invariant problems. There is for

some reason the interest in one-side affine and one-side metrical invariance. It may be

shown that there are also similar solutions, but they are subject to certain restrictions

(stationary solutions).
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2 Bertrand Systems on Spaces of Constant Sec-

tional Curvature. The Action-Angle Analysis.

Classical, Quasi-Classical and Quantum Problems

The classical Bertrand systems are those concerning the motion of material point in

the spherically-symmetric potential force. The are such that all its bounded orbits are

closed, therefore, periodic curves. It was shown very many years ago that there are two

Bertrand potentials in Euclidean space: harmonic oscillator and attractive Coulomb

problem. Incidentally, it turned out that it is the peculiarity of dimension three that the

attractive Coulomb problem, i.e., inverse-square rule for the potential is also the Green

function for the Laplace-Beltrami operator. A very inventive proof of the Bertrand

theorem may be found, e.g., in the Arnold book “Mathematical methods of Classical

Mechanics” . The natural question arises as to the non-Euclidean analogue of this

theorem. One can show that there are two natural curved-space counterparts, namely

ones in the constant-curvature spaces: the spherical space and the pseudo-spherical,

i.e., Lobatchevski space. This may be shown in two ways; either by a kind of ths direct

repeating of the Arnold proof in the Euclidean space, or in a bit more sophisticated way,

by performing the projective transformation to the Euclidean Bertrand problems. By

“projective” we mean such a transformation which does preserve the system of geodetic

curves, but without preserving their natural parametrization. It may be shown that in

the spherical space of the radius R, SO(3, R) the corresponding “Coulomb” potential

has the form: V (r) = −(α/R) cot r/R, and the corresponding “oscillator” problem is:

V (r) = (kR2/2) tan2 r/R. Obviously, here k > 0, but in principle it may have both

possible signs. The sign decides only which pole; the “northern” one r = 0 or the

“southern” one r = πR is to be attractive or repulsing. The problem becomes a bit

more complicated in the “elliptic space” where r is assumed to change only between

0 and πR/2. To be honest, on the spherical space there is an additional “Bertrand

potential”, namely geodetic one when α = 0, and k = 0. The possible motions are then

the great circles. In the Lobatchevski space the corresponding potentials are give by

V (r) = −(α/R) cot r/R for the Coulomb case and V (r) = (kR2/2) tan2 r/R for the

attractive oscillator. And now it must be k > 0, α > 0. There is also an additional

peculiarity of the pseudo-spherical case, namely, the attractive potential has the upper

bound. For energies above it the motion fails to be bounded and periodic. There is a

very interesting feature of our Bertrand problems in a curved manifolds visible within

the framework of the Hamilton-Jacobi theory. Namely, the energy turns out to be a

sum of the geodetic terms on the manifolds and of the “usual” terms characteristic

for the spherical and pseudo-spherical geometry. This opens the possibility of strange

conjectures concerning some “experimental” attempts of deciding if the Universe is

closed or infinite. As usual when dealing with the highly symmetric models, there is a
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parallelism between classical, quasi-classical and quantum theories. On the quantum

level the mentioned strange features of the energy spectra are still valid.

3 Affinely Rigid Body and Oscillatory

Two-Dimensional Models

The particular case of the two-dimensional physical and material space is very special

in many respects. First of all the reason is that the rotation group in two dimen-

sions is one-dimensional, therefore, commutative. This fact enables one to find some

rigorous solutions, very often in analytical form expressed in terms of known special

functions of mathematical physics. In any case there exists a class of models which

are both realistic from the point of view of applications and rigorously solvable at

least in the sense of reduction to some special functions. The quantum dependence

of wave functions on the angles of the two-polar decomposition may be simply ex-

panded in terms of the usual Fourier series. Roughly speaking, the same procedure

may be used within the classical framework. In the doubly-isotropic case, including

of course the geodetic one, the whole dynamics becomes reduced to the one on the

manifold of diagonal matrices, i.e., to the motion of deformation invariants. There is

of course some problem here, because the GL(2, R)-group is not semi-simple and some

difficulties appear on the level of the two-dimensional volume. But one can easily solve

this difficulty by assuming some volume-stabilizing potential. In any case the resulting

reduced dynamics on SL(2, R) is explicitly solvable in terms of special functions, at

least when the interaction potential is appropriately chose, or if it is simply absent

(the isochoric-geodetic problem). For example, one can solve it for the harmonic os-

cillator potential or for its an-harmonic correction describing also the repulsion from

the singular configuration with the vanishing two-dimensional volume. It is interesting

that the similar procedure works also for the higher-dimensional situations, although

the co-moving angular momentum and vorticity fail to be constants of motion then.

This follows from the structure of the commutation relations of the linear group. An-

other problem in two-dimensional affinely-rigid dynamics has to do with the analysis

of the action-angle variables and the quasi-classical and quantum dynamics in certain

special kind of configuration space variables. Roughly speaking, they are somehow

related to the spherical variables in the four-dimensional space, although they have a

slightly different nature. It is interesting that the problem becomes now reduced to

that of metrically-rigid body with one additional “non-compact” degree of freedom.

Performed is a detailed analysis of degeneracy (hyper-integrability). It is very inter-

esting that on the quantum level one obtains wave function known from the theory

of rigid body and the Wigner theory of representations of the groups SO(3, R) and

SU(2).
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4 Classical and Quantum Models of Affinely Rigid

Body with Degenerate Dimension

We concentrate mainly on the regular situation when the dimensions of the physical

and material spaces are equal. Nevertheless one can also consider something like the

“affine shell problem” , when the dimension of the material space is lower than that

of the physical space. Roughly speaking, this is the dynamics of homogeneously de-

formable coin, when the spatial dimension equals three and the material one equals

two. But of course one can consider, and we do that, a general situation. From the

very fundamental point of view this is the special problem of affine mappings acting

between those two spaces. But of course there are many differences in comparison

with the general case. We analyze them using the concepts of Grassmann and Stiefel

manifolds. In a sense there are some natural generalizations of the polar and two-polar

description, there are however serious differences in comparison with the regular situ-

ations. Fortunately, in a large class of problems, one can use a simplified description

based on the analogues of the polar and two-polar decomposition. Using methods of

group theory we can use this representation and reduce in a sense the problem to the

lower-dimensional dynamics of deformation invariants. One can solve some dynamical

problems for appropriately chosen potential models, including realistic ones from the

elasticity point of view. The method of deriving equations of motion is based on the

properties of Poisson brackets. It turns out that the same procedure applies also to

the quantum case, applicable, e.g., to molecular problems. Again one uses the proce-

dure of quantum Poisson brackets and expansion of the wave Functions in series with

respect to the matrix elements of irreducible unitary representations of the spatial and

material rotation groups.

5 Four-Dimensional Rigid Body and the Related

Three-Dimensional Two-Gyroscopic Problems

It is well-known that there is one exceptional rotation group among all SO(n,R) with

n greater than two. This is SO(4,R). Its Lie algebra is not semi-simple and this is

just its particular feature. To be honest, this has also some consequences in the struc-

ture of the Lorentz group in four dimensions. It is perhaps not a very serious remark,

but according to the the “antropic” principle there were some speculations concern-

ing the particular dimension “four” of the physical space-time. But in any case it is

interesting to review the dynamics of a rigid body in the four-dimensional Euclidean

space. There are a few important groups related to SO(4, R): the universal cover-

ing SU(2)XSU(2) and some related groups like SU(2)XSO(3, R), SO(3, R)XSU(2)

and finally SO(3, R)XSO(3, R). Of course, all of them are mutually locally isomor-
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phic, but there is no global isomorphism, in particular SO(4, R) is different than

SO(3, R)XSO(3, R). Their Lie algebras are identical, but on the level of the group

structure there are differences, namely resulting from the division by finite groups.

We show that there are a few ways to interpret the group SO(4, R)as a configuration

space. Namely, one can consider an abstract rigid body with the SO(4, R)XSO(4, R)

degrees of freedom, but one can also discuss the “small” rigid body moving along the

SO(3, R), or better SU(2) (i.e. three-dimensional sphere in the four-dimensional vector

space). And finally one can consider the covering space rigid body moving along the

sphere, this is again SU(2)XSU(2). Some interesting problems concerning integrability

and degeneracy appear then and also some interesting connection with the Bertrand

problem with gyroscopic degrees of freedom. There are some rigorous formulas for the

quantum energy levels of the geodetic problems and ones with the potential energy

term.
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