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Banach Lie-Poisson spaces

Definition 1. A Banach Lie algebra (g, |-, ‘)
is a Banach space imposed in the continuous Lie
bracket [-,-] : g x g — g.

For x € gone defines the adjoint ad, : g — g,
ad, g == |x,y], and coadjoint ad’. : g* — g*
map which are also continuous.

Definition 2. A Banach Lie-Poisson space
(b,{-,-}) is a real or complex Poisson mani-
fold such that b is a Banach space and its dual
b* C C*°(b) is a Banach Lie algebra under the
Poisson bracket operation.

Theorem 3. The Banach space b is a Ba-
nach Lie-Poisson space (b,{-,-}) if and only
iof it is predual b* = g of some Banach Lie
algebra (g, [+, ]) satisfying ad, b C b C g* for
all x € g. The Poisson bracket of f,g €
C>(b) is given by

1f,93(0) = {IDf(b), Dg(b)]; ),

where b € b.



e A morphism between two Banach Lie-
Poisson spaces by and by we assume a continu-
ous linear map ® : by — by that preserves the
linear Poisson structure, i.e.

{fod,go®h ={f,g}ao®

for any f,g € C>(bsy). It will be called a lin-
ear Poisson map.

e We present Hamilton equation in the form

d "

where h € C'°°(b) is a Hamiltonian of the sys-
tem.



Example 1. L*('H) — C*-algebra of the bounded
operators acting in H.

e One has
L*(H) = (L'(H))"
where the duality is given by
(X p) = Te(Xp),

forp € L'(H) == {p € L®(H) : [|pl|, == Tr /p*p < oo},
X € L*(H).

e The associative Banach algebra L (H) can
be considered as the Banach Lie algebra of the
complex Banach Lie group GL*(H) of the in-
vertible elements in L*°(H).



e The predual of real Banach Lie algebra
UXH) ={X e L*H): X"+ X =0}

is
U H) = {pe L'(H):p* = p}
and the isomorphism U'(H)* = U™(H) is given
by
(X5 p) =1 Tr(Xp).

e The formula

ady p = [p, X],

shows that U'(H) C U°(H)* is invariant with
respect to the coadjoint action of U*(H) on

U>('H)*. The above allows us to define Poisson
bracket

{F,G}pi(p) == iTr (p[DF(p), DG(p)))
for F,G € C(U\(H)).



e The Hamilton equations

~iplt) = [p(t), DH(p(1))]

1s the non-linear version of the Liouville-von
Neumann equation.

e One obtains the Liouville-von Neumann equa-
tion taking the Hamiltonian H(p) = Tr(pH),
where H € iU*(H).

&



Induced Banach Lie-Poisson spaces

e b; — a Banach space,

e (b,{-,-}) — a Banach Lie-Poisson space

e ., : by — b an injective continuous linear
map with closed range.

e ker (* is an ideal in (b*, |-, -]) <= by carries
a unique Banach Lie-Poisson bracket {-,-}nd
such that

{Fou,Gou}={F ,G}ou

for any F,G € C°(b). This Poisson structure
on by is said to be induced by the mapping ¢.
Assume that there exists a projector R =

R*: b — b such that ¢(by) = R(b). We get
{fyg}ifld(bl) —
= ([D(for™ o R)(1(b)), D(g o™ o R)(u(br))] , u(by)).



Proposition 4. Let + : by — b be a quasi-
immersion of Banach Lie-Poisson spaces (S0
range ¢ 1S a closed subspace of b and ker t* 1s
an ideal in the Banach Lie algebra b*). As-
sume that there is a connected Banach Lie
group G with Banach Lie algebra g := b*.
Then the G-coadjoint orbit O,y == Adg ¢(by)
is contained in 1(by) for any by € by. In ad-
dition, if N C G is a closed connected nor-
mal Lie subgroup of G whose Lie algebra is
ker *, then the N -coadjoint action restricted
to 1(by) is trivial.

Therefore the Banach Lie group G /N = {|g] :=
gN | g € G} naturally acts on 1(by) and the
orbit of L(by) under this action coincides with
O,y Jor any by € by.



Coinduced Banach Lie-Poisson spaces

e (b,{,}) — a Banach Lie-Poisson space

e b; — the Banach space

e T : b — by — acontinuous linear surjective
map

e 7°(b}) C b* is closed under the Lie bracket
-, -] of b* <= by carries a unique Banach Lie-
Poisson bracket {, }$° such that

{fomgom}={f g} on

for any f,g € C°°(by). This unique Poisson
structure on by is said to be coinduced by
map 7.

e The coinduced bracket has then the form

{£, 9354 (by) = (@) [7* (D f(br)), 7" (Dg(b))] , br)
for any f,g € C*°(by) and by € by.



e Let us assume splitting b = by & by .
e ; : b — b the projection onto b;, for
7=1,2.
e Dual projectors R}, R5 : b* — b*
One has
ker Rl = 1m RQ — [12
keng = 1m R1 - bl
ker RY = im Ry = (im R;)° = b}
ker RS = im R} = (im Ry)° = b
b =10, b
b* = b5 @ b7 = b] @ b3.
e The splitting determines the maps

b
s 79
A
b, b,
and

{f,935°m(b)) = (0.1)
= ([D(f o m;)(t;(bj)), D(g o m;)(¢;(b;))], (b)),

where b; € b;.



Proposition 5. Assume thatim R} andim R;
are Banach Lie subalgebras of b*. Then:

(i) b; has a Banach Lie-Poisson structure
cotnduced by m; and the expression of the
coinduced bracket {,}5°™ on b; is given
by (0.15). The Hamiltonian vector field
of h € C*(b;) at b; € b, is given by

Xn(bj) = —m; (adfr;ph(bj) Lj(bj)) . Jj=12

(0.2)
where Dh(b;) € b% and ad, is the adjoint
action of x € b* on b*.

(ii) The Banach space isomorphism
R :=%(Ry — Ry) : b — b defines a new

Banach Lie-Poisson structure

{f,9}tr(b) = (0.3)
= ([R"Df(b), Dg(b)|+|Df(b), R*Dyg(b)],b)

on b, f,g € C™(b), that coincides with

the product structure on by X by, where

b, carries the coinduced bracket {, }$ond



(iii)

(iv)

and by denotes by endowed with the Lie-
Poisson bracket —{ , }somd,

The inclusion maps ¢; : (by,{,}{"™) —
(bv { ; }R> and iy : (va { ) }501nd> — <b7 { ) }R)
are linear injective Poisson maps with closed
range.

The map v; induces from (b,{, }r) a Ba-
nach Lie-Poisson structure on b; which
coincides with the comnduced structure de-

scribed in (i), for j =1,2.



Corrolary 6 (Involution Theorem). In the no-

tations and hypotheses of Proposition 5 we

have:

(i) The Casimir functions on (b,{-,-}) are
in involution on (b,{-,-}r) and restrict
to functions in involution on b;, 7 =1,2.

(ii) If H is a Casimir function on b, then its
restriction H o v; to b; has the Hamilto-
nian vector field

Xron(b1) = 71 ( ad s pargy o)) 01(01))
XHoiy(b2) = 7T2( adETDH(LQ(bQ)) bz(b2>)
(0.4)
for any by € by and by € by, where ¢; :
b; — b s the inclusion, j =1, 2.

Taken together, Proposition 5 and Corol-
lary 6 give a version of the Adler-Kostant-
Symes Theorem formulated with the nec-
essary additional hypotheses in the context of
Banach Lie-Poisson spaces.



Proposition 7. Let (b,{, }) be a Banach Lie-
Poisson space and let R1, Rz : b — b be pro-
jectors. Assume that im Ry = im Ro3 =: bo,
where R21 L= id[, —Rl, R23 = ldb —Rg, and
denote by := im Ry, b3y := im R3. We sum-
marize this situation in the diagram

b b
I8 o1 79 YR
T TR
by bo bs

where Ty, To1, To3, T3 are the projections onto
the ranges of Ry, Ro1, Rog, and R3 respectively,
according to the splittings b = by & by =
by @ b3, and ¢1 : by — b, 13 : bg — b are
the inclusions.

Then one has:

(i) If b5 is a Banach Lie subalgebra of b*,
then ®31 := m30L7 : ([,17 { 7 }(ioind) N ([13, { 7 }goind)
and ®13 := m0L3 : ([]3, { , }goind) — ([]1’ { : }%Oind)
are mutually inverse linear Poisson iso-
morphisms.



(ii) If 6] and bs are Banach Lie subalgebras
of b*, then by has two coinduced Banach
Lie-Poisson brackets { , }$3" and { , }53nd

which are not isomorphic in general.



Induction and coinduction from

LY(H)

e Since L'(H) C L*(H), where
(H) = {pe (M) : |l = /T 77 < o0}

is the ideal of Hilbert-Schmidt operators
in H, one can consider

{Im){nl},
as Schauder basis of L'(H). The biorthogo-

nal functionals

{Te(1R) ()}
form the basis of L>('H) in sense of the weak*-
topology.



e We assume that H is the real separable
Hilbert space; L>® := L*(H), L' := L'(H)
and define the shift operator:

S:=Y [n){n+1]

s(xo, T1,To ... Ty ) = (T1,To, ..., Tp,y...)
for any
(560,5131,332...,3371,...> EKOO%JLSO,

where L and L] are diagonal parts of L> and
L' respectively.
Any x € L™ and p € L' can be written as

= i(ST)]x] + x0 + Z 8", (0.5)

j=1 1=1
p=> (57 pj+po+zp iS',(0.6)
j=1 1=1

where x;, o, x_; € L and pj, po, p—; € Lj,



We have decompositions

L*=ELy ad L'=L.

keZ keZ

where

LY ={pe L] pum=0form#An+k} C LT
L. ={pel'| ppm=0form#n+k} CL



Banach subspaces of L*(H)

o ! =) L and L}r = @zozol},lf

el ={pel'|p=p'tand L} :={p €
L'[p=—p"}

o Ll_’k = @g:—k—l—lLZl and L}hk = EB?:_()lelﬁ
for k > 1

° Il,k = EBZ-_:]"“_OOLZ1 and I_lhk — ;’ikl)llj for
k>1

° L}S*,k = L}g N (L}thrLl_’k) and Lh’k =
Lz N (L}rk + L1_7k>, for k > 1.

and Banach subspaces L*(H)

o [°° = @gz_ooLZO and LY = @ Li°

e [¥ = {x € L* | ! =z} and LY :=
{x € L® | 2! = -2}

o L% = @), L and LY, = @i L,
for k > 1

o [ = o _L® and 170 = @2, Lie, tor
k>1



o LY, = L¥ N (LT, +L>,) and LY, =
LY N (LT + L2y), for k > 1.



Splittings of Banach spaces

L'=L'®l,, L'=LyalIl,,

Lt =Ll yoI',, L*=LYeI™, (0.7)
[*=LY® LY, LY=L%aIl%

are related by

(DL = (L) = L%, (L) = (1], = I
(Ll—,k)* = (]—,k)o — Lcjro,ka (%,1)* = (LI)O =17
<]—1F,1>* = (L15>O = L7, (I—,k)* = (L—,k)o — ]chk



e Taking the maps defined by the splittings

(0.7)
1 1
T TS+ T T
1 1 1
L 13 L
and
d
1 S7_ 1
L. ——— Lg
L— K %—,k LS k| | TS k
1 DPg_p 71
L—,k / 'LS,k
where &g _ := mgoi_ : Ll — L}g and ®g_ 1 =

TsroPs_ov_y: Lt P L}g,{, and using the
induction and coinduction procyedures we obtain
the Banach Lie-Poisson structure on L' . with
the Poisson bracket given by |

{f.95(p) =Tr(p[Df(p), Dg(p)ly) = (0.8)
= S ST [ (L5 (2(0)) -
~2(p)s' (52-(p)) )]



for f,g € C*(LL,), where g—gz_(p) denotes the

partial functional derivative of f relative to p;
defined by Df(p) = 55(p) + 5L(p)S + -~ +
) _

e If in the previous formulas we let £ = o0
one obtains the Lie-Poisson bracket on L.

e Banach Lie-Poisson spaces L}q and L' are
isomorphic.

o/ qlt,l is the predual of the two Banach Lie al-
gebras 127 and L thus it carries two different
Lie-Poisson brackets:

{f,9}+(p) = (0.9)
= Tr (e4(p) |D(f o) (e4(p)), D(g o 7 )(t+(p))])

and

{f,9}s+(p) = (0.10)
Tr (154 (p) [D(f 0 5,4 )(ts5,4(p)), D(g 0 ms,4 ) (Ls,+(p))])

where p € I} |, f,g € C™®(I} ).



e One has the G L°-invariant filtrations

(L) > oLl ) — oo (Lh ) <
(0.11)
—s L—,k+1<L1_’k_|_1> s ... Lt

ts1(Lgy) = ts2(Lgs) — ... = tsn(Lygy) —
— Lot (Lggpr) = - = Ly

of Banach Lie-Poisson spaces predual to the
sequence

LT — .. — LT, — LT — ...
(0.13)

. — L, — L°

+,2 +,1
of Banach Lie algebras in which each arrow
is the surjective projector Wio,k:,k—l ; ka
1 that maps k-diagonal upper triangular
operators to (k — 1)-diagonal upper triangular
operators by eliminating the k-diagonal. We
have m%°) .y om?, = m% 4. The Banach Lie

algebra structure on L, is given by the iso-

—



morphism L, = L/1%.



e A k-diagonal Hamiltonian system is,
by definition, a Hamiltonian system on the Ba-
nach Lie-Poisson space

(L8 he) = (Lsg {0 dsue) -

e Hamilton’s equations on (Ll_’kj {-,-}1) for
Hamiltonians hy € COO(Ll_’k) are given by

k—1
d ~l.< 5hk> -(5hk>>
o= — gl=J g
ao= =3 (8 () o (e

- (0.14)

for 57=0,1,2,...,k— 1.

e The k-diagonal semi-infinite Toda sys-
tems are defined to be the Hamiltonian sys-
tems on Lls .. assoclated to the Hamiltonians

7o) =17 (ts4(0) = I (s © L5 x)(0)
for o € L}s*,k;a where

1

(p) = Tr

for pe Ly and [ € N,



The semi-infinite Toda lattice

e For k = 2 we obtain semi-infinite Toda lat-
tice which can be integrated by the theory of
orthogonal polynomials.

e The phase-space [* x [}

©.@)

o {paiio=p ol =) Ipal < +oo

n=0

otz =¢ |l = sup |[gu] <+oo
neNU{0}



e The Poisson bracket:
fig € Co1* x 1)
o > df Og dg Of
{f7g}loo><l1 T Z (apnaQn apn(f?qn>

n=0

af >~ 00 ag >~ 00\k ~v [7l\*x
() e ), ==

n=0 n=0
il (1)

The Poisson bracket {-, -}y 1 has sense if
(a_f) (@) c I
Opn | 7 \ Ogn '

e The Hamiltonian:

1 o0 o0 -
Hroaa =5 ) Dot ) vne™ ™70 {p 2o, {mhig €11
n=0 =0




e The Hamilton equations:
n = {hv Q?’L}looxll = Pn
pn — {HTOdaypn}looxll — <015)

— 2y, X m—in-1) 9y o2nr1—n)

oo
Li(p,q) = Z p, — integral of motion
n=0



e The Banach Lie-Poisson space:

Qa 0 0
bp a1 0
1 . 0 1 . 00 00 1
L3 P = 0 bl as . (an)n:Ov (bTL)n:O €
xo yo O e o o
s X = | TV @), (g, € 1

OOZEQ 7

L% (L)) (X, p)=Tr Xp
F, G € C™(L"
DF(p), DG(p) € (L) = L™
e The Poisson bracket:

{£, G} =Tr(J|DF(p), DG(p)]) =

_ib OF ( 0G  0G\ 0G ( OF OF
— 2 n abn 8Cln+1 3a,n abn aa’n—i—l aan




e The momentum map:

( Po 0 0
01—
T 1% 3 (q.p) — | ° po 0

1s a Poisson map, i.e.

{F,G}Ll o J = {FO J,GO ‘]}looxll'




e Integrals of motion:

1
Ii(p) = ZTT(ﬂ +p" = po)’
ao 0 0
where _ |V @l
/00 T O O a9 )
are in involution:
{[l, Ik}Ll — O

Thus we have
{[l o J, ]k: ) J}looxll =0

and
Iy 0 J(q,p) = > " Pn - the total momentum
I 0 J(q,p) = Hroda - the total energy

I, o J(q,p) - are integrals of motion for Hp,g,
and k£ > 2



e The Hamilton equations given by I;, [ € N
are

0J
—=|J,B 1
5 = 1Bl (0.16)

where

J=p+p" —po

By = P_(J') — (P_(JY)T

P_—projector on the lower triangular part of matrix.
Hamilton equations given by [; 0 J, [ € N are

%_qt?; — {[l o J7 QTL}7

0.17
%%l:{[loj,pn},neNU{O} (0.17)

The system (0.17) is obtained from (0.16) by
reduction.



Orthogonal polynomials and so-
lutions of Toda hierarchy

e The operator J given by

(CLQ bo 0 0 \

bo ai b1 0 .-
J = 0 b1 a9 b2
0 0 bQ as
has discrete simple spectrum Mg, A1,... € R,

since (ay,), (b,) € I



e Polynomials P,(\) are orthonormal

/ PN P (N do(\) = o,

with respect to
do(\) =) (A — Ap)dA
m=0

satisfy the tree-term recurrence
)\Pn()‘) — bn—lpn—l()‘) + anpn()‘) + bnpm—l()‘)
P\ =1, b_=0.



e {|n)}°°, - canonical basis

[Am) = Z Py(Am) In)

J | Am) = A | Am)
For projectors B, := % one has
(g)\ VP Pr—(An—Ak) (QP)P — P,BiP;| =0
atlnnk nkatlnk nPlL k| —

where n, k € NU {0}, [ € N,

from the above

0y _
a_tl>‘m—0

a%l,um =2 P‘gn - (fo:o /im)‘flm” Hom

(0.18)



e Remark: ¢{; - the evolution of measure
do(\) =) (A — Ap)dA
m=0

is isospectral and

Hom = <)‘m‘)‘m>_1-

The moments

o) = /)\kda()\), g =1

of do(\) satisfy

0
o= 2o — o), kIEN. (019
[



[t follows from (0.19) that exists 7 = 7(t1, to, ...),
such that

1 0 9,
0
k= S0 BT
and
0T ot

= 2 0.20
875;4;(’%; 5’T/<:+z ( )

e The solution of (0.20) is given by:

©.9)

T(tl,tg, ) = T(O, 0, ) Zuma)’ 0, “.)622?31755)\%1

m=0



e The solution of (0.17) can be expressed by
T-functions:
_ Brer B

Qp+1 O
V1041
o

A

by,

where

O'O 0'1 e o o O-k

0'1 0'2 e o o O' 1

oy = det Wt
Ok Oks1 **+ 09

op 01 -+ Og—1 Ok41
o 09 ~--- O  Ok42

ﬁk = det

Ok Ok+1 *°° 02k—1 O02k+1

131
o = ——logT.
SV TR

e The solution of Toda lattice equation is given
by:




