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• The membrane shape equation describes the equilibrium shapes of
a biomembrane, assumed as a bilayer of amphiphilic molecules, in 
terms of the mean and Gaussian curvatures of its middle-surface.

• At that, the following physical parameters are taken into account:

Ø the bending rigidity and tensile stress of the membrane
Ø the spontaneous curvature of the bilayer
Ø the osmotic pressure difference between both sides of the bilayer.

• A new class of translationally-invariant solutions to the membrane 
shape equation in elliptic functions is obtained generalizing the 
solutions presented earlier by the authors.

• With this, all translationally-invariant solutions to the membrane 
shape equation are determined.

• Special attention is paid to those translationally-invariant solutions 
of the membrane shape equation that determine cylindrical (tube-
like) surfaces (membrane shapes).

• Several examples of such surfaces will be shown.
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BiomembranesBiomembranes

• In aqueous solution, amphiphilic molecules (e.g., phospholipids) 
may form bilayers, the hydrophilic heads of these molecules being 
located in both outer sides of the bilayer, which are in contact with 
the liquid, while their hydrophobic tails remain at the interior.

• A bilayer may form a closed membrane - vesicle. Vesicles constitute 
a well-defined and sufficiently simple model system for studying basic 
physical properties of the more complex cell biomembranes.

bilayerbilayer

aqueous solutionaqueous solution

hydrophilic headshydrophilic heads

hydrophilic headshydrophilic heads

hydrophobic tailshydrophobic tails
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Membrane ShapesMembrane Shapes

• The equilibrium shapes of a lipid vesicle are determined by the
extremals of the curvature (shape) energy (Helfrich, 1973):

under the constraints of fixed enclosed volume and membrane area.
• Using Lagrangian multipliers, this yields the functional
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– bending and Gaussian rigidities of the membrane
– tensile stress of the membrane
– spontaneous curvature of the bilayer
– osmotic pressure difference

– mean and Gaussian curvatures of the middle surface S
– area and volume elements
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Membrane Shape EquationMembrane Shape Equation

• The corresponding Euler-Lagrange equation (Ou-Yang & Helfrich, 
1987, 1989)

is often referred to as the membrane shape equation.  Here ∆ is the 
Laplace-Beltrami operator on the surface S. 

• Equation (1) describes the equilibrium shapes of lipid vesicles in 
terms of the mean H and Gaussian K curvatures of the membrane 
middle surface S according to the physical parameters:
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– bending rigidities of the membrane
– tensile stress of the membrane
– spontaneous curvature of the bilayer
– osmotic pressure difference between the outer and inner media
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TranslationallyTranslationally--Invariant SolutionsInvariant Solutions

• The membrane shape equation (1) admits translationally-invariant 
solutions, which correspond to cylindrical (tube-like) surfaces in the 
3-dimensional Euclidean space. 

y
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• The generatrix of such a solution surface is parallel to the z-axis 

while its directrix is a curve Γ in xy-plane whose curvature k is 
given by the following equation.

Γ
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Reduced membrane shape equationReduced membrane shape equation

for the curvature              of the curves Γ determining the foregoing 
translationally-invariant solutions of the membrane shape equation 
as a function of the arc length s.
• Once a solution of equation (2) is known, it is possible to recover 
the corresponding curve Γ solving the system 
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• Thus, the main problem is to find the solutions to equation (2).

(3)
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• Equation (2) is studied in (Arreaga et al., 2001) with the aim to 
determine the equilibria of an elastic loop in the plane subject to 
the constraints of fixed length and fixed enclosed area. 

• In the three dimensional case considered here, each such loop will 
determine a directrix Γ generating a cylindrical surface whose mean 
and Gaussian curvatures are H = 2k and K = 0, respectively, that is 
a solution of the membrane shape equation.

• In (Arreaga et al., 2001) the determination of the curvature k at 
equilibrium is reduced to the study of the motion of a fictitious 
particle in a quartic potential.

• Indeed, equation (2) is the Euler-Lagrange equation associated 
with the functional
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in which T and U can be thought of as the kinetic and potential 
energies of the fictitious particle, k gets an interpretation of its 
displacement and s plays the role of the time.
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• Using this analogy, Arreaga et al. succeeded to obtain a geometric 
construction for determination of the embedding without involving 
explicit expressions for the solutions of equation (2). Nevertheless, 
in our opinion the knowledge of the solutions of equation (2) in an 
explicit form is an important and powerful tool in determination of 
the surfaces corresponding to the translationally-invariant solutions 
of the membrane shape equation.

• In (Vassilev, Djondjorov and Mladenov, 2006) several classes of 
explicit solutions to equation (2) in elliptic or elementary functions 
are found. These solutions will be presented below together with a 
new class of solutions in elliptic functions obtained recently, but first 
the invariance properties of equation (2) will be discussed.

ü Equation (2) admits the one-parameter group of translations of 
the independent variable s as a variational symmetry group and 
hence, there is a conservation law (first integral).

ü Equation (2) admits the equivalence transformation

( ) ( ) 32 /,/,k,/k,: τσστµµττ aaa ss ±τ
i.e. a special kind of scaling, τ being an arbitrary real number.
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Conservation of energyConservation of energy

• The invariance of equation (2) and functional (4) under the one-
parameter group of translations of the variable s implies, in virtue 
of Noether's theorem, the conservation of the “total energy” E:

UTE
ds
Ed +== ,0

with the appropriate sign, and vice versa. Integrating equation (5)
one gets the first integral

• Therefore, each solution of equation (2), which is not identically 
equal to a constant and corresponds to a certain value of the real 
constant E, is also solution of the equation
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where A is a real constant, which w. l. g. can be taken equal to zero.
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Solutions in elementary functionsSolutions in elementary functions

(A) The functions

where ν is a real number satisfies equation (2) with
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(B) The functions
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where κ is a real number satisfies equation (2) with
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Solutions in elliptic functionsSolutions in elliptic functions

(C) The functions

satisfies equation (2). They correspond to the following total energy
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where

The aforementioned three classes of solution to equations of form 
(2) are presented in (Vassilev, Djondjorov and Mladenov, 2006). The 
next class is new. 
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(D) Let                                          are the roots of the polynomial 

P(k). Then the function
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satisfies equation (2) with

( )

( )( )( )

( )δγβδγβE

δγδβγβσ

γδβδβγδγβμ

++−=

+++−=

+++++=

8
1
4
1

2
1 222

2

2

),(sn)2()(
),(sn)2()()(k

kus
kuss

δγββγ
δγβγγβα

+++−
+++−

=

δγβδγβα ≠≠≠++−= )(

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


ExamplesExamples

Curves corresponding to solutions of type (D)
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Type (D)  µ = 1.8862,  σ = -0.28762,  E = 0.598728 

1-fold symmetry
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Type (D)  µ = -7.58,  σ = 12.58 , E = 8.31

3-fold symmetry
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