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Let Rp,q be the pseudo-Euclidean space with indefinite inner product of signa-
ture (p, q), p, q ∈ N, and let SO(p, q) be the group of proper pseudo-orthogonal
transformations, that is, linear transformations of Rp,q that leave the inner product
invariant and that can be reached continuously from the identity transformation
of Rp,q [1]. The group SO(1, 3) is the proper Lorentz transformation group of spe-
cial relativity theory. Hence, the group SO(p, q) is called the (generalized) Lorentz
transformation group of order (p, q). The author’s parametrization of the Lorentz
group SO(1, n), n ∈ N, in 1988 [2] led to the discovery that a parameter space of the
proper Lorentz transformation group possesses a novel, nonassociative group-like
algebraic structure that became known as a gyrogroup. The non-associativity of
gyrogroups is controlled by special automorphisms called gyrations. The gyration,
in turn, is a mathematical abstraction of the relativistic effect known as Thomas
precession.

The nongroup parameter space of SO(1, n) turns out to form a gyrogroup. Gy-
rogroups give rise to gyrovector spaces which, in turn, form the setting for n-
dimensional analytic hyperbolic geometry, just as vector spaces form the setting
for n-dimensional analytic Euclidean geometry [3, 4, 5, 6, 7, 8, 9, 10]. In this expo-
sition we present a parametrization of the Lorentz group SO(p, q) for any p, q ∈ N,
along with its resulting novel theory that extends the theory of gyrogroups into the
so called bi-gyrogroups.
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