Geometric chaos and integrable vector fields in \mathbb{R}^n

Daniel Peralta-Salas

Departamento de Física Teórica II, Universidad Complutense de Madrid $x\in \mathbb{R}^n$, $X\in C^\infty(\mathbb{R}^n)$ (or C^ω)

 $\dot{x} = X(x)$

Solution: $\phi(t; x_0)$ $(t \in \mathbb{R}) \implies$ orbit on \mathbb{R}^n .

First integral: $f : \mathbb{R}^n \to \mathbb{R}$ such that $X(f) = X\nabla f = 0$.

Symmetry vector: *S* such that $[S, X] = \lambda X$ for some smooth function $\lambda : \mathbb{R}^n \to \mathbb{R}$.

Invariant set: $\Sigma \subset \mathbb{R}^n$ such that $\phi(t; \Sigma) \subset \Sigma$ for all $t \in \mathbb{R}$.

Some types of orbits: critical points, periodic, quasi-periodic and dense.

Topological boundary $\mathcal{F} = \{P \in \mathbb{R}^n \text{ such that for any neighborhood } N(P) \text{ of } P \text{ there are points } Q, Q' \in N(P) \text{ for which the orbits of } X \text{ through } Q \text{ and } Q' \text{ are bounded and unbounded respectively}.$

Geometric chaos: bounded and unbounded orbits are both dense on some open subset of \mathbb{R}^n , and hence \mathcal{F} is an open set.

Other types of complex boundaries: fractal and Cantorian.

Classical example: Arnold's diffusion $(g \ge 3)$ \implies Cantorian boundaries. Geometric chaos is possible even if X has $1 \le r \le n-2$ first integrals.

Let X be a vector field with r (independent) first integrals $f = (f_1, \ldots, f_r)$ such that the level sets of f on some open set $U \subset \mathbb{R}^n$ are tori T^{n-r} . Assume $X \neq 0$ on U and that the orbits of X on these tori are periodic or quasiperiodic depending on the values of f.

Let L_r be a properly embedded r-dimensional half-plane diffeomorphic to $[0,\infty)^r$ and which transversely intersects each tori in U just once. There is a smooth diffeomorphism $\Phi : \mathbb{R}^n \setminus L_r \to \mathbb{R}^n$, and hence we can define the vector field \tilde{X} transformed of $X|_{\mathbb{R}^n \setminus L_r}$ under Φ .

 \tilde{X} has geometric chaos.

Let X be a Hamiltonian vector field on \mathbb{R}^{2g} . Assume X is **Liouville-integrable**, i.e. it has g independent first integrals $\{f_1, \ldots, f_g\}$ in involution and the Hamiltonian vector fields X_{f_i} are all complete.

Theorem: Geometric chaos is not possible.

If X is **Liouville-separable** then it can be integrated by quadratures. In the analytic category the boundary is a semianalytic set. \mathcal{F} is formed by "interior" and "exterior" components.

Examples: Henon-Heiles potential, Stark effect, straight-line wire. X is completely integrable if it has n - 1independent first integrals $f = (f_1, \ldots, f_{n-1})$. $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ defines a submersion, and its level sets are properly embedded curves diffeomorphic to S^1 or \mathbb{R} . Examples: vector fields with many symmetries.

Any (smooth or analytic) link can be the zero set of f (Miyoshi). f has cyclic orbits if and only if the second homotopy group of the leaf space is not trivial (extension of Smith's exact sequence).

Theorem: \mathcal{F} is and unbounded closed set in \mathbb{R}^n , foliated by open orbits of f, and of dimension $1 \leq \dim \mathcal{F} \leq n-1$. In particular geometric chaos is not possible.

Old open problem: if f is analytic can the boundary \mathcal{F} be **fractal or Cantorian**?. The answer is yes.

Let f be a submersion with S^1 orbits. Define the set Σ homeomorphic to $[0, \infty)^m$ and nondifferentiable at any point (Weierstrass-type set). Assume that Σ intersects just once each closed orbit on certain open set U. The complement of Σ in \mathbb{R}^n is analytically diffeomorphic to \mathbb{R}^n (Morrey-Grauert theory). The same happens if Σ is homeomorphic to $[0, \infty)^m \times T_\infty$, where T_∞ is the Cantor set. Transforming $f|_{\mathbb{R}^n\setminus\Sigma}$ via the analytic diffeomorphic we get a new analytic submersion with fractal and Cantorian boundary.

This construction does not yield polynomial submersions, in fact if f is polynomial the boundary \mathcal{F} is semialgebraic (Jelonek).

 ${\mathcal F}$ being fractal or Cantorian is not an structurally stable property in general.

Open problems:

- 1. Examples of submersions with S^1 orbits.
- 2. Is geometric chaos structurally stable?.
- 3. Analytical criteria for ensuring that \mathcal{F} is a "nice" set.
- Physically relevant examples of integrable systems exhibiting geometric chaos or fractal/Cantorian boundary.

References:

[1] A. Díaz-Cano, F. González-Gascón and D. Peralta-Salas: On scattering trajectories of dynamical systems. J. Math. Phys. (2006).

[2] G. Hector and D. Peralta-Salas: Topological boundaries of completely integrable vector fields of \mathbb{R}^n . Preprint (2006).

[3] D. Peralta-Salas: Topological transitions in classical Mechanics. Preprint (2006).