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Banach Lie-Poisson spaces

Definition 1. A Banach Lie algebra (g, [·, ·])
is a Banach space imposed in the continuous Lie
bracket [·, ·] : g× g → g.

For x ∈ g one defines the adjoint adx : g → g,
adx g := [x, y], and coadjoint ad∗x : g∗ → g∗

map which are also continuous.

Definition 2. A Banach Lie-Poisson space
(b, {·, ·}) is a real or complex Poisson mani-
fold such that b is a Banach space and its dual
b∗ ⊂ C∞(b) is a Banach Lie algebra under the
Poisson bracket operation.

Theorem 3. The Banach space b is a Ba-
nach Lie-Poisson space (b, {·, ·}) if and only
if it is predual b∗ = g of some Banach Lie
algebra (g, [·, ·]) satisfying ad∗x b ⊂ b ⊂ g∗ for
all x ∈ g. The Poisson bracket of f, g ∈
C∞(b) is given by

{f, g}(b) = 〈[Df (b), Dg(b)]; b〉,
where b ∈ b.



• A morphism between two Banach Lie-
Poisson spaces b1 and b2 we assume a continu-
ous linear map Φ : b1 → b2 that preserves the
linear Poisson structure, i.e.

{f ◦ Φ, g ◦ Φ}1 = {f, g}2 ◦ Φ

for any f, g ∈ C∞(b2). It will be called a lin-
ear Poisson map.

• We present Hamilton equation in the form

d

dt
b = − ad∗Dh(b) b, b ∈ b,

where h ∈ C∞(b) is a Hamiltonian of the sys-
tem.



Example 1. L∞(H) — C∗-algebra of the bounded
operators acting in H.

• One has

L∞(H) = (L1(H))∗

where the duality is given by

〈X ; ρ〉 := Tr(Xρ),

for ρ ∈ L1(H) := {ρ ∈ L∞(H) : ‖ρ‖1 := Tr
√

ρ∗ρ < ∞},
X ∈ L∞(H).

• The associative Banach algebra L∞(H) can
be considered as the Banach Lie algebra of the
complex Banach Lie group GL∞(H) of the in-
vertible elements in L∞(H).



• The predual of real Banach Lie algebra

U∞(H) := {X ∈ L∞(H) : X∗ + X = 0}

is
U 1(H) := {ρ ∈ L1(H) : ρ∗ = ρ}

and the isomorphism U 1(H)∗ ∼= U∞(H) is given
by

〈X ; ρ〉 := i Tr(Xρ).

• The formula

ad∗X ρ = [ρ, X ],

shows that U 1(H) ⊂ U∞(H)∗ is invariant with
respect to the coadjoint action of U∞(H) on
U∞(H)∗. The above allows us to define Poisson
bracket

{F, G}U1(ρ) := i Tr
(
ρ[DF (ρ), DG(ρ)]

)
for F, G ∈ C∞(U 1(H)).



• The Hamilton equations

−i
d

dt
ρ(t) = [ρ(t), DH(ρ(t))],

is the non-linear version of the Liouville-von
Neumann equation.

•One obtains the Liouville-von Neumann equa-
tion taking the Hamiltonian H(ρ) = Tr(ρĤ),
where Ĥ ∈ iU∞(H).

♦



Induced Banach Lie-Poisson spaces

• b1 — a Banach space,
• (b, {·, ·}) — a Banach Lie-Poisson space
• ι : b1 ↪→ b an injective continuous linear

map with closed range.
• ker ι∗ is an ideal in (b∗, [·, ·]) ⇐⇒ b1 carries

a unique Banach Lie-Poisson bracket {·, ·}ind
1

such that

{F ◦ ι, G ◦ ι}ind
1 = {F, G} ◦ ι

for any F, G ∈ C∞(b). This Poisson structure
on b1 is said to be induced by the mapping ι.

Assume that there exists a projector R =
R2 : b → b such that ι(b1) = R(b). We get

{f, g}ind
1 (b1) =

=
〈[

D(f ◦ ι−1 ◦R)(ι(b1)), D(g ◦ ι−1 ◦R)(ι(b1))
]
, ι(b1)

〉
.



Proposition 4. Let ι : b1 ↪→ b be a quasi-
immersion of Banach Lie-Poisson spaces (so
range ι is a closed subspace of b and ker ι∗ is
an ideal in the Banach Lie algebra b∗). As-
sume that there is a connected Banach Lie
group G with Banach Lie algebra g := b∗.
Then the G-coadjoint orbit Oι(b1) := Ad∗G ι(b1)
is contained in ι(b1) for any b1 ∈ b1. In ad-
dition, if N ⊂ G is a closed connected nor-
mal Lie subgroup of G whose Lie algebra is
ker ι∗, then the N-coadjoint action restricted
to ι(b1) is trivial.
Therefore the Banach Lie group G/N := {[g] :=
gN | g ∈ G} naturally acts on ι(b1) and the
orbit of ι(b1) under this action coincides with
Oι(b1) for any b1 ∈ b1.



Coinduced Banach Lie-Poisson spaces

• (b, { , }) — a Banach Lie-Poisson space
• b1 — the Banach space
• π : b → b1 — a continuous linear surjective

map

• π∗(b∗1) ⊂ b∗ is closed under the Lie bracket
[· , ·] of b∗ ⇐⇒ b1 carries a unique Banach Lie-
Poisson bracket { , }coind

1 such that

{f ◦ π, g ◦ π} = {f, g}coind
1 ◦ π

for any f, g ∈ C∞(b1). This unique Poisson
structure on b1 is said to be coinduced by
map π.

• The coinduced bracket has then the form

{f, g}coind
1 (b1) =

〈
(π∗)−1 [π∗(Df (b1)), π

∗(Dg(b1))] , b1

〉
for any f, g ∈ C∞(b1) and b1 ∈ b1.



• Let us assume splitting b = b1 ⊕ b2 .
• Rj : b → b the projection onto bj, for

j = 1, 2.
• Dual projectors R∗

1, R
∗
2 : b∗ → b∗

One has
ker R1 = im R2 = b2

ker R2 = im R1 = b1

ker R∗
1 = im R∗

2 = (im R1)
◦ ∼= b∗2

ker R∗
2 = im R∗

1 = (im R2)
◦ ∼= b∗1

b = b1 ⊕ b2

b∗ = b◦2 ⊕ b◦1
∼= b∗1 ⊕ b∗2.

• The splitting determines the maps

b

b1 b2

@
@

@
@@R@

@
@

@@I�
�

�
��	�

�
�

���π1
ι1

π2
ι2

and

{f, g}coind
j (bj) = (0.1)

= 〈[D(f ◦ πj)(ιj(bj)), D(g ◦ πj)(ιj(bj))] , ιj(bj)〉 ,

where bj ∈ bj.



Proposition 5. Assume that im R∗
1 and im R∗

2

are Banach Lie subalgebras of b∗. Then:

(i) bj has a Banach Lie-Poisson structure
coinduced by πj and the expression of the
coinduced bracket { , }coind

j on bj is given
by (0.15). The Hamiltonian vector field
of h ∈ C∞(bj) at bj ∈ bj is given by

Xh(bj) = −πj

(
ad∗π∗jDh(bj)

ιj(bj)
)

, j = 1, 2,

(0.2)
where Dh(bj) ∈ b∗j and adx is the adjoint
action of x ∈ b∗ on b∗.

(ii) The Banach space isomorphism
R := 1

2(R1 − R2) : b → b defines a new
Banach Lie-Poisson structure

{f, g}R(b) := (0.3)

= 〈[R∗Df (b), Dg(b)]+[Df (b), R∗Dg(b)], b〉
on b, f, g ∈ C∞(b), that coincides with
the product structure on b1 × b2, where
b1 carries the coinduced bracket { , }coind

1



and b2 denotes b2 endowed with the Lie-
Poisson bracket −{ , }coind

2 .

(iii) The inclusion maps ι1 : (b1, { , }coind
1 ) ↪→

(b, { , }R) and ι2 : (b2, { , }coind
2 ) ↪→ (b, { , }R)

are linear injective Poisson maps with closed
range.

(iv) The map ιj induces from (b, { , }R) a Ba-
nach Lie-Poisson structure on bj which
coincides with the coinduced structure de-
scribed in (i), for j = 1, 2.



Corrolary 6 (Involution Theorem). In the no-
tations and hypotheses of Proposition 5 we
have:

(i) The Casimir functions on (b, {·, ·}) are
in involution on (b, {·, ·}R) and restrict
to functions in involution on bj, j = 1, 2.

(ii) If H is a Casimir function on b, then its
restriction H ◦ ιj to bj has the Hamilto-
nian vector field

XH◦ι1(b1) = π1

(
ad∗R∗2DH(ι1(b1))

ι1(b1)
)

XH◦ι2(b2) = π2

(
ad∗R∗1DH(ι2(b2))

ι2(b2)
)

(0.4)
for any b1 ∈ b1 and b2 ∈ b2, where ιj :
bj ↪→ b is the inclusion, j = 1, 2.

Taken together, Proposition 5 and Corol-
lary 6 give a version of the Adler-Kostant-
Symes Theorem formulated with the nec-
essary additional hypotheses in the context of
Banach Lie-Poisson spaces.



Proposition 7. Let (b, { , }) be a Banach Lie-
Poisson space and let R1, R3 : b → b be pro-
jectors. Assume that im R21 = im R23 =: b2,
where R21 := idb−R1, R23 := idb−R3, and
denote b1 := im R1, b3 := im R3. We sum-
marize this situation in the diagram

b

b1 b2

@
@

@
@@R

�
�

�
��	�

�
�

���π1
ι1

π21

b

b3

�
�

�
��	

@
@

@
@@R@

@
@

@@Iπ23 π3
ι3

where π1, π21, π23, π3 are the projections onto
the ranges of R1, R21, R23, and R3 respectively,
according to the splittings b = b1 ⊕ b2 =
b2 ⊕ b3, and ι1 : b1 ↪→ b, ι3 : b3 ↪→ b are
the inclusions.

Then one has:

(i) If b◦2 is a Banach Lie subalgebra of b∗,
then Φ31 := π3◦ι1 : (b1, { , }coind

1 ) → (b3, { , }coind
3 )

and Φ13 := π1◦ι3 : (b3, { , }coind
3 ) → (b1, { , }coind

1 )
are mutually inverse linear Poisson iso-
morphisms.



(ii) If b◦1 and b◦3 are Banach Lie subalgebras
of b∗, then b2 has two coinduced Banach
Lie-Poisson brackets { , }coind

21 and { , }coind
23

which are not isomorphic in general.



Induction and coinduction from
L1(H)

• Since L1(H) ⊂ L2(H), where

L2(H) := {ρ ∈ L∞(H) : ‖ρ‖2 :=
√

Tr ρ∗ρ < ∞}

is the ideal of Hilbert-Schmidt operators
in H, one can consider{

|m〉〈n|
}∞

n,m=0

as Schauder basis of L1(H). The biorthogo-
nal functionals{

Tr(|k〉〈l| · )
}∞

k,l=0

form the basis of L∞(H) in sense of the weak∗-
topology.



• We assume that H is the real separable
Hilbert space; L∞ := L∞(H), L1 := L1(H)
and define the shift operator:

S :=

∞∑
n=0

|n〉〈n + 1|

s(x0, x1, x2 . . . , xn, . . . ) := (x1, x2, . . . , xn, . . . )

for any

(x0, x1, x2 . . . , xn, . . . ) ∈ `∞ ∼= L∞0 ,

where L∞0 and L1
0 are diagonal parts of L∞ and

L1 respectively.
Any x ∈ L∞ and ρ ∈ L1 can be written as

x =

∞∑
j=1

(ST )jx−j + x0 +

∞∑
i=1

xiS
i, (0.5)

ρ =

∞∑
j=1

(ST )jρj + ρ0 +

∞∑
i=1

ρ−iS
i, (0.6)

where xi, x0, x−j ∈ L∞0 and ρj, ρ0, ρ−i ∈ L1
0.



We have decompositions

L∞ =
⊕
k∈Z

L∞k and L1 =
⊕
k∈Z

L1
k.

where

L∞k := {ρ ∈ L∞ | ρnm = 0 for m 6= n + k} ⊂ L∞

L1
k := {ρ ∈ L1 | ρnm = 0 for m 6= n + k} ⊂ L1



Banach subspaces of L1(H)

• L1
− := ⊕0

k=−∞L1
k and L1

+ := ⊕∞
k=0L

1
k

• L1
S := {ρ ∈ L1 | ρ = ρT} and L1

A := {ρ ∈
L1 | ρ = −ρT}

• L1
−,k := ⊕0

i=−k+1L
1
i and L1

+,k := ⊕k−1
i=0 L1

i ,
for k > 1

• I1
−,k := ⊕−k

i=−∞L1
i and I1

+,k := ⊕∞
i=kL

1
i , for

k > 1

• L1
S,k := L1

S ∩
(
L1

+,k + L1
−,k

)
and L1

A,k :=

L1
A ∩

(
L1

+,k + L1
−,k

)
, for k > 1.

and Banach subspaces L∞(H)

• L∞− := ⊕0
k=−∞L∞k and L∞+ := ⊕∞

k=0L
∞
k

• L∞S := {x ∈ L∞ | xT = x} and L∞A :=
{x ∈ L∞ | xT = −x}

• L∞−,k := ⊕0
i=−k+1L

∞
i and L∞+,k := ⊕k−1

i=0 L∞i ,
for k > 1

• I∞−,k := ⊕−k
i=−∞L∞i and I∞+,k := ⊕∞

i=kL
∞
i , for

k > 1



• L∞S,k := L∞S ∩
(
L∞+,k + L∞−,k

)
and L∞A,k :=

L∞A ∩
(
L∞+,k + L∞−,k

)
, for k > 1.



Splittings of Banach spaces

L1 = L1
− ⊕ I1

+,1, L1 = L1
S ⊕ I1

+,1,

L1
− = L1

−,k⊕I1
−,k, L∞ = L∞+ ⊕I∞−,1, (0.7)

L∞ = L∞+ ⊕ L∞A , L∞+ = L∞+,k ⊕ I∞+,k

are related by

(L1
−)∗ ∼= (I1

+,1)
◦ = L∞+ , (L1

S)∗ ∼= (I1
+,1)

◦ = L∞+
(L1

−,k)∗ ∼= (I1
−,k)◦ = L∞+,k, (I1

+,1)
∗ ∼= (L1

−)◦ = I∞−,1

(I1
+,1)

∗ ∼= (L1
S)◦ = L∞A , (I1

−,k)∗ ∼= (L1
−,k)◦ = I∞+,k



• Taking the maps defined by the splittings
(0.7)

L1

L1
S I1

+,1

@
@

@
@@R

�
�

�
��	�

�
�

���

@
@

@
@@IπS

ιS ιS,+
πS,+

L1

L1
−

�
�

�
��	�

�
�

��� @
@

@
@@R@

@
@

@@Iπ+
ι+

π−
ι−

and

L1
− L1

S

L1
−,k L1

S,k

?

6

?

6

-

-

ι−,k π−,k πS,kιS,k

ΦS,−

ΦS,−,k

where ΦS,− := πS◦ι− : L1
− → L1

S and ΦS,−,k :=
πS,k ◦ ΦS,− ◦ ι−,k : L1

−,k → L1
S,k, and using the

induction and coinduction procedures we obtain
the Banach Lie-Poisson structure on L1

−,k with
the Poisson bracket given by

{f, g}k(ρ) = Tr (ρ [Df (ρ), Dg(ρ)]k) = (0.8)

=
∑k−1

l=0

∑l
i=0 Tr

[
ρl

(
δf
δρi

(ρ)si
(

δg
δρl−i

(ρ)
)
−

− δg
δρi

(ρ)si
(

δf
δρl−i

(ρ)
))]



for f, g ∈ C∞(L1
−,k), where δf

δρi
(ρ) denotes the

partial functional derivative of f relative to ρi

defined by Df (ρ) = δf
δρ0

(ρ) + δf
δρ1

(ρ)S + · · · +
δf

δρk−1
(ρ)Sk−1.

• If in the previous formulas we let k = ∞
one obtains the Lie-Poisson bracket on L1

−.

• Banach Lie-Poisson spaces L1
S and L1

− are
isomorphic.

• I1
+,1 is the predual of the two Banach Lie al-

gebras I∞−,1 and L∞A thus it carries two different
Lie-Poisson brackets:

{f, g}+(ρ) = (0.9)

= Tr (ι+(ρ) [D(f ◦ π+)(ι+(ρ)), D(g ◦ π+)(ι+(ρ))])

and
{f, g}S,+(ρ) = (0.10)

Tr (ιS+(ρ) [D(f ◦ πS,+)(ιS,+(ρ)), D(g ◦ πS,+)(ιS,+(ρ))]) ,

where ρ ∈ I1
+,1, f, g ∈ C∞(I1

+,1).



• One has the GL∞
+ -invariant filtrations

ι−,1(L
1
−,1) ↪→ ι−,2(L

1
−,2) ↪→ . . . ↪→ ι−,k(L1

−,k) ↪→
(0.11)

↪→ ι−,k+1(L
1
−,k+1) ↪→ . . . ↪→ L1

−

ιS,1(L
1
S,1) ↪→ ιS,2(L

1
S,2) ↪→ . . . ↪→ ιS,k(L1

S,k) ↪→
(0.12)

↪→ ιS,k+1(L
1
S,k+1) ↪→ . . . ↪→ L1

S

of Banach Lie-Poisson spaces predual to the
sequence

L∞+ −→ . . . −→ L∞+,k −→ L∞+,k−1 −→ . . .
(0.13)

. . . −→ L∞+,2 −→ L∞+,1

of Banach Lie algebras in which each arrow
is the surjective projector π∞+,k,k−1 : L∞+,k →
L∞+,k−1 that maps k-diagonal upper triangular
operators to (k − 1)-diagonal upper triangular
operators by eliminating the k-diagonal. We
have π∞+,k,k−1 ◦ π∞+,k = π∞+,k−1. The Banach Lie
algebra structure on L∞+,k is given by the iso-



morphism L∞+,k
∼= L∞+ /I∞+,k.



• A k-diagonal Hamiltonian system is,
by definition, a Hamiltonian system on the Ba-
nach Lie-Poisson space(

L1
−,k, {·, ·}k

) ∼−→
(
L1

S,k, {·, ·}S,k

)
.

• Hamilton’s equations on
(
L1
−,k, {·, ·}k

)
for

Hamiltonians hk ∈ C∞(L1
−,k) are given by

d

dt
ρj = −

k−1∑
l=j

(
s̃l−j

(
ρl

δhk

δρl−j

)
− ρls

j

(
δhk

δρl−j

))
(0.14)

for j = 0, 1, 2, . . . , k − 1.

•The k-diagonal semi-infinite Toda sys-
tems are defined to be the Hamiltonian sys-
tems on L1

S,k associated to the Hamiltonians

IS,k
l (σ) := IS

l (ιS,k(σ)) = Il ((ιS ◦ ιS,k)(σ))

for σ ∈ L1
S,k, where

Il(ρ) :=
1

l
Tr ρl

for ρ ∈ L1 and l ∈ N.



The semi-infinite Toda lattice

• For k = 2 we obtain semi-infinite Toda lat-
tice which can be integrated by the theory of
orthogonal polynomials.

• The phase-space l∞ × l1

l1 3 {pn}∞n=0 = p; ‖p‖1 =

∞∑
n=0

|pn| < +∞

l∞ 3 {qn}∞n=0 = q; ‖q‖∞ = sup
n∈N∪{0}

|qn| < +∞

(l1)∗ = l∞



• The Poisson bracket:

f, g ∈ C∞(l∞ × l1)

{f, g}l∞×l1 :=

∞∑
n=0

(
∂f

∂pn

∂g

∂qn
− ∂g

∂pn

∂f

∂qn

)
(

∂f

∂pn

)∞

n=0

∈ l∞,

(
∂g

∂qn

)∞

n=0

∈ (l∞)∗ ∼= (l1)∗∗

ι : l1 ↪→ (l∞)∗

The Poisson bracket {·, ·}l∞×l1 has sense if(
∂f
∂pn

)
,
(

∂g
∂qn

)
∈ l1.

• The Hamiltonian:

HToda =
1

2

∞∑
n=0

p2
n+

∞∑
n=0

νne
2(qn+1−qn); {pn}∞n=0, {νn}∞n=0 ∈ l1



• The Hamilton equations:

q̇n = {h, qn}l∞×l1 = pn

ṗn = {HToda, pn}l∞×l1 = (0.15)

= −2νn−1e
2(qn−qn−1) + 2νne

2(qn+1−qn)

I1(p, q) =

∞∑
n=0

pn − integral of motion



• The Banach Lie-Poisson space:

L1 3 ρ =


a0 0 0 · · ·
b0 a1 0
0 b1 a2
... . . . . . .

 ; (an)∞n=0, (bn)∞n=0 ∈ l1

L∞ 3 X =


x0 y0 0 · · ·
0 x1 y1

0 0 x2
. . .

... . . .

 ; (xn)∞n=0, (yn)∞n=0 ∈ l∞

L∞ ∼= (L1)∗; 〈X, ρ〉 = Tr Xρ

F, G ∈ C∞(L1)

DF (ρ), DG(ρ) ∈ (L1)∗ ∼= L∞

• The Poisson bracket:

{F, G}L1 := Tr(J [DF (ρ), DG(ρ)]) =

=

∞∑
n=0

bn

[
∂F

∂bn

(
∂G

∂an+1
− ∂G

∂an

)
− ∂G

∂bn

(
∂F

∂an+1
− ∂F

∂an

)]



• The momentum map:

J : l∞×l1 3 (q, p) 7→


p0 0 0 · · ·

ν0e
q1−q0 p1 0

0 ν1e
q2−q1 p2

... . . . . . .

 ∈ L1

is a Poisson map, i.e.

{F, G}L1 ◦ J = {F ◦ J, G ◦ J}l∞×l1.



• Integrals of motion:

Il(ρ) :=
1

l
T r(ρ + ρT − ρ0)

l

where ρ0 =


a0 0 0 · · ·
0 a1 0
0 0 a2
... . . .

,

are in involution:

{Il, Ik}L1 = 0.

Thus we have

{Il ◦ J, Ik ◦ J}l∞×l1 = 0

and
I1 ◦ J(q, p) =

∑∞
n=0 pn - the total momentum

I2 ◦ J(q, p) = HToda - the total energy
Ik ◦ J(q, p) - are integrals of motion for HToda

and k > 2.



• The Hamilton equations given by Il, l ∈ N
are

∂J

∂tl
= [J, Bl], (0.16)

where
J := ρ + ρT − ρ0

Bl := P−(J l)− (P−(J l))T

P−−projector on the lower triangular part of matrix.
Hamilton equations given by Il ◦ J, l ∈ N are

∂qn
∂tl

= {Il ◦ J, qn},
∂pn
∂tl

= {Il ◦ J, pn}, n ∈ N ∪ {0} (0.17)

The system (0.17) is obtained from (0.16) by
reduction.



Orthogonal polynomials and so-
lutions of Toda hierarchy

• The operator J given by

J =


a0 b0 0 0 · · ·
b0 a1 b1 0 · · ·
0 b1 a2 b2

0 0 b2 a3
... . . .


has discrete simple spectrum λ0, λ1, ... ∈ R,
since (an), (bn) ∈ l1.



• Polynomials Pn(λ) are orthonormal∫
Pn(λ)Pm(λ)dσ(λ) = δnm

with respect to

dσ(λ) =

∞∑
m=0

µmδ(λ− λm)dλ

satisfy the tree-term recurrence

λPn(λ) = bn−1Pn−1(λ) + anPn(λ) + bnPn+1(λ)

P0(λ) = 1, b−1 = 0.



• {|n〉}∞n=0 - canonical basis

|λm〉 :=

∞∑
n=0

Pn(λm) |n〉

J |λm〉 = λm |λm〉
For projectors Pm := |λm〉〈λm|

〈λm|λm〉 one has

(
∂

∂tl
λn)PnPk−(λn−λk)

[
(

∂

∂tl
Pn)Pk − PnBlPk

]
= 0

where n, k ∈ N ∪ {0}, l ∈ N,
from the above

∂
∂tl

λm = 0

∂
∂tl

µm = 2
[
λl

m −
(∑∞

n=0 µmλl
m

)]
µm

(0.18)



• Remark: tl - the evolution of measure

dσ(λ) =

∞∑
m=0

µmδ(λ− λm)dλ

is isospectral and

µm = 〈λm|λm〉−1.

The moments

σk :=

∫
λkdσ(λ), σ0 = 1

of dσ(λ) satisfy

∂

∂tl
σk = 2(σk+l − σkσl), k, l ∈ N. (0.19)



It follows from (0.19) that exists τ = τ (t1, t2, ...),
such that

σk =
1

2

∂

∂tk
log τ

and
∂2τ

∂tk∂tl
= 2

∂τ

∂τk+l
. (0.20)

• The solution of (0.20) is given by:

τ (t1, t2, ...) = τ (0, 0, ...)
∞∑

m=0

µm(0, 0, ...)e2
∑∞

l=1 tlλ
l
m



• The solution of (0.17) can be expressed by
τ -functions:

ak =
βk+1

αk+1
− βk

αk

bk =

√
αk−1αk+1

αk

where

αk = det


σ0 σ1 · · · σk

σ1 σ2 · · · σk+1

· · · · · ·
σk σk+1 · · · σ2k



βk = det


σ0 σ1 · · · σk−1 σk+1

σ1 σ2 · · · σk σk+2

· · · · · · · · ·
σk σk+1 · · · σ2k−1 σ2k+1


σk =

1

2

∂

∂tk
log τ.

• The solution of Toda lattice equation is given
by:

qn(t) = qn(0) +
1

2
log

αn(0)βn+1(t)

βn+1(0)αn(t)
.


