We will present results on matrix generalized inverses with some applications. It is well-known that a square complex matrix A is invertible if and only if $\det(A) \neq 0$. In this case $AA^{-1} = A^{-1}A = I$, where I is the identity matrix of the appropriate dimension. However, in many situations the considered matrix is not invertible, or not square.

There are several ways to define a generalized inverse of a general complex matrix. If the matrix $A \in \mathbb{C}^{m \times n}$ is given, then the Moore-Penrose of A is the matrix $A^\dagger \in \mathbb{C}^{n \times m}$ satisfying the conditions

\begin{align*}
(1) \quad & AA^\dagger A = A, \\
(2) \quad & A^\dagger AA^\dagger = A^\dagger, \\
(3) \quad & (AA^\dagger)^* = AA^\dagger, \\
(4) \quad & (A^\dagger A)^* = A^\dagger A.
\end{align*}

The Moore-Penrose inverse of a complex matrix always exists and it is unique. If A is square and invertible, then $A^\dagger = A^{-1}$, i.e. in this case the ordinary and the Moore-Penrose inverse of A coincide.

Furthermore, if a vector $b \in \mathbb{C}^n$ is also given, we want to solve the equation $Ax = b$. In the most general situation, the obvious candidate for a solution is $x = A^\dagger b$. Such x minimizes the norm $\|Ax - b\|$ and such x has the minimum norm $\|x\|$ among all other minimizers. This is the approximation property of the Moore-Penrose inverse. The Moore-Penrose inverse is also connected with the Singular value decomposition of a complex matrix and linear regression.

Now, is $S \subset \{1, 2, 3, 4\}$, we can define a generalized inverse $A^{(S)}$ of A, such that only equations from S are satisfied. Thus, we obtain the following classes of generalized inverses: $\{1\}$-inverses, $\{2\}$-inverses, $\{1, 2\}$-inverses, etc. This classes are also important in many applications.

If we consider a square matrix $A \in \mathbb{C}^{m \times m}$, then the commutativity conditions can be involved. For previously given A, the Drazin inverse $A^D \in \mathbb{C}^{m \times m}$ satisfy the conditions

\begin{align*}
(2) \quad & A^D AA^D = A^D, \\
(5) \quad & AA^D = A^D A, \quad A^{n+1} A^D = A^n
\end{align*}

for some $n \in \mathbb{N}_0$. The least such n is called the Drazin index of A, denoted by $\text{ind}(A)$. The Drazin inverse A^D of $A \in \mathbb{C}^{m \times m}$ is unique and always exists. We have $\text{ind}(A) = 0$ if and only if A is invertible, and in this case $A^D = A^{-1}$.

If \(\text{ind}(A) \leq 1 \), then the multiplicative semigroup generated by \(\{A, A^D\} \) is actually a group with the unit \(AA^D \). For this special reason, if \(\text{ind}(A) \leq 1 \), then \(A^D = A^# \) is the group inverse of \(A \). Thus, the group inverse of \(A \), \(\text{ind}(A) \leq 1 \), is the unique matrix \(A^# \) satisfying

\[
(1) \quad AA^#A = A, \quad (2) \quad A^DAA^D = A^D, \quad (5) \quad AA^D = A^DA.
\]

If \(J \) is the Jordan normal form of \(A \in \mathbb{C}^{m \times n} \), and \(J(0) \) is the appropriate Jordan block corresponding to the eigenvalue \(\{0\} \) (if \(J(0) \) exists), then \(\text{ind}(A) \) is the index of nilpotency of \(J(0) \). Of course, \(J(0) \) does not exist if and only if \(\text{ind}(A) = 0 \).

Drazin inverse have applications in finite Markov chains and singular systems of differential equations.

Lectures will be given according to the references and with the following contents.

Lecture 1. Moore-Penrose inverse, \(\{1\}-, \{2\}- \) and \(\{1,2\}- \) generalized inverses and related topics.

Lecture 2. Drazin inverse and group inverse.

Lecture 3. Computation of generalized inverses and solving matrix equations.

Lecture 4 and Lecture 5. Applications of generalized inverses: parallel sums and shorted matrices, linear regression, finite Markov chains, singular systems of differential equations.

References

