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Summary

The connection of curves and surfaces in R3 to some nonlinear partial differential equations
is very well known in differential geometry [1], [2]. Motion of curves on two dimensional
surfaces in differential geometry lead to some integrable nonlinear differential equations such
as nonlinear Schrödinger (NLS) equation [3], Korteweg de Vries (KdV) and modified Korteweg
de Vries (mKdV) equations [4],[5].

Surface theory in three dimensional Euclidean space (R3) is widely used in different
branches of science, particularly mathematics (differential geometry, topology, Partial Differ-
ential Equations (PDEs)), theoretical physics (string theory, general theory of relativity), and
biology [6]-[11]. There are some special subclasses of 2-surfaces which arise in the branches
of science aforementioned. For the classification of surfaces in R3, particular conditions are
imposed on the Gaussian and mean curvatures. These conditions are sometimes given as al-
gebraic relations between curvatures and sometimes given as differential equations for these
two curvatures. Here are some examples of some subclasses of 2-surfaces:

i) Minimal surfaces: H = 0,

ii) Surfaces with constant mean curvature : H = constant,

iii) Surfaces with constant positive Gaussian curvature: K = constant > 0,

iv) Surfaces with constant negative Gaussian curvature: K = constant < 0,

v) Surfaces with harmonic inverse mean curvature: ∇2(1/H) = 0,

vi) Bianchi surfaces: ∇2(1/
√
K) = 0 and ∇2(1/

√
−K) = 0, for positive Gaussian curvature

and negative Gaussian curvature, respectively,

vii) Weingarten surfaces: f(H,K) = 0. For example; linear Weingarten surfaces, c1H +
c2K = c3, and quadratic Weingarten surfaces, c4H

2+c5HK+c6K
2+c7H+c8K = c9,

where cj are constants, j = 1, 2, ..., 9,

viii) Willmore surfaces: ∇2H + 2H(H2 −K) = 0,
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ix) Surfaces that solve the shape equation of lipid membrane:

p− 2ωH + kc∇2(2H) + kc(2H + c0)(2H
2 − c0H − 2K) = 0,

where p, ω, kc, and c0 are constants.

Here, H and K are mean and Gaussian curvatures of the surface, respectively.
On the other hand soliton equations play a crucial role for the construction of surfaces. The
theory of nonlinear soliton equations was developed in 1960s. Lax representation of integrable
equations should exist in order to apply inverse scattering method for finding solutions of
these integrable equations. For details of integrable equations one may look [12], [13], and
the references therein. Lax representation of nonlinear PDEs consists of two linear equations
which are called Lax equations

Φx = U Φ, Φt = V Φ, (1)

and their compatibility condition

Ut − Vx + [U, V ] = 0, (2)

where x and t are independent variables. Here U and V are called Lax pairs. They depend
on independent variables x and t, and a spectral parameter λ. Hereafter, subscript x and
t denote the partial derivatives of the object with respect to x and t, respectively. For our
cases, U and V are 2×2 matrices and they are in a given Lie algebra g. Eq. (2) is also called
the zero curvature condition. Integrable equations arise as the compatibility conditions, Eq.
(2), of the Lax equations [Eq. (1)]. Since Gauss-Mainardi-Coddazi (GMC) equations are
compatibility conditions of Gauss-Weingarten (GW) equations, there is a close relationship
between surfaces and Lax equations. GW equations and Lax equations play similar roles but
they are not exactly the same. While Lax equations depend on spectral parameters, GW
equations do not. Moreover GW equations are written in terms of 3 × 3 matrices whereas
Lax pairs are 2× 2 matrices. The former problem can be solved easily by inserting spectral
parameters in GW equations using the one dimensional symmetry group of GW equations.
The latter problem was solved by Sym [16]. By making use of the isomorphism so(3) ≃ su(2),
he rewrote the GW equations in terms of 2 × 2 matrices. So for integrable surfaces, GW
equations can be written in terms of 2× 2 matrices using the conformal parametrization.

2-surfaces and integrable equations can be related by the analogy between GW equations
and Lax equations. Such a relation is established by the use of Lie groups and Lie algebras.
Using this relation, soliton surface theory was first developed by Sym [14]-[16]. He studied the
surface theory in both directions: from geometry to solitons and from solitons to geometry. In
the first direction, he obtained some well known soliton equations as a consequence of GMC
equations. In the second direction, he obtained the following formula using the deformation
of Lax equations for integrable equations

F = Φ−1∂Φ

∂λ
, (3)

which gives a relation between a family of immersions (F ) into the Lie algebra and the Lax
equations for given Lax pairs. Fokas and Gelfand [17] generalized Sym’s formula as

F = α1Φ
−1U Φ+ α2Φ

−1V Φ+ α3Φ
−1∂Φ

∂λ
+ α4 xΦ

−1U Φ

(4)
+α5 tΦ

−1V Φ+ Φ−1M Φ,

where αi, i = 1, 2, 3, 4, 5 and M ∈ g are constants. So by this technique, which is called
the soliton surface technique, using the symmetries of the integrable equations and their Lax
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equations we can find a large class of soliton surfaces for given Lax pairs. One may find
2-surfaces developed by soliton surface technique, which belong to subclasses of the surfaces,
mentioned in (i)-(ix) on page 2, in the references [28], [9], [14]-[32].

On the other hand, there are some surfaces that arise from a variational principle for a
given Lagrange function, which is a polynomial of degree less than or equal to two in the
mean curvature of the surfaces. Examples of this type are minimal surfaces, constant mean
curvature surfaces, linear Weingarten surfaces, Willmore surfaces, and surfaces solving the
shape equation for the Lagrange functions. Taking more general Lagrange function of the
mean and Gaussian curvatures of the surface, we may find more general surfaces that solve
the generalized shape equation (see [34]-[40]) . Examples for this type of surfaces can be
found in [20] - [25].

Examples of some of these surfaces like Bianchi surfaces, surfaces where the inverse of the
mean curvature is harmonic [9], and the Willmore surfaces [10], [11] are very rare. The main
reason is the difficulty of solving corresponding differential equations. For this purpose, some
indirect methods [14]-[32] have been developed for the construction of two surfaces in R3 and
in three dimensional Minkowskian geometries (M3). Among these methods, soliton surface
technique is very effective. In this method, one mainly uses the deformations of the Lax
equations of the integrable equations. This way, it is possible to construct families of surfaces
corresponding to some integrable equations such as sine Gordon (SG), Korteweg de Vries
(KdV) equation, modified Korteweg de Vries (mKdV) equation and Nonlinear Schrödinger
(NLS) equation [14]-[25], belonging to the afore mentioned subclasses of 2-surfaces in a three
dimensional flat geometry. In particular, using the symmetries of the integrable equations
and their Lax equation, we arrive at classes of 2-surfaces. There are many attempts in this
direction and examples of new two surfaces.
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