Generalized Inverses and Applications

Dragan S. Djordjević

Department of Mathematics and Informatics Faculty of Sciences and Mathematics University of Niš, Višegradska 33, 18000 Niš, Serbia E-Mail: dragandjordjevic70@gmail.com

We will present results on matrix generalized inverses with some applications. It is well-known that a square complex matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. In this case $A A^{-1}=A^{-1} A=I$, where I is the identity matrix of the appropriate dimension. However, in many situations the considerd matrix is not invertible, or not square.
There are several ways to define a generalized inverse of a general complex matrix. If the matrix $A \in \mathbb{C}^{m \times n}$ is given, then the Moore-Penrose of A is the matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ satisfying the conditions
(1) $A A^{\dagger} A=A$,
(2) $A^{\dagger} A A^{\dagger}=A^{\dagger}$,
(3) $\left(A A^{\dagger}\right)^{*}=A A^{\dagger}$,
(4) $\left(A^{\dagger} A\right)^{*}=A^{\dagger} A$.

The Moore-Penrose inverse of a complex matrix always exists and it is unique. If A is square and invertible, then $A^{\dagger}=A^{-1}$, i.e. in this case the ordinary and the Moore-Penrose inverse of A coincide.
Furthermore, if a vector $b \in \mathbb{C}^{n}$ is also given, we want to solve the equation $A x=b$. In the most general situation, the obvious candidate for a solution is $x=A^{\dagger} b$. Such x minimizes the norm $\|A x-b\|$ and such x has the minimum norm $\|x\|$ among all other minimizers. This is the approximation property of the Moore-Penrose inverse. The Moore-Penrose inverse is also connected with the Singular value decomposition of a complex matrix and linear regresion.

Now, is $S \subset\{1,2,3,4\}$, we can define a generalized inverse $A^{(S)}$ of A, such that only equations from S are satisfied. Thus, we obtain the following classes of generalized inverses: $\{1\}$-inverses, $\{2\}$-inverses, $\{1,2\}$-inverses, etc. This clases are also important in many applications.
If we consider a square matrix $A \in \mathbb{C}^{m \times m}$, then the commutativity conditions can be involved. For previously given A, the Drazin inverse $A^{D} \in \mathbb{C}^{m \times m}$ satisfy the conditions

$$
\text { (2) } A^{D} A A^{D}=A^{D}, \quad \text { (5) } A A^{D}=A^{D} A, \quad A^{n+1} A^{D}=A^{n}
$$

for some $n \in \mathbb{N}_{0}$. The least such n is called the Drazin index of A, denoted by $\operatorname{ind}(A)$. The Drazin inverse A^{D} of $A \in \mathbb{C}^{m \times m}$ is unique and always exists. We have $\operatorname{ind}(A)=0$ if and only if A is invertible, and in this case $A^{D}=A^{-1}$.

If $\operatorname{ind}(A) \leq 1$, then the multiplicative semigroup generated by $\left\{A, A^{D}\right\}$ is actually a group with the unit $A A^{D}$. For this special reason, if $\operatorname{ind}(A) \leq 1$, then $A^{D}=A^{\#}$ is the group inverse of A. Thus, the group inverse of A, $\operatorname{ind}(A) \leq 1$, is the unique matrix $A^{\#}$ satisfying
(1) $A A^{\#} A=A$,
(2) $A^{D} A A^{D}=A^{D}$,
(5) $A A^{D}=A^{D} A$.

If J is the Jordan normal form of $A \in \mathbb{C}^{m \times n}$, and $J(0)$ is the appropriate Jordan block corresponding to the eigenvalue $\{0\}$ (if $J(0)$ exists), then $\operatorname{ind}(A)$ is the index of nilpotencity of $J(0)$. Of course, $J(0)$ does not exists if and only if $\operatorname{ind}(A)=0$.

Drazin inverse have applications in finite Markov chains and signular systems of differential equations.

Lectures will be given accorging to the references and with the following containts.

Lecture 1. Moore-Penrose inverse, $\{1\}$-, $\{2\}$ - and $\{1,2\}$-generalized inverses and related topics.

Lecture 2. Drazin inverse and group inverse.
Lecture 3. Computation of generalized inverses and solving matrix equations.

Lecture 4 and Lecture 5. Applications of generalized inverses: parallel sums and shorted matrices, linear regression, finite Markov chains, singular systems of differential equations.

References

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Theory and Applications, Springer, New York 2003.
[2] D. S. Djordjević, V. Rakočević, Lectures on Generalized Inverses, University of Niš, Faculty of Sciences and Mathematics, Niš 2008.
[3] G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Springer, Beijing 2018.

