Toroidal Surfaces

Metin Gürses

Department of Mathematics, Faculty of Sciences, Bilkent University 06800 Ankara, Turkey, gurses@fen.bilkent.edu.tr

Abstract

We show that the 2-torus in \mathbb{R}^3 is a critical point of a sequence of functionals \mathcal{F}_n $(n = 1, 2, 3, \cdots)$ defined over compact 2-surfaces (closed membranes) in \mathbb{R}^3 . When the Lagrange function \mathcal{E} is a polynomial of degree n of the mean curvature H of the surface, the radii (a, r) of the 2-torus are related as $\frac{a^2}{r^2} = \frac{n^2 - n}{n^2 - n - 1}$, $n \geq 2$. A simple generalization of 2-torus in \mathbb{R}^3 is a tube of radius r along a curve α which we call it toroidal surface (TS). We show that toroidal surfaces with non-circular curve α do not provide minimal energy surfaces of the functionals \mathcal{F}_n (n = 2, 3) on closed surfaces. We discuss possible applications of the functionals discussed in this work on cell membranes.