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1. Introduction

The theory of conformal, geodesic and harmonic mappings is an important part
of the differential geometry of Riemannian and pseudo-Riemannian spaces.

S.E. Stepanov and |.G. Shandra [8] studied compositions of conformal and geo-
desic (projective) diffeomorphisms in the case when these mappings are harmonic.
We call such mappings conformally-projective harmonic.

Our consideration is given in tensor form, locally, in the class of real sufficiently
smooth functions. The dimension n of the spaces under consideration is greater
than 2. All the spaces are assumed to be connected. Let us give the basic notions
of the theory of Riemannian spaces V},, using the notations by L.P. Eisenhart,
A.Z. Petrov, and others.



2. Conformal, geodesic and harmonic mappings

In the Riemannian space V, referred to a local coordinate system

r = (xl,xQ, ...,x'"), determined by the symmetric and nondegenerate metric

tensor g;;(x), Christoffel symbols of types | and Il are introduced by the formulas
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where g% are elements of the inverse matrix to Gij-

> and F?j = ghO‘Fij@,

The signature of the metrics is assumed, in general, to be arbitrary. Christoffel
symbols of type Il are the natural connection (the Levi-Civita connection) of
Riemannian spaces, with respect to which the metric tensor is covariantly constant,

l.e. gzj7k — O

Hereafter “,” denotes the covariant derivative with respect to the connection of
the space V,.



Considering concrete mappings of spaces, for example, f: V,, — V},, both spaces
are referred to the common coordinate system x with respect to this mapping.
This is a coordinate system where two corresponding points M € V;, and f(M) €
V,, have equal coordinates = = (xl,xQ, ..., x'™); the corresponding geometric
objects in V}, will be marked with a bar.

For example, F?j are the Christoffel symbols in V},.

The mapping from V,, onto Vj, is conformal if and only if, in the common
coordinate system x with respect to the mapping, the conditions

gij(z) = 2 W gii(x) (1)

are satisfied, where o(x) is a function on V/,.
Under conformal mapping the following conditions hold:
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where o; = 0;o(x), 0" = 0u9 is the Kronecker delta.



The diffeomorphism f: V,, — V,, is called a geodesic mapping if f maps any
geodesic line of V}, into a geodesic line of V,.

The mapping from V}, onto V}, is geodesic if and only if, in the common coor-
dinate system = with respect to the mapping, the conditions

[ () = T (@) + ) + oM, (3)

hold, where 1; (x) is a gradient vector.
If 1»; Z 0, then a geodesic mapping is called nontrivial; otherwise it is said to

be trivial or affine.

A harmonic diffeomorphism is a map that preserves Laplace s equation.
The mapping from V}, onto V}, is harmonic if and only if, in the common coordinate
system & with respect to the mapping, the following conditions hold

(T (x) = T} (2)) g = 0. (4)



3. Conformally-projective harmonic mapping

The compositions of conformal and geodesic (projective) mappings in the case
when these mappings are harmonic are called conformally-projective harmonic.

A diffeomorphism from an n-dimensional Riemannian space V;, onto a Rieman-
nian space V), is a conformally-projective harmonic mapping if and only if in the
common coordinate system x the following conditions hold

FZ(@ = FZ(@ + %'5? + @j@? - %sﬁhg@'j, (5)

where g;; are components of the metric tensor on V;, I resp., (I') are the Chris-
g7 = llgij|

toffel symbols of Vj, resp., (V;,), «; is a covector, ¢ = g%,

Theorem 1. A necessary and sufficient condition for f: V,, — Vj, to be
conformally-projective harmonic is

Gijk = 20k0i; + 0idjk + 00k — = (Pigk + Pjgik).

where g;; are components of the metric tensor of Vi, @i = ©0%Gi-



For n > 2 the following theorem holds:

Theorem 2. Let V;, be a Riemannian space. Then Vj, admits a conformally-
projective harmonic mapping onto a Riemannian space V}, if and only if the system
of differential equations of Cauchy type:

Gijk = 20kGij +©idjk + Pigik — % (Pigjk + Pjgik),
1 2
iy = al(gij— T(g) gij)+ T;,(9, ),
3
Qg = Ti<§, Ne)
has a solution in V}, for the unknown tensors g;i(x) (g;; = gji, [|gi;|| # 0), the

covector ;(x) and the function a(x).
S

Here T' (s = 1,2,3) are tensors which are expressed as functions of the shown
arguments, also of the objects defined in V},, i.e. the metric tensor g.



The above system is closed with respect to the unknown tensors g;;(z), ;(x), a.

We know from the theory of differential equations that the initial value problem
with initial conditions

_ 0 0 0

gz’j(x0> =Yy pi(To) =¥i; axo) =0,
has at most one solution. As the tensor g;; is symmetric, the general solution of
this system depends on r < %(n + 1)(n + 2) real parameters. From this follows

Theorem 3. Let V}, be a Riemannian space. The set of all Riemannian spaces V/,
for which V}, admits a conformal-projective harmonic mapping onto V/,, depends
on at most r < %(n + 1)(n + 2) real parameters.



4. Equdistant spaces
A vector field fh is called concircular, if f% = Q5h, where p is a function.

A Riemannian space V}, with concircular vector field is called equidistant.

In equidistant spaces V},, where the concircular vector fields are nonisotropic,
there exists a system of coordinates x, where the metric is of the form

1 2
ds® = dz'” + f(z!) ds?, (6)
f(ah)
where f € C1 (f #0) is a function,
ds? = §,p(z?, ...,@”)d:ﬁadmb (a,b = 2, ...,n) is the metric form of certain

Riemannian spaces V,,_1.



An equidistant space V}, with metric:
1

flah)

referred to coordinates x admits geodesic mappings onto the Riemannian space
Vi, whose metric form is

gt P g2y P (7)

fl+af) Ltaf
where p, g are some constants such that 1 + gf # 0, p # 0. If ¢f’ # 0, the
mapp_ing Is nontrivial; otherwise it is trivial, and x are common coordinates for V,

and V,.

ds? =

' + f(z") d? (6)

The function (), which defines a geodesic mapping (see (3)), has the following
form:

Y(z) =—5In|l+qfl. (8)



5. Conformal-projective mappings and equidistant spaces
Analysing formulas (1)-(5), (6) and (8) we can convince ourselves that the

following theorem holds:

Theorem 2. An equidistant Riemannian space V}, with the metric

ds® = (14 q f(z}))re (f(;l)dxﬂ + f(zh d§2> , (9)

where f € Ct (f # 0) is a function,

ds* = G p(z*, ..., 2" dzdz? (a,b =2, ...,n) is the metric of some

(n — 1)-dimensional Riemannian space Vj,_1,

is mapped conformally-projectively harmonically on the Riemannian space V;, with
the metric (7).



Remarks. The Riemannian space V}, with metric

i = (1 q fla) (et £(at) a2,

is conformally mapped onto a Riemannian space with metric
1

f(zt)
which is geodesically mapped onto a Riemannian space V}, with metric

p d12+Pf

Fa+af2" T1+qf

ds® = —dat” + f(z)) d&?,

ds? = ds?.



By comparison of the metric

ds® = ; (il>dx12 + f(zh ds®, (6)
and .
ds* = (1+q f(z'))m=2 (f<x1>da:12 + f(zh d§2> , (9)

we can convince ourselves that for a suitable choice of the paremeter ¢ the signa-
ture of the metric is conserved or can be changed.

There are metrics of the form

ds® = !

f(zt)
which map conformally-projectively harmonically on Einstein spaces.
By a detailed analysis we can convince ourselves of the existence of compact

Riemannian spaces, for which global non trivial conformally-projective harmonic
mappings exist.

Az’ + f(z") di? (6)



6. Equidistant spaces on geodesic coordinate system and Friedmann
metrics

We can make sure that the metrics

52 = (}El)dxl? T f(a) ds (6)
9 p 2. vl 0
ds _f(1+qf)2dx +1+qfd8° (7)
and .
i5? = (14 q f(a)7 (7psdat® + flah ) o

can be written in the form:
ds® = ede’” + f(zY) d3? (10)

where e = +1, f € C! (f # 0) is a function, d3° = gab(m?, ) drda
(a,b=2, ...,n) is the metric of a certain Riemannian space V,,_1.



Generally this function f is not the function, which figures in

52 = (:1131>dx12 T Azl ds2, (6)
o p 12 Pl
ds _f(1+qf)2dx +1+qfd8 (7)
and
ds® = (1+ g f(z!)) (f(;l)da;l? + f(zh d§2) . (9)

It is known that this coordinate system x is geodesic.
The Friedmann metric is a metric
2 -
ds® = edz'” + f(zb) ds°, (10)

with V,,_{ being a space with constant curvature and with a concrete special
function f(z1).



An equidistant space V}, with metric
ds® = edz'” + Flat) ds®, (10)

referred to coordinates x admits geodesic mappings onto the Riemannian space
Vi, whose metric form is

2

ds* = ————dr'” + pJ
(1+qf)? L+qf

where p, g are some constants such that 1 + gf # 0, p # 0. If ¢f' # 0, the

mapping is nontrivial; otherwise it is affine.

The function 1 (x) which defines a geodesic mappig has also the form

Y(x)=—3Infl+qfl.
Theorem 3. An equidistant Riemannian space V}, with the metric
2

ds® = (14 q f(z!))n—2 (e drl” + flzh d§2) ,
where f € C1 (f # 0) is a function, d§% = §p(22, ..., 2") dzdax® (a,b =
2, ...,n) is the metric of some (n — 1)-dimensional Riemannian space V,,_1,

is mapped by the identity map conformally-projectively harmonically on the Rie-
mannian space V}, with the metric (11).

s’ (11)




7. Petrov’s conjecture on geodesic mappings of Einstein spaces

A.Z. Petrov extended methods of studying geodesic mappings of four-dimensio-
nal Lorentzian-Einstein spaces to Einstein spaces of higher dimensions n > 4,
and conjectured that

the Lorentzian-Finstein spaces &, (n > 4) which do not have constant cur-
vature, do not admit nontrivial geodesic mappings onto Lorentzian-Einstein

spaces (see [6], pp. 355, 461).

Let us construct a counterexample to A.Z. Petrov's conjecture (see [5] and [4]).



Let £, (n > 4) be an equidistant Einstein space of nonconstant curvature with

Brinkmann metric .

; (x1>dx12 T f(ah) d?, (6)

ds? =

satisfying condition
f= K:z:12 +2ax! + 0.
It is known that the space &, with a coordinate system (6) admits a geodesic
mapping onto the Einstein space &, with metric
752 _ P 1% pf
f+af) L+qf
If ¢f’ # 0, the mapping is nontrivial. The coordinates = are common to this
mapping. The signatures of the metrics of &, and &, are different if 1 4+ ¢f < 0,
otherwise they coincide.

One can easily see that, under an appropriate choice of the constant ¢, it is
possible to construct an example of a nontrivial geodesic mapping between Einstein
spaces with Minkowski signature which have nonconstant curvatures and whose
dimensions are greather than four.

This provides a counterexample to the reduced Petrov conjecture.

s’ (7)
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