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Abstract. The talk is an introduction to the theory of alge-
bras with polynomial identities. It stresses on matrix algebras
and polynomial identities for them. The notion of Bergman
polynomials is introduced. Such types of polynomials are in-
vestigated being identities for algebras with symplectic involu-
tion. In the Lie case more information is given for Bergman
polynomials as Lie identities for the considered algebras.

I. ALGEBRAS WITH POLYNOMIAL IDENTITIES
We fix a countably infinite set X = {x1, x2, ...} and consider

a field K of characteristic zero. We work in the algebra K〈X〉
with basis the set of all words

xi1...xik, xij ∈ X

and multiplication defined by

(xi1...xim)(xj1...xjn
) = xi1...ximxj1...xjn

.

Definition 1. (i)Let f = f(x1, ..., xn) ∈ K〈X〉 and let R
be an associative algebra. We say that f = 0 is a polynomial

∗Partially supported by Grant MM1503/2005 of the Bulgarian Foundation for Scien-
tific Research.

1



identity for R if

f(r1, ..., rn) = 0, ∀r1, ..., rn ∈ R.

(ii) If the associative algebra R satisfies a non-trivial poly-
nomial identity f (i.e. f is a nonzero element from K〈X〉), we
call R a PI-algebra.

It could be shown that f ∈ K〈X〉 is a polynomial identity
for R if and only if f is in the kernel of all homomorphisms
K〈X〉 → R.

We give some examples:
(i) The algebra R is commutative if and only if it satisfies

the polynomial identity

[x2, x2] = x1x2 − x2x1 = 0.

(ii) Let R be a finite dimensional associative algebra and let
dim R < n. Then R satisfies the standard identity of degree n

sn(x1, ..., xn) =
∑

σ∈Sn

(sign σ)xσ(1)...xσ(n) = 0,

where Sn is the symmetric group of degree n. The algebra R

also satisfies the Capelli identity

dn(x1, ..., xn; y1, ..., yn+1) =
∑

σ∈Sn

(sign σ)y1xσ(1)y2...ynxσ(n)yn+1 = 0.

(iii) Let M2(K) be the 2× 2 matrix algebra. It satisfies the
following polynomial identities:
1. The standard identity s4(x1, x2, x3, x4) = 0.
2. The Hall identity [[x1, x2]

2, x3] = 0.
The algebra M2(K) does not satisfy the Capelli identity d4 = 0
and the standard identity s3 = 0.

(iv) The n× n matrix algebra Mn(K) satisfies the identity
of algebraicity
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dn+1(1, x, x2, ..., xn; 1, y1, ..., yn, 1)

=
∑

σ∈Sn+1

(sign σ)xσ(0)y1x
σ(1)y2...ynx

σ(n) = 0,

where the symmetric group Sn+1 acts on {0, 1, ..., n}, and the
identity

sn([x, y][x2, y], ..., [xn, y]) = 0.

(v) Let Un(K) be the algebra of n × n upper triangular
matrices. It satisfies the identity

[x1, x2]...[x2n−1, x2n] = 0.

Some important properties of associative algebras are ex-
pressed in the language of polynomial identities. We have
seen this for the commutativity. Others examples come from
nonunitary algebras. The algebra R is nil of bounded index if
there exists an n ∈ N such that xn = 0 is an identity for R;
the algebra R is nilpotent of class ≤ n if x1...xn = 0 for R.

More details could be found in [4].
It turns out that the class of all PI-algebras has a good

structure and combinatorial properties similar to those of the
commutative and the finite dimensional algebras.

II. BERGMAN POLYNOMIALS IN ASSOCIATIVE
PI-ALGEBRAS

We define a class of homogeneous associative polynomials,
called Bergman polynomials [1]. These are homogeneous and
multilinear in y1, . . . , yn polynomials f(x, y1, . . . , yn) from the
free associative algebra K〈x, y1, . . . , yn〉 which can be written
as

f(x, y1, . . . , yn) =
∑

i=(i1,...,in)∈Sn

v(gi)(x, yi1, . . . , yin),(1)

where gi ∈ K[t1, . . . , tn+1] are homogeneous polynomials in
commuting variables

gi(t1, . . . , tn+1) =
∑

αpt
p1
1 . . . t

pn+1

n+1
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and

v(gi) = v(gi)(x, yi1, . . . , yin) =
∑

αpx
p1yi1 . . . xpnyinx

pn+1.(2)

The following theorem of Bergman shows how one could
investigate PI-algebras using commutative theory approach.

Proposition 1 [1, Section 6, (27)]
(i) The polynomial v(gi) from (2) is an identity for Mn(K)

if and only if ∏

1≤p<q≤n+1
(tp − tq)

divides gi(t1, ..., tn+1) for all i = (i1, . . . , in).
(ii) The polynomial f(x, y1, . . . , yn) from (1) is an identity

for Mn(K) if and only if every summand v(gi) is also an iden-
tity for Mn(K).

If the algebra has some additional properties analogues of
Bergman theorem could be formulated. These properties are
concerned with the existence of involutions (i.e. antiautomor-
phisms of second order) in the considered algebras.

We recall that in the matrix algebra M2n(K, ∗) the symplec-
tic involution ∗ is defined by


 A B

C D



∗

=


 Dt −Bt

−Ct At


 ,

where A,B, C, D are n×n matrices and t is the usual transpose.
For an algebra R with involution ∗ we have

(R, ∗) = R+ ⊕ R−, where R+ = {r ∈ R | r∗ = r} and R+ =
{r ∈ R | r∗ = −r}.

We call f(x1, . . . , xn) ∈ K〈X〉 a ∗-polynomial identity for
(R, ∗) in symmetric variables if f(r+

1 , . . . , r+
n ) = 0 for all

r+
1 , . . . , r+

n ∈ R+. Analogously f(x1, . . . , xs) ∈ K〈X〉 is a ∗-
polynomial identity for (R, ∗) in skew-symmetric variables if
f(r−1 , . . . , r−s ) = 0 for all r−1 , . . . , r−s ∈ R−.
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The algebra R+ is a Jordan algebra with respect to the mul-
tiplication r+

1 ◦ r+
2 = r+

1 r+
2 + r+

2 r+
1 ; r+

1 , r+
2 ∈ R+ and the identi-

ties in symmetric variables are weak polynomial identities for
the pair (R, R+).

Similarly, the algebra R− is a Lie algebra with respect to the
new multiplication [r−1 , r−2 ] = r−1 r−2 − r−2 r−1 ; r−1 , r−2 ∈ R− and
the identities in skew-symmetric variables for (R, ∗) are weak
polynomial identities for the pair (R,R−).

In order to state the next result we introduce the following
natation, namely

g2n,0 =
∏

1 ≤ p < q ≤ n + 1
(p, q) 6= (1, n + 1)

(t2p − t2q)(t1 − tn+1).

Proposition 2 [9, Theorem 3] Considered in M2n(K, ∗), the
polynomial f from (1) satisfies f(a, r1, . . . , rn) = 0 for any
skew-symmetric matrix a and all matrices r1, . . . , rn if and only
if (t1 + tn+1)g2n,0 divides the polynomials gi(t1, . . . , tn+1) for all
i = (i1, . . . , in).

The sufficient condition of this proposition could be im-
proved.

Proposition 3 [8, Theorem 1] Let the polynomial (1) be a ∗-
identity in skew-symmetric variables for the algebra M2n(K, ∗).
Then the polynomial g2n,0 divides the polynomials gi from (2)
for all i = (i1, . . . , in).

Some other results are the following:

Proposition 4 [8, Proposition 3] The linearization in y of the
standard polynomial S3([x

3, y], [x2, y], [x, y]) is an identity in
symmetric variables for M6(K, ∗) of minimal degree.

Proposition 5 [5, Theorem 3] A polynomial f is a Bergman
type identity in skew-symmetric variables for M4(K, ∗) if and
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only if it has the form

f = α(v(g1)(x, y1, y2) + v(g2)(x, y2, y1))

+ βv(g3)(x, y1, y2) + γv(g4)(x, y2, y1),

where

1. g1 = g4,0
∏

i(ait1 + bit2 + cit3),
g2 = g4,0

∏
i(−cit1 − bit2 − ait3)

and t1 + t3 is not a factor of the polynomials g1 and g2;
2. The polynomial (t1 + t3)g4,0 divides g3 and g4 and
3. The identity v(g1)(x, y1, y2) + v(g2)(x, y2, y1) = 0 follows
from the identity
f0(x, y1, y2) =

∑
σ∈S2

v(g4,0)(x, yσ(1), yσ(2)) = 0.

We are able to formulate and prove a result for M2n(K, ∗)
generalizing the “only if” part of Proposition 5 for n = 2.

Theorem 1 [8, Theorem 3] For n ≡ 2,3 (mod 4) every Bergman
type polynomial of degree k of the form

f = α
∑

i

v(gi)(x, yi1, . . . , yin) + β
∑

j

v(gj)(x, yj1, . . . , yjn
)

is a ∗-identity in skew-symmetric variables for M2n(K, ∗), where

1. gi = g2n,0
∏k−n2−2n+1

l=1
∑n

m=1 a
(l)
i,mtm,

gi+n!
2

= g2n,0
∏k−n2−2n+1

l=1 (−∑n
m=1 a

(l)
i,n+1−mtm), i = 1, . . . , n!

2
and t1 + tn+1 is not a factor of these polynomials;
2. The polynomial (t1 + tn+1)g2n,0 divides gj and
3. The identity

∑
v(gi)(x, yi1, . . . , , yin) = 0 follows from the

identity

v(g2n,0)(x, yi1, yi2, . . . , yin) + v(g2n,0)(x, yin, yin−1
, . . . , yi1),

for (i1, i2, . . . , in) ∈ Sn.
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III. LIE ALGEBRAS
Starting with the free Lie algebra L(X) we can define the

notion of polynomial identity for a Lie algebra G. We give some
examples:

(i) Let G be the two-dimensional Lie algebra with basis as
a vector space {a, b} and multiplication [a, b] = a. The alge-
bra G satisfies the polynomial identity (namely the metabelian
identity)

[[x1, x2], [x3, x4]] = 0.

(ii) If G is a finite dimensional Lie algebra and dim G < n,
then G satisfies the Lie standard identity of degree n + 1 (but
in n skew-symmetric variables)

x0sn(adx1, ..., adxn) =
∑

σ∈Sn

(sign σ)[x0, xσ(1), ..., xσ(n)] = 0.

(iii) The Lie algebra (Un(K))(−) of all upper triangular n×n

matrices satisfies the identity

[[x1, x2], ..., [x2n−1, x2n]] = 0.

(iv) Let Wn be the set of all derivations of the polynomial
algebra in n variables. (The linear operator δ of the vector
space K[x1, ..., xn] is a derivation if δ(uv) = δ(u)v+uδ(v), u, v ∈
K[x1, ..., xn].) Wn is a Lie algebra with respect to the operation
[δ1, δ2].
1. The algebra W1 satisfies the Lie standard identity

xos4(adx1, adx2, adx3, adx4) = 0.

2. The algebra Wn satisfies some Lie standard identity.
As in the case of associative algebras, some classical proper-

ties and results for Lie algebras can be stated in the language of
polynomial identities. A Lie algebra G is abelian if it satisfies
the identity [x1, x2] = 0 meaning that G has a trivial multipli-
cation. The algebra G is nilpotent of class ≤ n if it satisfies
[x1, ..., xn] = 0. The algebra G is solvable of class ≤ n if it
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satisfies the identity fn = 0, where fn = fn(x1, ..., x2n) = 0, is
defined inductively by

f1(x1, x2) = [x1, x2],

fn = [fn−1(x1, ..., x2n−1), fn−1(x2n−1+1, ..., x2n)], n > 1.

The solvable of class 2 Lie algebras are called metabelian.
Any solvable finite dimensional Lie algebra satisfies the identity

[[x1, x2], ..., [x2n−1, x2n]] = 0

for some positive n.

IV. BERGMAN POLYNOMIALS IN LIE ALGEBRAS
It is a natural question to consider Bergman polynomials in

Lie algebras as well. Working in the Lie algebra so(4,K,∗) of
the skew-symmetric to the symplectic involution ∗ variables of
the matrix algebra of fourth order M4(K, ∗) we are interested in
finding the minimal degree of these polynomials. In [6] using
the Hall basis of the free algebra L(X) for X = {x, y1, y2}
we consider the following elements of a given degree k + 2:
[yi1, x, ..., x︸ ︷︷ ︸

k

, yi2] and [[yi1, x, ..., x︸ ︷︷ ︸
l

], [yi2, x, ..., x︸ ︷︷ ︸
k−l

]], where (i1, i2) is

any permutation on {1, 2} and l = 1, ..., k − 1.
The left normed commutators are written as elements of

the free associative algebra K〈X〉 and thus the commutative
polynomials are uniquely defined.

For example for

f = [y1, x, y2] = y1xy2 − xy1y2 − y2y1x + y2xy1

= v(g1)(x, y1, y2) + v(g2)(x, y2, y1)

we have g1 = t2 − t1 and g2 = −(t3 − t2).
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For

f = [[y1, x], [y2, x, x]] = y1xy2x
2 − 2y1x

2y2x + y1x
3y2

− xy1y2x
2 + 2xy1xy2x− xy1x

2y2 − y2x
2y1x + y2x

3y1

+ 2xy2xy1x− 2xy2x
2y1 − x2y2y1x + x2y2xy1

= v(g1)(x, y1, y2) + v(g2)(x, y2, y1)

one gets g1 = (t2 − t1)(t3 − t2)
2 and g2 = −(t2 − t1)

2(t3 − t2).
Applying Proposition 3. and some technical manipulations

we get the following result:

Proposition 6 [7, Theorem 1] No Bergman polynomials are
Lie identities for the Lie algebra so(4, K, ∗).

The same pattern of proof gives an analogous result con-
cerning so(6, K, ∗).

Investigating the identities of minimal degree for the Lie
algebras so(4), so(3, 1), so(2, 2) and sp(4, R) considered in [3]
is the next step in research. The physical base of the study
in [2] and the common apparatus of doing the investigations
both from physical and algebraic point of view are the reason
for giving this talk and for the useful discussions made and
I hope to be made further for realizing the above mentioned
intentions.
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