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In 2003 R. Conte and M. Musette have proposed way to search
for elliptic and degenerate elliptic solutions to a polynomial au-
tonomous differential equation.

Let us reformulate this method for a system of such equations:

Fi(ỹ
(n)
;t , ỹ

(n−1)
;t , . . . , ỹ;t, ỹ) = 0, i = 1, . . . , N, (1)

where ỹ = {y1(t), y2(t), . . . , yL(t)} and y
(k)
j;t =

dkyj
dtk

.

Fi is a polynomial.
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Any elliptic function (including any degenerate one) is a solution
of some first order polynomial autonomous differential equation.

The classical results of P. Painlevé, L. von Fuchs, C.A.A. Briot
and J.-C. Bouquet allow one to construct the suitable form of an
equation, whose general solution is a meromorphic function with
poles of order p:

m
∑

k=0

(p+1)(m−k)/p
∑

j=0

hj,ky
jyt

k = 0, h0,m = 1, (2)

in which m is a positive integer number and hj,k are constants to

be determined.
The general solution of (2) is either an elliptic function, or a ra-
tional function of eγx, or a rational function of x.
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The Conte–Musette algorithm is the following:

1. Choose a positive integer number m.

2. Construct solutions of system (1) in the form of Laurent series.
One should compute more coefficients of the Laurent series
than the number of numerical parameters in the Laurent series
plus the number of hj,k.

3. Choose a Laurent series expansion for some function yk and
substitute the obtained Laurent series coefficients into Eq. (2).
This substitution transforms (2) into a linear and overdetermined
system in hj,k with coefficients depending on numerical para-
meters.

4. Eliminate coefficients hj,k and get a system in parameters.

5. Solve the obtained nonlinear system.
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1 Properties of the elliptic functions

Let us recall some definitions and theorems.
The function ̺(z) of the complex variable z is a doubly-periodic

function if there exist two numbers ω1 and ω2 with ω1/ω2 6∈ R,
such that for all z ∈ C

̺(z) = ̺(z + ω1) = ̺(z + ω2). (3)

By definition a double-periodic meromorphic function is called
an elliptic function. These periods define the period parallelo-
grams with vertices z0, z0+N1ω1, z0+N2ω2 and z0+N1ω1+N2ω2,
where N1 and N2 are arbitrary natural numbers and z0 is an arbi-
trary complex number. The fundamental parallelogram of periods
is called a parallelogram of period, which does not include other
parallelogram of periods, that corresponds to N1 = N2 = 1.
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The classical theorems for elliptic functions prove that

• If an elliptic function has no poles then it is a constant.

• The number of elliptic function poles within any finite period
parallelogram is finite.

• The sum of residues within any finite period parallelogram is
equal to zero (the residue theorem).

• If ̺(z) is an elliptic function then any rational function of ̺(z)
and its derivatives is an elliptic function as well.

• For each elliptic function ̺(z) there exist such m (m > 2) and
such coefficients hi,j that ̺(z) is a solution of Eq. (2).
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Lemma 1 An elliptic function can not have two poles with

the same Laurent series expansions in its fundamental paral-

lelogram of periods.

Proof.

Let some elliptic function ̺(ξ) has two poles in points ξ0 and ξ1,
which belong to the fundamental parallelogram of periods. The
corresponding Laurent series are the same and have the conver-
gence radius R. Then the function υ(ξ) = ̺(ξ − ξ0) − ̺(ξ − ξ1)
is an elliptic function as a difference between two elliptic func-
tions with the same periods. At the same time for all ξ such that
|ξ| < R υ(ξ) = 0, therefore, υ(ξ) ≡ 0 and ̺(ξ− ξ0) ≡ ̺(ξ− ξ1)
and ξ1 − ξ0 is a period of ̺(ξ). It contradicts to our assumption
that both points ξ0 and ξ1 belong to the fundamental parallelo-
gram of periods.
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2 Construction of elliptic solutions

2.1 The quintic complex Ginzburg–Landau equation

The one-dimensional quintic complex Ginzburg–Landau equation
(CGLE5) is as follows

iAt + pAxx + q|A|2A + r|A|4A− iγA = 0, (4)

where At ≡ ∂A
∂t , Axx ≡ ∂2A

∂x2 , p, q, r ∈ C and γ ∈ R.
One of the most important directions in the study of the CGLE5

is the consideration of its travelling wave reduction:

A(x, t) =
√

M(ξ)ei(ϕ(ξ) − ωt), ξ = x− ct, c, ω ∈ R. (5)
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Substituting (5) in (4) we obtain

2pM ′′M − pM ′2 + 4ipψMM ′ + 2
(

2ω − ic− 2iγ +

+ 2cψ − 2pψ2 + 2ipψ′
)

M2 + 4qM3 + 4rM4 = 0,
(6)

where ψ ≡ ϕ′ ≡ dϕ
dξ , M ′ ≡ dM

dξ . Equation (6) is a system of

two equations: both real and imaginary parts of its left-hand side
have to be equal to zero:
{

2MM ′′ −M ′2 − 4M2ψ̃2 − 2c̃MM ′ + 4giM
2 + 4drM

3 + 4urM
4 = 0,

Mψ̃′ + ψ̃
(

M ′ − c̃M
)

− grM + diM
2 + uiM

3 = 0,
(7)

Note that to obtain (7) from (6) we assume that the functions
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M(ξ) and ψ(ξ) are real. New real variables are as follows

ur + iui =
r

p
, dr + idi =

q

p
, sr − isi =

1

p
, (8)

gr + igi = (γ + iω)(sr − isi) +
1

2
c2sisr +

i

4
c2s2r, (9)

and
ψ̃ ≡ ψ − csr

2
, c̃ ≡ csi. (10)

System (7) includes seven numerical parameters: gr, gi, dr, di,
ur, ui and c̃.

The standard way to construct exact solutions for system (7) is
to transform it into the equivalent third order differential equation
for M . We rewrite the first equation of system (7) as

ψ̃2 =
G

M2
, (11)
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where

G ≡ 1

2
MM ′′− 1

4
M ′2 − c̃

2
MM ′ + giM

2 + drM
3 + urM

4. (12)

We can express ψ̃ in terms of M and its derivatives:

ψ̃ =
G′ − 2c̃G

2M2
(

gr − diM − uiM2
), (13)

and obtain the third order equation for M :

(G′ − 2c̃G)2 + 4GM2(gr − diM − uiM
2)2 = 0. (14)

2.2 The Laurent series solutions

Below we consider the case
p

r
6∈ R, (15)
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which corresponds to the condition ui 6= 0. In this case Eq. (14)
is not integrable and its general solution (which should depend
on three arbitrary integration constants) is not known. Using the
Painlevé analysis it has been shown that single-valued solutions
of (7) can depend on only one arbitrary parameter. System (7) is
autonomous, so this parameter is ξ0: if M = f (ξ) is a solution,
then M = f (ξ − ξ0), where ξ0 ∈ C has to be a solution.

All known exact solutions of (7) are elementary (rational or
hyperbolic) functions.

The purpose of this section is to find an elliptic solution of (7).
System (7) is invariant under the transformation:

ψ̃ → − ψ̃, gr → − gr, di → − di, ui → − ui, (16)

therefore we can assume that ui > 0 without loss of generality.
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Moreover, using scale transformations:

M → λM, dr →
dr
λ
, di →

di
λ
, ur →

ur
λ2
, ui →

ui
λ2
,

(17)
we can always put ui = 1.

Let us construct the Laurent series solutions to system (7). We
assume that in a sufficiently small neighborhood of the singularity
point ξ0:

ψ̃ = A(ξ − ξ0)
α and M = B(ξ − ξ0)

β. (18)

Substituting (18) into (7) we obtain that two or more terms in
the equations of system (7) balance if and only if α = −1 and
β = −1. In other words in this case these terms have equal powers
and the other terms can be ignored as t −→ t0. We obtain values
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of A and B from the following algebraic system:
{

B2
(

3 − 4A2 + 4urB
2
)

= 0,

2A−B2 = 0.
(19)

System (19) has four nonzero solutions:

A1 = ur +
1

2

√

4u2
r + 3, B1 =

√

2ur +
√

4u2
r + 3, (20)

A2 = ur +
1

2

√

4u2
r + 3, B2 = −

√

2ur +
√

4u2
r + 3, (21)

A3 = ur −
1

2

√

4u2
r + 3, B3 =

√

2ur −
√

4u2
r + 3 (22)

and

A4 = ur −
1

2

√

4u2
r + 3, B4 = −

√

2ur −
√

4u2
r + 3. (23)
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Therefore, system (7) has four types of the Laurent series solu-
tions. Denote them as follows:

ψ̃k =
Ak
ξ

+ak,0 +ak,1ξ+ . . . , Mk =
Bk
ξ

+ bk,0 + bk,1ξ+ . . . ,

(24)
where k = 1..4.

Let M(ξ) is a nontrivial elliptic function. 7→
ψ̃ is a constant or a nontrivial elliptic function.
ψ̃ is a constant 7→ M is not a nontrivial elliptic function. 7→
ψ̃ is a nontrivial elliptic function and has poles.
Let us define a number of poles of M(ξ) in its fundamental

parallelogram of periods.
Let M has a pole of type M1, hence, according to the residue

theorem, it should has a pole of type M2. So ψ̃ has poles with
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the Laurent series ψ̃1 and ψ̃2. As an elliptic function it should
have a pole of type ψ̃3 or ψ̃4 as well. It means that the func-
tion M(ξ) should have a pole of type M3 and, hence, a pole of
type M4. So M(ξ) should have at least four different poles in
its the fundamental parallelogram of periods. Using Lemma 1,
we obtain that the function M(ξ) can not have the same poles in
the fundamental parallelogram of periods. Therefore, M(ξ) has
exactly four poles in its fundamental parallelogram of periods.

By means of the residue theorem for ψ̃ we obtain

ur = 0. (25)

We obtain that the CGLE5 with ur 6= 0 has no elliptic solution
in the wave form. In the case ur = 0 possible elliptic solutions
should have four simple poles in the fundamental parallelogram
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of periods, and, therefore, has the following form:

M(ξ − ξ0) = C +

4
∑

k=1

Bkζ(ξ − ξk), (26)

where the function ζ(ξ) is an integral of the Weierstrass ellip-
tic function multiplied by −1: ζ ′(ξ) = −℘(ξ), C and ξk are
constants to be defined.

To obtain restrictions on other parameters, we use the Hone
method (2005) and apply the residue theorem to the functions
ψ̃2, ψ̃3, and so on. The residue theorem for the function ψ̃2 gives
the equation:

4
∑

k=1

Akak,0 = 0. (27)
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The values of ak,0 are as follows (ur = 0):

a1,0 =

√
3

48

(

6c̃− 4
√

27di − 15
4
√

3dr

)

, (28)

a2,0 =

√
3

48

(

6c̃ +
4
√

27di + 15
4
√

3dr

)

, (29)

a3,0 = −
√

3

48

(

6c̃ + i
(

4
√

27di − 15
4
√

3dr

))

, (30)

a4,0 = −
√

3

48

(

6c̃− i
(

4
√

27di − 15
4
√

3dr

))

. (31)

Substituting Ak and ak,0 in (27), we obtain

4
∑

k=1

Akak,0 =
3

4
c̃ = 0, (32)
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therefore c̃ = 0.
For the function ψ̃3 the residue theorem gives

di
2 + 27dr

2 = 0 → di = ±i
√

27dr. (33)

The parameters dr and di should be real, therefore, dr = 0 and
di = 0. So, consideration of ψ̃2 and ψ̃3 gives three restrictions:

c̃ = 0, dr = 0 and di = 0. (34)

The residue theorem for ψ̃4 gives the restriction

gigr = 0. (35)

Taking into account (25) and (34) we obtain system (7) in the
following form:

{

2MM ′′ −M ′2 − 4M2ψ̃2 + 4giM
2 = 0,

ψ̃′M + ψ̃M ′ − grM +M3 = 0.
(36)
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To find elliptic solutions to system (36) we use the Conte–
Musette method. Equation (2) with m = 1 has no elliptic so-
lution. Let ψ̃(ξ) satisfies Eq. (2) with m = 2:

ψ̃′2 +
(

h̃2,1ψ̃
2 + h̃1,1ψ̃ + h̃0,1

)

ψ̃′ +

+ h̃4,0ψ̃
4 + h̃3,0ψ̃

3 + h̃2,0ψ̃
2 + h̃1,0ψ̃ + h̃0,0 = 0.

(37)

Substituting in (37) the Laurent series of ψ̃, which begins from
A1 (more exactly we use the first ten coefficients), we obtain the
following solution h̃k,j for an arbitrary value of the parameter
gr 6= 0 and gi = 0:

h̃4,0 = −4

3
, h̃0,0 = −g

2
r

9
, h̃3,0 = h̃2,0 = h̃1,0 = h̃0,1 = h̃1,1 = h̃2,1 = 0,

(38)
a few solutions with gi = 0 and gr = 0 and no solution for gi 6= 0.
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In the case of solutions (38) the function ψ̃(ξ) satisfies the equa-
tion

ψ̃′2 =
4

3
ψ̃4 +

g2
r

9
. (39)

The polynomial in the right hand side of (39) has four different
roots, therefore ψ̃ is a non-degenerate elliptic function.

Surely we do not rigorously prove the existence of elliptic so-
lutions to the CGLE5. For rigorous proof we should find the
function M(ξ) and check that this function is a solution of (14).

The function M(ξ) in a parallelogram of periods has four differ-
ent Laurent series expansions, so we choose m = 4. The general
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form of (2) for m = 4 and p = 1 is the following:

M ′4 +
(

h2,3M
2 + h1,3M + h0,3

)

M ′3 +

+
(

h4,2M
4 + h3,2M

3 + h2,2M
2 + h1,2M + h0,2

)

M ′2 +

+
(

h6,1M
6 + h5,1M

5 + h4,1M
4 + h3,1M

3 + h2,1M
2 + h1,1M +

+ h0,1
)

M ′ + h8,0M
8 + h7,0M

7 + h6,0wM
6 + h5,0M

5 +

+ h4,0M
4 + h3,0M

3 + h2,0M
2 + h1,0M + h0,0 = 0.

(40)
Substituting the Laurent series Mk from (24), we transform the

left hand side of (40) into the Laurent series, which has to be equal
to zero. Therefore, we obtain the algebraic system in hi,j and gr.

The first algebraic equation, which corresponds to 1/ξ8 is

B4
k

(

h8,0B
4
k − h6,1B

3
k + h4,2B

2
k − h2,3Bk + 1

)

= 0, (41)

where Bk is defined by (20)–(23).
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We seek only elliptic solutions, so we know that all Bk have to
satisfy (41) and can consider Eq. (41) as the following system:



















h8,0B
4
1 − h6,1B

3
1 + h4,2B

2
1 − h2,3B1 + 1 = 0,

h8,0B
4
2 − h6,1B

3
2 + h4,2B

2
2 − h2,3B2 + 1 = 0,

h8,0B
4
3 − h6,1B

3
3 + h4,2B

2
3 − h2,3B3 + 1 = 0,

h8,0B
4
4 − h6,1B

3
4 + h4,2B

2
4 − h2,3B4 + 1 = 0.

(42)

Using the explicit values of Bk from (20)–(23), we obtain that

h8,0 = − 1

3
, h4,2 = 0, h6,1 = 0, h2,3 = 0. (43)

From other equations of the algebraic system we obtain

h6,0 =
4

3
gr, h4,0 = − 16

9
g2
r, h2,0 =

64

81
g3
r, (44)
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all other hi,j are equal to zero. So, the equation for M is

M ′4 =
1

81
M2

(

3M2 − 4gr

)3
. (45)

Eq. (14) at ui = 1, ur = c̃ = dr = di = gi = 0 has the form:

1

4

(

M ′′′)2 −
(

2MM ′′ −M ′2
) (

M2 − gr

)2
= 0. (46)

A straightforward calculation shows that any solution of (45)
satisfies (46). So, we obtain elliptic wave solutions of the CGLE5.

Summing up we can conclude that our modification of the Conte–
Musette method allows us to get two results: we obtain new ellip-
tic wave solutions of the CGLE5, and we prove that these solutions
are unique elliptic solutions for the CGLE5 with gr 6= 0.
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3 Construct of elliptic solutions for nonintegrable sys-

tems

We propose the following way to the search for elliptic solutions
of nonintegrable systems:

1. Calculate a few first terms of all solutions of system (1) in the
form of the Laurent series.

2. Choose the function yk, which should be elliptic. Check should
other functions be elliptic or not.

3. Using the residue theorem define values of numeric parameters
at which the solution yk can be an elliptic function.

4. Define a minimal number of poles for candidates to elliptic
solutions.
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5. Calculate the sufficient number of coefficients for all Laurent
series of yk and substitute the obtained coefficients into Eq. (2).
This substitution transforms (2) into a linear and overdetermined
system in hj,k with coefficients depending on parameters.

6. Eliminate coefficients hj,k and get a system in parameters.

7. Solve the obtained nonlinear system.

4 Conclusions:

• We propose a new approach for the search of elliptic solutions
to systems of differential equations. The proposed algorithm
is a modification of the Conte–Musette method. We restrict
ourselves to the search of elliptic solutions only.

26



• A key idea of this restriction is to simplify calculations by
means of the use of a few Laurent series solutions instead of
one and the use of the residue theorem.

• The application of our approach to the quintic complex one-
dimensional Ginzburg–Landau equation (CGLE5) allows to
find elliptic solutions in the wave form. Note that the obtained
solutions are the first elliptic solutions for the CGLE5.

• Using the investigation of the CGLE5 as an example, we demon-
strate that to find elliptic solutions the analysis of a system of
differential equations is more preferable than the analysis of
the equivalent single differential equation.

• We also find restrictions on coefficients, which are necessary
conditions for the existence of elliptic solutions for the CGLE5.
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