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1. Introduction

The theory of conformal, geodesic and harmonic mappings is an important part
of the differential geometry of Riemannian and pseudo-Riemannian spaces.

S.E. Stepanov and I.G. Shandra [8] studied compositions of conformal and geo-
desic (projective) diffeomorphisms in the case when these mappings are harmonic.
We call such mappings conformally-projective harmonic.

Our consideration is given in tensor form, locally, in the class of real sufficiently
smooth functions. The dimension n of the spaces under consideration is greater
than 2. All the spaces are assumed to be connected. Let us give the basic notions
of the theory of Riemannian spaces Vn, using the notations by L.P. Eisenhart,
A.Z. Petrov, and others.



2. Conformal, geodesic and harmonic mappings

In the Riemannian space Vn referred to a local coordinate system
x = (x1, x2, . . . , xn), determined by the symmetric and nondegenerate metric
tensor gij(x), Christoffel symbols of types I and II are introduced by the formulas

Γijk ≡
1

2

(
∂gjk

∂xi
+
∂gik
∂xj

−
∂gij

∂xk

)
and Γhij ≡ ghαΓijα,

where gij are elements of the inverse matrix to gij.

The signature of the metrics is assumed, in general, to be arbitrary. Christoffel
symbols of type II are the natural connection (the Levi-Civita connection) of
Riemannian spaces, with respect to which the metric tensor is covariantly constant,
i.e. gij,k = 0.

Hereafter “,” denotes the covariant derivative with respect to the connection of
the space Vn.



2.1 Conformal mappings

Considering concrete mappings of spaces, for example, f : Vn → V̄n, both spaces
are referred to the common coordinate system x with respect to this mapping.
This is a coordinate system where two corresponding points M ∈ Vn and f (M) ∈
V̄n have equal coordinates x = (x1, x2, . . . , xn); the corresponding geometric
objects in Vn will be marked with a bar.
For example, Γ̄hij are the Christoffel symbols in V̄n.

The mapping from Vn onto V̄n is conformal if and only if, in the common
coordinate system x with respect to the mapping, the conditions

ḡij(x) = e2σ(x)gij(x) (1)

are satisfied, where σ(x) is a function on Vn.

Under conformal mapping the following conditions hold:

Γ̄hij(x) = Γhij(x) + δhi σj + δhj σi − σh gij, (2)

where σi = ∂iσ(x), σh = σαg
αh, δhi is the Kronecker delta.



2.2 Geodesic mappings

The diffeomorphism f : Vn → V̄n is called a geodesic mapping if f maps any
geodesic line of Vn into a geodesic line of V̄n.

The mapping from Vn onto V̄n is geodesic if and only if, in the common coor-
dinate system x with respect to the mapping, the conditions

Γ̄hij (x) = Γhij (x) + δhi ψj + δhjψi (3)

hold, where ψi (x) is a gradient vector.
If ψi 6≡ 0, then a geodesic mapping is called nontrivial; otherwise it is said to

be trivial or affine.
2.3 Harmonic mappings

A harmonic diffeomorphism is a map that preserves Laplace´s equation.
The mapping from Vn onto V̄n is harmonic if and only if, in the common coordinate
system x with respect to the mapping, the following conditions hold

(Γ̄hij (x)− Γhij (x)) gij = 0. (4)



3. Conformally-projective harmonic mapping

The compositions of conformal and geodesic (projective) mappings in the case
when these mappings are harmonic are called conformally-projective harmonic.

A diffeomorphism from an n-dimensional Riemannian space Vn onto a Rieman-
nian space V̄n is a conformally-projective harmonic mapping if and only if in the
common coordinate system x the following conditions hold

Γ̄hij(x) = Γhij(x) + ϕiδ
h
j + ϕjδ

h
i −

2
n ϕ

hgij, (5)

where gij are components of the metric tensor on Vn, Γ resp., (Γ̄) are the Chris-

toffel symbols of Vn resp., (V̄n), ϕi is a covector, ϕh = ghαϕα, ‖gij‖ = ‖gij‖−1.

Theorem 1. A necessary and sufficient condition for f : Vn → V̄n to be
conformally-projective harmonic is

ḡij,k = 2ϕkḡij + ϕiḡjk + ϕjḡik − 2
n (ϕ̄igjk + ϕ̄jgik),

where ḡij are components of the metric tensor of V̄n, ϕ̄i = ϕαḡαi.



For n > 2 the following theorem holds:

Theorem 2. Let Vn be a Riemannian space. Then Vn admits a conformally-
projective harmonic mapping onto a Riemannian space V̄n if and only if the system
of differential equations of Cauchy type:

ḡij,k = 2ϕkḡij + ϕiḡjk + ϕjḡik − 2
n (ϕ̄igjk + ϕ̄jgik),

ϕi,j = α (ḡij−
1
T(ḡ) gij)+

2
Tij(ḡ, ϕ),

α,i =
3
Ti(ḡ, ϕ, α)

has a solution in Vn for the unknown tensors ḡij(x) (ḡij = ḡji, ‖ḡij‖ 6= 0), the
covector ϕi(x) and the function α(x).

Here
s
T (s = 1, 2, 3) are tensors which are expressed as functions of the shown

arguments, also of the objects defined in Vn, i.e. the metric tensor g.



The above system is closed with respect to the unknown tensors ḡij(x), ϕi(x), α.

We know from the theory of differential equations that the initial value problem
with initial conditions

ḡij(xo) =
o
ḡij; ϕi(xo) =

o
ϕi; α(xo) =

o
α,

has at most one solution. As the tensor ḡij is symmetric, the general solution of

this system depends on r ≤ 1
2(n + 1)(n + 2) real parameters. From this follows

Theorem 3. Let Vn be a Riemannian space. The set of all Riemannian spaces V̄n
for which Vn admits a conformal-projective harmonic mapping onto Vn, depends
on at most r ≤ 1

2(n + 1)(n + 2) real parameters.



4. Equdistant spaces
A vector field ξh is called concircular, if ξh,i = %δhi , where % is a function.

A Riemannian space Vn with concircular vector field is called equidistant.

In equidistant spaces Vn, where the concircular vector fields are nonisotropic,
there exists a system of coordinates x, where the metric is of the form

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

where f ∈ C1 (f 6= 0) is a function,
ds̃2 = g̃ab(x

2, . . . , xn)dxadxb (a, b = 2, . . . , n) is the metric form of certain
Riemannian spaces Ṽn−1.



An equidistant space Vn with metric:

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

referred to coordinates x admits geodesic mappings onto the Riemannian space
V̄n, whose metric form is

ds̄2 =
p

f (1 + qf )2
dx12

+
p f

1 + qf
ds̃2, (7)

where p, q are some constants such that 1 + qf 6= 0, p 6= 0. If qf ′ 6≡ 0, the
mapping is nontrivial; otherwise it is trivial, and x are common coordinates for Vn
and V̄n.

The function ψ(x), which defines a geodesic mapping (see (3)), has the following
form:

ψ(x) = −1
2 ln |1 + q f | . (8)



5. Conformal-projective mappings and equidistant spaces
Analysing formulas (1)-(5), (6) and (8) we can convince ourselves that the

following theorem holds:
Theorem 2. An equidistant Riemannian space Vn with the metric

ds2 = (1 + q f(x1))
2

n−2

(
1

f (x1)
dx12

+ f (x1) ds̃2
)
, (9)

where f ∈ C1 (f 6= 0) is a function,
ds̃2 = g̃ab(x

2, . . . , xn) dxadxb (a, b = 2, . . . , n) is the metric of some
(n− 1)-dimensional Riemannian space Ṽn−1,
is mapped conformally-projectively harmonically on the Riemannian space V̄n with
the metric (7).



Remarks. The Riemannian space Vn with metric

ds2 = (1 + q f(x1))
2

n−2

(
1

f (x1)
dx12

+ f (x1) ds̃2
)
, (9)

is conformally mapped onto a Riemannian space with metric

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

which is geodesically mapped onto a Riemannian space V̄n with metric

ds̄2 =
p

f (1 + qf )2
dx12

+
p f

1 + qf
ds̃2. (7)



By comparison of the metric

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

and

ds2 = (1 + q f(x1))
2

n−2

(
1

f (x1)
dx12

+ f (x1) ds̃2
)
, (9)

we can convince ourselves that for a suitable choice of the paremeter q the signa-
ture of the metric is conserved or can be changed.

There are metrics of the form

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

which map conformally-projectively harmonically on Einstein spaces.
By a detailed analysis we can convince ourselves of the existence of compact

Riemannian spaces, for which global non trivial conformally-projective harmonic
mappings exist.



6. Equidistant spaces on geodesic coordinate system and Friedmann
metrics

We can make sure that the metrics

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

ds̄2 =
p

f (1 + qf )2
dx12

+
p f

1 + qf
ds̃2. (7)

and

ds2 = (1 + q f(x1))
2

n−2

(
1

f (x1)
dx12

+ f (x1) ds̃2
)
, (9)

can be written in the form:

ds2 = edx12
+ f (x1) ds̃2, (10)

where e = ±1, f ∈ C1 (f 6= 0) is a function, ds̃2 = g̃ab(x
2, . . . , xn)dxadxb

(a, b = 2, . . . , n) is the metric of a certain Riemannian space Ṽn−1.



Generally this function f is not the function, which figures in

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

ds̄2 =
p

f (1 + qf )2
dx12

+
p f

1 + qf
ds̃2 (7)

and

ds2 = (1 + q f(x1))
2

n−2

(
1

f (x1)
dx12

+ f (x1) ds̃2
)
. (9)

It is known that this coordinate system x is geodesic.

The Friedmann metric is a metric

ds2 = edx12
+ f (x1) ds̃2, (10)

with Ṽn−1 being a space with constant curvature and with a concrete special
function f (x1).



An equidistant space Vn with metric

ds2 = edx12
+ f (x1) ds̃2, (10)

referred to coordinates x admits geodesic mappings onto the Riemannian space
V̄n, whose metric form is

ds̄2 =
ep

(1 + qf )2
dx12

+
p f

1 + qf
ds̃2, (11)

where p, q are some constants such that 1 + qf 6= 0, p 6= 0. If qf ′ 6≡ 0, the
mapping is nontrivial; otherwise it is affine.
The function ψ(x) which defines a geodesic mappig has also the form

ψ(x) = −1
2 ln |1 + q f | .

Theorem 3. An equidistant Riemannian space Vn with the metric

ds2 = (1 + q f(x1))
2

n−2
(
e dx12

+ f (x1) ds̃2
)
,

where f ∈ C1 (f 6= 0) is a function, ds̃2 = g̃ab(x
2, . . . , xn) dxadxb (a, b =

2, . . . , n) is the metric of some (n − 1)-dimensional Riemannian space Ṽn−1,
is mapped by the identity map conformally-projectively harmonically on the Rie-
mannian space V̄n with the metric (11).



7. Petrov’s conjecture on geodesic mappings of Einstein spaces

A.Z. Petrov extended methods of studying geodesic mappings of four-dimensio-
nal Lorentzian-Einstein spaces to Einstein spaces of higher dimensions n > 4,
and conjectured that

the Lorentzian-Einstein spaces En (n > 4) which do not have constant cur-
vature, do not admit nontrivial geodesic mappings onto Lorentzian-Einstein
spaces (see [6], pp. 355, 461).

Let us construct a counterexample to A.Z. Petrov’s conjecture (see [5] and [4]).



Let En (n > 4) be an equidistant Einstein space of nonconstant curvature with
Brinkmann metric

ds2 =
1

f (x1)
dx12

+ f (x1) ds̃2, (6)

satisfying condition

f = Kx12
+ 2a x1 + b.

It is known that the space En with a coordinate system (6) admits a geodesic
mapping onto the Einstein space Ēn with metric

ds̄2 =
p

f (1 + qf )2
dx12

+
p f

1 + qf
ds̃2. (7)

If qf ′ 6= 0, the mapping is nontrivial. The coordinates x are common to this
mapping. The signatures of the metrics of En and Ēn are different if 1 + qf < 0,
otherwise they coincide.

One can easily see that, under an appropriate choice of the constant q, it is
possible to construct an example of a nontrivial geodesic mapping between Einstein
spaces with Minkowski signature which have nonconstant curvatures and whose
dimensions are greather than four.

This provides a counterexample to the reduced Petrov conjecture.
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