Quantum Groups and Stochastic Models

Stochastic reaction-diffusion processes are of both
theoretical and experimental interest not only
because they describe various mechanisms in
physics and chemistry but they also provide a
way of modelling phenomena like traffic flow,
kKinetics of biopolimerization, interface growth.

A stochastic process is described in terms of a
master equation for the probability distribution
P(s;,t) of a stochastic variable s; =0,1,2....,n—
1 at asite:=1,2,....L of a linear chain. A state
on the lattice at a time t is determined by the oc-
cupation numbers s; and a transition to another
configuration sg during an infinitesimal time step
dt is given by the probability (s, s’)dt. The rates
[ = I‘;’; are assumed to be independent from the
position in the bulk. At the boundaries, i.e. sites



1 and L additional processes can take place with
rates L and R. Due to probability conservation

M(s,8) =— > I(s,s) (1)
s'#s

The master equation for the time evolution of
a stochastic system
dP(s,t)
dt
IS mapped to a Schroedinger equation for a

quantum Hamiltonian in imaginary time

Z (s,s)P(s,t) (2)

dP()
- = —HPQ®) (3)
where
H=Y H;j1+HD +HF (4)
j

The ground state of this in general non-hermitean
Hamiltonian corresponds to the stationary prob-
ability distribution of the stochastic dynamics.
The mapping provides a connection with inte-
grable quantum spin chains.



Examples - particles hop between l|attice sites 2,
j with rates g;; with a hard core repulsion (i.e.
a site is emty or occupied by one particle)

1. The symmetric exclusion process - g;; = gj;-
The stochastic Hamiltonian is the SU(2) sym-
metric spin 1/2 isotropic Heisenberg ferromag-
net

1
H = -5 > (ofof + 030? + o707 — 1) (5)
;

The SU(2) symmetry, yet unrevealed in the
original master equation becomes manifest through
the mapping and allows for exact results of the
stochastic dynamics.

2. The ASEP - a diffusion driven lattice gas of

particles with rates M = q #* 1 is mapped to

i+1.,2

a SU4(2)-symmetric X X Z chain with anizotropy
A\ — (CH‘é]_l)_



MATRIX PRODUCT GROUND STATES AP-
PROACH

The stationary probability distribution, i.e. the
ground state of the quantum Hamiltonian is ex-
pressed as a product of (or a trace over) matri-
ces that form representation of a quadratic alge-
bra determined by the dynamics of the process.
(Derrida et. al.- ASEP with open boundaries;
3-species diffusion-type, reaction-diffusion pro-
cesses)

ANZATZ

Any zero energy eigenstate of a Hamiltonian
with nearest neighbour interaction in the bulk
and single site boundary terms can be written
as a matrix product state with respect to a
quadratic algebra

r;];Dsz — QUZD]' — ijl

DIFFUSION - Mk = g,



Consider n species diffusion process on a chain
with L sites with nearest-neighbour interaction
with exclusion, on successive sites the particles
1 and k£ exchange places with probability g;.dt;
particles number n; in the bulk is conserved

n—1
d ny=1L (6)
1 =0

Open systems with boundary processes - at site
1 (left) and at site L (right) the particle i is
replaced by the particle k£ with probabilities L};dt
and Ry dt respectively.

L—-1
j=0 '
DIFFUSION ALGEBRA

9k DiDy, — 9 Dy Dy = xp Dy — x; Dy, (8)

where 1,k =0,1,..n — 1 and x; are c-numbers

n—1
Z Lr; — 0
1=0



This is an algebra with INVOLUTION, hence
hermitean D;

D; = D, g{l;; = —Gki v =z  (9)

1

(OI’ Di = —D-+ if gik — g]j;)

rL !

PROBABILITY DISTRIBUTION:

- periodic boundary conditions
P(Sl, SL) — TT(DS]_DSQ-”DSL) (10)
-boundary processes
P(Sl, SL) =< w|D81D82---D8L|U > (11)
the vectors |v > and < w| are defined by

< w|(LfDy + ;) =0, (RFDy — z)|v >=0
(12)

THUS to find the stationary probability distri-
bution one has to compute traces or matrix ele-
ments with respect to the vectors |v > and < w|
of monomials of the form

D3 *Dg2....Dg " (13)



The problem to be solved is twofold - Find a
representation of the matrices D that is a so-
lution of the quadratic algebra and match the
algebraic solution with the boundary conditions.

The relations (8) allow an ordering of the el-
ements D;. Monomials of given order are the
Poincare- Birkhoff-Witt (PBW) basis for poly-
nomials of fixed degree as the probability dis-
tribution is due to the conservation laws (6).
Consider the associative algebra generated by
an unit e and n elements D, obeying n(n—1)/2
relations (8). The alphabetically ordered mono-
mials

DgiDg2....Dg!, (14)

where s;1 < sp < ....s;, I > 1 and ny,no,....n; are
non-negative integers, are a linear basis in the
algebra, the PBW basis.



BRAID ASSOCIATIVITY - coincidence of two
different ways of ordering which is sufficient to
verify for cubic monomials only with the corre-
sponding relations for the rates.

PROPOSITION:

1. In the case of Lie-algebra type diffusion alge-
bras the n generators D;, and e can be mapped
to the generators J;;. of G L(n) and the mapping
is invertible. The UEA generated by D, belongs
to the UEA of the Lie-algebra of GL(n).

2. The multiparameter quantized noncommu-
tative space can be realized equivalently as a
g-deformed Heisenberg algebra of n oscillators
depending on n(n — 1)/2 4+ 1 parameters (or in
general on n(n — 1)/2 + n parameters ). The
UEA of the elements D; in the case of a diffu-
sion algebra with all coefficients z; on the RHS
of €q.(8) equal to zero belongs to the UEA of a



multiparameter deformed Heisenberg algebra to
which a consistent multiparameter GL4(n) quan-
tization corresponds.

3. In an algebra with z-terms on the RHS of (8)
only then is braid associativity satisfied if out of
the cofficients «x;, x;, x; corresponding to a triple
D;D;.D; either one coefficient « is zero or two
coefficients « are zero and the rates are respec-
tively related. The diffusion algebras in this case
can be obtained by either a change of basis in
the n-dimensional noncommutative space or by
a suitable change of basis of the lower dimen-
sional quantum space. The appearence of the
nonzero linear terms in the RHS of the quan-
tum plane relations leads to a lower dimensional
noncommutative space and a reduction of the
GLg(n) invariance.

NOTE - the diffusion algebra has always the
one- dimensional representations with the cor-
responding relations for the rates.



Representations of the diffusion algebras

A. Lie-algebra types

1. All rates equal, g;; =gj; =g
‘T he algebra after rescaling the generators D;, 1 =
0,1,2,..n—1 by

_ n—1
D; =D, Y 4, =0 (15)
g i=1
takes the form
[Do,D1] = Dg— D (16)
[Dg, D2] = Dg— D5
[Dn—Qa Dn—I: — Dn—2 — Dn—l

T hese algebraic relations are solved in terms of
the GL(n) Lie-algebra generators J;Z:

Do = A+ +I5+..+J21 @)
O+ g+ 7+ +art
IS+ I3+ I+ .+ g

o O
N
Il

Dpo1 = JO 1+ J  +J2  +.J0



The conventional basis for fundamental repre-
sentation of the GL(n) generators given by the
(eij)ab = 5ia5jbr 1,7,a,b = 0,1,2...n — 1 provides
the n-dimensional matrix representation of the
generators D, with entries 1 in only the first row
of Dg, the second row of Dy, the third row of
Ds3,...the last row of D,,_1 and all the entries
elsewhere zero. The correspondence is one-to-
one since

1
J) = ;DiDjT (18)

The Poincare-Birkhoff-Witt basis of the alge-
bra generated by the elements D is a subsystem
of the basis of the universal enveloping algebra
of sl(n) ®u(1l) which is the hidden symmetry al-
gebra of a stochastic diffusion system with all
rates equal.

1.1. Algebra and Boundary Problem for n = 2
and n =3



The algebra [Dg,D1] = Dg — D1, is solved by
Do =JY+ J} Dy =JY+ Ji

The boundary vectors are determined by the
conditions

< w|(LYDg — LD + 1) =0 (19)

(—RYDg + R{D1 — z0)jv >=0 (20)

with zg +x7 = 0. The boundary matrices are
simultaneously diagonalized with the constraints

LY+ L5 =g, R+ R =—g, (21)

CONTRADICTION - all the rates are probabil-
ity rates and have to be POSITIVE. There is an
algebraic solution consistent with the boundary
conditions, namely

Dy = %((1+a)J8+J3+aJ%> (22)
Dy = %(aJ8+J9+<1+a>J%>

It introduces an additional arbitrary parameter
and this is the price to be paid to match the
algebra with the boundary vectors which hence



determines a Fock representation of the diffu-
sion algebra with a constraint for the rates

g(L+ LY+ R+ RY) = (L§+LY)(RE+RY) (23)

Unlike the n = 2 problem the expressions for the
n = 3 D-matrices

X

Dy = ;OUS + 3+ 3 (24)
X

D; = gl(J? + Ji + J?)
X

Dy = ?Q(JS + J3 + J3)

that solve the diffusion algebra yield a consis-
tent solution for the boundary vectors. The lat-
ter are in this case determined by the systems

<w((-L? — L3)Do + L§D1 + L§Do + x0)) =0
<w(LYDg+ (=L — L3)D1 + LiDy + 21) =0

< ’U)(LQDO —I—L2D1 —l—( LO — L )DQ +$2) =0

and

(—=R§ — R3)Do + R§D1 + R§D2 — mg)v >=0



(RYDo + (—R§ — R3)D1 + RIDp — x1)v >=0

(RSDg + R3D1 4+ (—=R3 — R{) Dy — z0)v >= 0

with g4+ x1 + 2o = 0 The parameters x provide
a matching condition for a common eigenvalue
zero of the left and right transition matrices with
the corresponding left and right boundary vec-
tors and constraints on the boundary rates

R§LE + LyRs + (L + L3)(R+ RY) +
(R + R(L§ + Lg) = g(L— L§+ RS — R3)
(Rg + R3)LT — (L5 + L3)RT + RI(Lg+ L3+ L) —
LY(Rf+ Ry + R3) = g(L§ — LT+ R} - LY)

_|_

The generalisation of these representations to
general n is straightforward.
A realisation

Jip = AT A (25)

yields a representation of the elements D and
the the boundary vectors in the oscillator basis.



