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One Dimensional Quasi-Exactly 
Solvable Differential Equation 

Introduction to Generalized Master Function Approach   and L
(Rodriger’s operator)

Recursion Relations and Factorization Method

Corresponding Schrodinger Equation L (Rodriger’s operator)

An Example



By generalizing master function of order up to two[9] to polynomial of 
order up to k together with the non-negative weight function W(x), 
defined at interval (a; b) such that                                

be a polynomial of degree at most (k-1), we can define the operator

where B(x) is a polynomial of order up to (k - 2). The interval (a, b) is 
chosen so that, we have A(a)W (a) =A(b)W (b) = 0.
It is straightforward to show that the above defined operator L is a 

self-adjoint linear operator which at most, maps a given polynomial of 
order m to another polynomial of order (m + k - 2). Now, by an 
appropriate choose of B(x) and weight function W (x), the operator L 
can have an invariant subspace of polynomials of order up to n. Then 
by choosing the set of orthogonal polynomials                   defined in
the interval (a, b) with respect to the weight function W(x):
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As the base, the matrix elements of the operator L on this base will 
have the following block diagonal form:

Since, according to the well known theorem of orthogonal polynomials,      

is orthogonal to any polynomial of order up to n - 1, therefore, 

for matrix L we get:

where M is an (n + 1) X (n + 1) matrix with matrix elements

and N is an infinite matrix element defined as above with i, j = n + 1.
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The block diagonal form of the operator L indicates that by diagonalizing
the  (n + 1) × (n + 1)  matrix M , we can find (n + 1) eigenvalues of the 
operator L together with the related eigenfunctions as linear functions of 
orthogonal polynomials

In order to determine the appropriate B(x) and W (x) for given generalized 
master function A(x), we Taylor expand those functions:

Then, the existence of invariant subspace of the polynomials of order n of 
the operator L leads to the following linear equations between the 
coefficients of above Taylor expansion:
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Where

The number of above equations, for a given value of k, is (k-1)(k-2)/2. If 
we are to determine only the unknown function B(x) without having any 
further constraint on the weight function W(x), then the above (k-1)(k-2)/2 
equations should be satisfied with (k-2) coeficients of Taylor expansion of 
B as the only unknowns, since      can be absorbed in the eigen-spectrum 
operator L. Therefore, we left with (k-2) unknowns to be determined, 
where the compatibility of equations (2-9) require k = 3 at most. On the 
other hand ,if we add the coeficients of Taylor expansions of A(x) an W(x) 
to our list of unknowns, (to be determined by solving equations 

then their compatibility conditions require that:
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or           , where further investigations show that we can have at most k = 4, 

since for             the coeficients and     

will vanish. Below we summarize the above-mentioned discussion for k = 3

and k = 4, separately.

Case a: k=3
In this case, B(x) is a first order polynomial where      can be determined by 
solving equation:

which is the only unknown in this case.
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Case b: k=4

Again, solving the equation   (a)    leads to:

and

Here, besides having constraint over second order polynomial B(x), we 
have to put further constraints on the weight function W(x) given in 
the last equation.
Definitely, we can determine n+1 eigen-spectrum of the operator L, 
simply by diagonalizing the (n+1)x(n+1) matrix M, since it is a self-
adjoint operator in Hilbert space of polynomials and it has a block 
diagonal form given in
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As we are going to see in the end of this section, we can determine its 
eigen-spectrum analytically, using some recursion relation.

Recursion Relation
Now we show that the eigen-functions of the operator L are a generating 
function for a new set of polynomials Pm(E) where the eigen-function 
equation of the operator L leads to the recursion relation between these 
polynomials. Quasi-exact solvable constraints 

will lead to their factorization, that is,  Pn+N+1(E) =Pn+1(E)QN   for          where 
roots of polynomials Pn+1(E) turn out to be the eigen-values of the operator 
L. To achieve these results, first we expand Ã(x), the eigen-function of L, 
as:

where eigen-function equation:
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can be expressed as

which leads to the following recursion relations for the coeficients Pm(E):

Below we investigate recursion relations which are obtained for k = 3 (cubic 
A(x)) and k = 4 (quadratic A(x)), separately.



Cubic (A):
In this case the 4-term general recursion relation reduces to the following 3-
term recursion relation:

(I)

In order to have finite eigen-spectrum, that is, quasi-exactly differential 
equation, the above recursion relation should be truncated for some value 
of m = n, which is obviously possible by an appropriate choice of:

(II)

which is in agreement with the result of previous subsection given in



Using the recursion relation (I), with B(1) given in (II),we get a factorization 
of polynomial Pn+N+1(E) for             in terms of Pn+1(E) as follows:

where , by choosing the eigen-value E as roots of polynomials Pn+1(E), all 
polynomials of order higher than n will vanish.

By using Eq                             we obtain eigen function

where Ei are roots of polynomial Pn+1(E).
The above eigen-functions are polynomials of order n, hence they have at 
most n roots in the interval (a; b), where, according to the well-known 
oscillation and comparison theorem of second-order linear differential 
equation [18], these numbers order the eigen-values according to the 
number of roots of corresponding eigen-functions. Therefore, we can say 
that the eigen-values thus obtained are the first n + 1 eigen-values of the 
operator L. Using the recursion relation (I), we can evaluate the 
polynomials Pm(E) in term of P0(E), where we have chosen P0(E) = 1. We 
have evaluated the first five polynomials appeared in Appendix (II).
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Quadratic (A):
Again in order to truncate the recursion relation and to factorize polynomials 
Pn+N+1(E) in terms of Pn+1(E), we should have:

(III)

and

Solving the above equations we get:

(IV)
and

(V)
The equations (III) , (IV) and (V) are the same equations which are required 
in the reduction of the operator L to its block diagonal form.
Again roots of polynomials Pn+1 will correspond to n+1 eigen-values of the 
differential operator L with eigen-functions which can be expressed in term 
of Pm(Ei) for         , where polynomials Pm(E) can be obtained from recursion 
relation by choosing P0 = 1 and P-1 = 0.
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Quasi-exactly potential associated with generalized 
master function

As in [7, 8], writing :

with a change of variable                , the eigen-value equation of the 
operator L reduces to the Schrodinger equation:

(I)
with the same eigen-value E and Ã(t) given (I), in terms of eigen function of 
L, where                       is the similarity transformation of L(x) defined as:
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It is also straightforward to show that:

Hence block diagonalization of L leads to block-diagonalization of H.



elliptic quasi-exactly solvable potential

The starting point to find elliptic quasi-exactly solvable potential is 
generalized master function A(x), as mentioned before. Therefore , the 
selection of master function A which leads to elliptic potential, is very 
important. Considering the relation                ; we select the master function 
so that x comes into the form of elliptic Jacobi functions. The weight 
function W(x) related to the given master function A(x) of order 3 and 4 can 
be obtained somehow that                   be of order 2 and 3, respectively.

After determining B1 and B2 from equations (IV)(III) and , the function B(x) 
can be obtained easily :

Now, we can determine operator L and potential V (t) by knowing A, W, and 
B.
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The interval (a; b) for x is chosen so that, we have A(a)W(a)=A(b)W(b) = 0, 
and the interval of the parameters α, β, γ and δ is also chosen so that 
(A(x)W(x)) have not any singularity and also A(a)W(a)=A(b)W(b)=0  
and  equations       

are conserved.
Below, we introduce all of the possible generalized master functions A(x) of 
order 3 and 4 with some of their relative weight functions W(x) and B and 
operator L and also Jacobi potential V(t) obtained from them in the interval 
in which x and parameters α, β, γ and δ are defined.



Qubic Generalized Master Function
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Quadratic Generalized Master 
Function
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Examples

For expressing the utilize of the proposed potential two examples are 
followed first we consider the Hamiltonian of the spin system which 
describe the biaxial paramagnetic in a magnetic field b orthogonal to the 
anisotropy axes that appear in reference [12]:

where                   are the moduli of elliptic functions  and                
The solution of eigenvalue problem

for such a Hamiltonian leads to effective potential in this form:

(I)

This potential can be obtained from our potentials. Consider the
potential V (x =              ). 
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Its master function is                                          and weight function 

Is:

By the restrictions

the potential V (x =              ) leads to the form Eq. (I)

This form of the potential is most convenient since it immediately 
yields the Lame equation in zero magnetic field (b = 0).As a second 
example we obtain Lame potential. Consider the generalized master 
function where corresponding weight 
function is                                                  If we restrict ourselves to 
the case that the parameters α, β, γ =−1/2
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The relative potential to generalized master function A(x) reduces to:

which is Lame potential. At the following we obtain low laying eigen-
values and eigen-states for this potential. In order to find eigen-values 
and eigen-states for n = 1, first we obtain from P2 = 0 the eigen-values 
E1, and E2 as below:

Now from
we can obtain the eigen-states and  as below: &

Similarly for n = 2 with P3 = 0 we obtain E1, E2, E3 and relative eigen 
states as:
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Appendix A: Jacobian Elliptic Functions

Jacobian elliptic functions are similar to trigonometric functions and they 
can be defined as the inversion of Legendre's elliptic integral of the first 
kind [13]. Therefore, sn(u,k) is defined as:

(A-I)

then the functions cn(u,k) and dn(u,k) are defined by

(A-II) 
The above relations can also be represented by equations

By differentiating (A-I) and using (A-II) we obtain



Similarly by differentiating (A-II) we have

Appendix B: the first fore polynomial Pn(E)for k = 3

The first four polynomials Pn(E), for k = 3.
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