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The energy functional

Harmonic maps f : (M,g)→ (N,h) are critical points of the
energy

E(f ) =
1
2

∫
M
| df |2 vg

and they are solutions of the Euler-Lagrange equation

τ(f ) = traceg∇df = 0.

If f is an isometric immersion, with mean curvature vector field
H, then:

τ(f ) = mH.



The bienergy functional

The bienergy functional (proposed by Eells - Sampson in 1964)
is

E2(f ) =
1
2

∫
M
| τ(f ) |2 vg.

Critical points of E2 are called biharmonic maps and they are
solutions of the Euler-Lagrange equation (Jiang - 1986):

τ2(f ) =−∆f
τ(ϕ)− tracegRN(df ,τ(f ))df = 0,

where ∆f is the Laplacian on sections of f−1TN and RN is the
curvature operator on N.



Biharmonic submanifolds

If ϕ : M → N is an isometric immersion then

τ2(f ) =−m∆f H−mtraceRN(df ,H)df

thus f is biharmonic iff

∆f H =− traceRN(df ,H)df .



Biharmonic submanifolds of a space form N(c)

If f : M → N(c) is an isometric immersion then

τ(f ) = mH, τ2(ϕ) =−m∆f H +cm2H

thus ϕ is biharmonic iff

∆f H = mcH.

Case c = 0 - Chen’s definition
Let f : M → Rn be an isometric immersion. Set f = (f1, . . . , fn)
and H = (H1, . . . ,Hn). Then ∆f H = (∆H1, . . . ,∆Hn), where ∆ is the
Beltrami-Laplace operator on M, and ϕ is biharmonic iff

∆f H = ∆(
−∆f
m

) =− 1
m

∆2f = 0.
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Non-existence results

Theorem (Jiang - 1986)
Let f : (M,g)→ (N,h) be a smooth map. If M is compact,
orientable and RiemN ≤ 0 then f is biharmonic if and only if it is
minimal.

Proposition (Chen - Caddeo, Montaldo, Oniciuc)
If c≤ 0, there exists no proper biharmonic isometric immersion
f : M → N3(c).
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Generalized Chen’s Conjecture

Conjecture (Caddeo, Montaldo, Oniciuc - 2001)
Biharmonic submanifolds of Nn(c), n > 3, c≤ 0, are minimal.

Conjecture (Balmuş, Montaldo, Oniciuc - 2007)
The only proper biharmonic hypersurfaces in Sm+1 are the open
parts of hyperspheres Sm( 1√

2
) or of generalized Clifford tori

Sm1( 1√
2
)×Sm2( 1√

2
), m1 +m2 = m, m1 6= m2.
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Proper-biharmonic curves in spheres

Theorem (Caddeo, Montaldo, Piu - 2001)
The proper-biharmonic curves γ of S2 are circles with radius 1√

2
.

Theorem (Caddeo, Montaldo, Oniciuc - 2001)
The proper-biharmonic curves γ of S3 are either circles
S1( 1√

2
)⊂ S3 or geodesics of the Clifford torus

S1( 1√
2
)×S1( 1√

2
)⊂ S3 with slope different from ±1.

Theorem (Caddeo, Montaldo, Oniciuc - 2002)
The proper-biharmonic curves γ of Sn, n > 3 are those of S3 up
to a totally geodesic embedding.
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Since odd dimensional spheres S2n+1 are Sasakian space
forms with constant ϕ-sectional curvature 1, the next step is to
study the biharmonic submanifolds of Sasakian space forms.



Sasakian manifolds

A contact metric structure on a manifold N2m+1 is given by
(ϕ,ξ ,η ,g), where ϕ is a tensor field of type (1,1) on N, ξ is a
vector field on N, η is an 1-form on N and g is a Riemannian
metric, such that

ϕ2 =−I +η ⊗ξ , η(ξ ) = 1,

g(ϕX,ϕY) = g(X,Y)−η(X)η(Y), g(X,ϕY) = dη(X,Y),

for any X,Y∈ C(TN).
A contact metric structure (ϕ,ξ ,η ,g) is Sasakian if it is normal.
The contact distribution of a Sasakian manifold (N,ϕ,ξ ,η ,g) is
defined by {X ∈ TN : η(X) = 0}, and an integral curve of the
contact distribution is called Legendre curve.



Sasakian space forms

Let (N,ϕ,ξ ,η ,g) be a Sasakian manifold. The sectional
curvature of a 2-plane generated by X and ϕX, where X is an
unit vector orthogonal to ξ , is called ϕ-sectional curvature
determined by X. A Sasakian manifold with constant
ϕ-sectional curvature c is called a Sasakian space form and it
is denoted by N(c).



Biharmonic equation for Legendre curves in Sasakian
space forms

The definition of Frenet curves of osculating order r

Definition
Let (Nn,g) be a Riemannian manifold and γ : I → N a curve
parametrized by arc length. Then γ is called a Frenet curve of
osculating order r, 1≤ r ≤ n, if there exists orthonormal vector
fields E1,E2, ...,Er along γ such that E1 = γ ′ = T, ∇TE1 =
κ1E2, ∇TE2 =−κ1E1 +κ2E3, ...,∇TEr =−κr−1Er−1, where
κ1, ...,κr−1 are positive functions on I .

A geodesic is a Frenet curve of osculating order 1; a circle is a
Frenet curve of osculating order 2 with κ1 = constant; a helix of
order r, r ≥ 3, is a Frenet curve of osculating order r with
κ1, ...,κr−1 constants; a helix of order 3 is called, simply, helix.
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Let (N2n+1,ϕ,ξ ,η ,g) be a Sasakian space form with constant
ϕ-sectional curvature c and γ : I → N a Legendre Frenet curve
of osculating order r. Then γ is biharmonic iff

τ2(γ) = ∇3
TT−R(T,∇TT)T

= (−3κ1κ ′
1)E1 +

(
κ ′′

1 −κ3
1 −κ1κ2

2 + (c+3)κ1
4

)
E2

+(2κ ′
1κ2 +κ1κ ′

2)E3 +κ1κ2κ3E4 + 3(c−1)κ1
4 g(E2,ϕT)ϕT

= 0.



Proper-biharmonic Legendre curves in Sasakian
space forms

Case I (c = 1)

Theorem (Fetcu and Oniciuc - 2007)
If c = 1 and n≥ 2 then γ is proper-biharmonic if and only if
either γ is a circle with κ1 = 1 or γ is a helix with κ2

1 +κ2
2 = 1.

Case II (c 6= 1 and ∇TT ⊥ ϕT)

Theorem (Fetcu and Oniciuc - 2007)
Assume that c 6= 1 and ∇TT ⊥ ϕT. We have
1) if c≤−3 then γ is biharmonic if and only if it is a geodesic;
2) if c >−3 then γ is proper-biharmonic if and only if either
a) n≥ 2 and γ is a circle with κ2

1 = c+3
4 , or

b) n≥ 3 and γ is a helix with κ2
1 +κ2

2 = c+3
4 .
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Case III (c 6= 1 and ∇TT ‖ ϕT)

Theorem (Inoguchi - 2004 (n = 1); Fetcu and Oniciuc - 2007)
If c 6= 1 and ∇TT ‖ ϕT, then {T,ϕT,ξ} is the Frenet frame field
of γ and we have
1) if c < 1 then γ is biharmonic if and only if it is a geodesic;
2) if c > 1 then γ is proper-biharmonic if and only if it is a helix
with κ2

1 = c−1 (and κ2 = 1).



Case IV (c 6= 1, n≥ 2 and g(E2,ϕT) is not constant 0,1 or −1)

Theorem (Fetcu and Oniciuc - 2007)
Let c 6= 1, n≥ 2 and γ a Legendre Frenet curve of osculating
order r ≥ 4 such that g(E2,ϕT) is not constant 0,1 or −1. We
have
a) if c≤−3 then γ is biharmonic if and only if it is a geodesic;
b) if c >−3 then γ is proper-biharmonic if and only if
ϕT = cosα0E2 +sinα0E4 and

κ1 = constant> 0, κ2 = constant,

κ
2
1 +κ

2
2 =

c+3
4

+
3(c−1)

4
cos2 α0, κ2κ3 =−3(c−1)

8
sin2α0,

where α0 ∈ (0,2π)\{π

2 ,π, 3π

2 } is a constant such that
c+3+3(c−1)cos2 α0 > 0, 3(c−1)sin2α0 < 0.



Proper-biharmonic Legendre curves in S2n+1(1)

Theorem (Fetcu and Oniciuc - 2007)
Let γ : I → S2n+1(1), n≥ 2, be a proper-biharmonic Legendre
curve parametrized by arc length. Then the equation of γ in the
Euclidean space E2n+2 = (R2n+2,〈,〉), is either

γ(s) =
1√
2

cos
(√

2s
)

e1 +
1√
2

sin
(√

2s
)

e2 +
1√
2

e3

where {ei ,I ej} are constant unit vectors orthogonal to each
other, or

γ(s) = 1√
2

cos(As)e1 + 1√
2

sin(As)e2+

1√
2

cos(Bs)e3 + 1√
2

sin(Bs)e4,



where
A =

√
1+κ1, B =

√
1−κ1, κ1 ∈ (0,1),

and {ei} are constant unit vectors orthogonal to each other, with

〈e1,I e3〉= 〈e1,I e4〉= 〈e2,I e3〉= 〈e2,I e4〉= 0,

A〈e1,I e2〉+B〈e3,I e4〉= 0.

We also obtained the explicit equations of proper-biharmonic
Legendre curves in odd dimensional spheres endowed with a
deformed Sasakian structure, given by Cases II and III of the
classification.
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Proper-biharmonic Legendre curves in N5(c)

Theorem (Fetcu and Oniciuc - 2007)
Let γ be a proper-biharmonic Legendre curve in N5(c). Then
c >−3 and γ is a helix of order r with 2≤ r ≤ 5.



A method to obtain biharmonic submanifolds in a
Sasakian space form

Theorem (Fetcu and Oniciuc - 2007)
Let (N2m+1,ϕ,ξ ,η ,g) be a strictly regular Sasakian space form
with constant ϕ-sectional curvature c and let i : M → N be an
r-dimensional integral submanifold of N. Consider

F : M̃ = I ×M → N, F(t,p) = φt(p) = φp(t),

where I = S1 or I = R and {φt}t∈R is the flow of the vector field
ξ . Then F : (M̃, g̃ = dt2 + i∗g)→ N is a Riemannian immersion
and it is proper-biharmonic if and only if M is a
proper-biharmonic submanifold of N.



The previous Theorem provide a classification result for
proper-biharmonic surfaces in a Sasakian space form, which
are invariant under the action of the flow of ξ .

Theorem (Fetcu and Oniciuc - 2007)
Let M2 be a surface of N2n+1(c) invariant under the flow of the
Reeb vector field ξ . Then M is proper-biharmonic if and only if,
locally, it is given by x(t,s) = φt(γ(s)), where γ is a
proper-biharmonic Legendre curve.
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Biharmonic Hopf cylinders in a Sasakian space form

Let (N2n+1,ϕ,ξ ,η ,g) be a strictly regular Sasakian manifold and
i : M̄ → N̄ a submanifold of N̄. Then M = π−1(M̄) is the Hopf
cylinder over M̄, where π : M → N̄ = N/ξ is the Boothby-Wang
fibration.

Theorem (Inoguchi - 2004)
Let Sγ̄ be a Hopf cylinder, where γ̄ is a curve in the orbit space
of N3(c), parametrized by arc length. We have
a) if c 6 1, then Sγ̄ is biharmonic if and only if it is minimal;
b) if c > 1, then Sγ̄ is proper-biharmonic if and only if the
curvature κ̄ of γ̄ is constant κ̄2 = c−1.
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Biharmonic hypersurfaces in a Sasakian space form

We obtained a geometric characterization of biharmonic Hopf
cylinders of any dimension in a Sasakian space form. A special
case of our result is the case when M̄ is a hypersurface.

Proposition (Fetcu and Oniciuc - 2008)
If M̄ is a hypersurface of N̄, then M = π−1(M̄) is biharmonic iff

∆⊥H =
(
−|B|2 + c(n+1)+3n−1

2

)
H

2traceA∇⊥
· H(·)+ngrad(|H|2) = 0.



Proposition (Fetcu and Oniciuc - 2008)
If M̄ is a hypersurface and |H̄|= constant6= 0, then M = π−1(M̄)
is proper-biharmonic if and only if

|B|2 =
c(n+1)+3n−1

2
.

Proposition (Fetcu and Oniciuc - 2008)
If |H̄|= constant6= 0, then M = π−1(M̄) is proper-biharmonic if
and only if

|B̄|2 =
c(n+1)+3n−5

2
.



From the last result we see that there exist no
proper-biharmonic hypersurfaces M = π−1(M̄) in N(c) if
c≤ 5−3n

n+1 , which implies that such hypersurfaces do not exist if
c≤−3, whatever the dimension of N is.



Takagi’s classification of homogeneous real
hypersurfaces in CPn, n > 1

Takagi classified all homogeneous real hypersurfaces in the
complex projective space CPn, n > 1, and found five types of
such hypersurfaces.
We shall consider u∈ (0, π

2) and r a positive constant given by
1
r2 = c+3

4 .

Theorem (Takagi - 1973)
The geodesic spheres (Type A1) in complex projective space
CPn(c+3) have two distinct principal curvatures: λ2 = 1

r cotu of
multiplicity 2n−2 and a = 2

r cot2u of multiplicity 1.

Theorem (Takagi - 1973)
The hypersurfaces of Type A2 in complex projective space
CPn(c+3) have three distinct principal curvatures: λ1 =−1

r tanu
of multiplicity 2p, λ2 = 1

r cotu of multiplicity 2q, and a = 2
r cot2u of

multiplicity 1, where p > 0, q > 0, and p+q = n−1.



Biharmonic hypersurfaces in Sasakian space forms
with ϕ-sectional curvature c >−3

Theorem (Fetcu and Oniciuc - 2008)
Let M = π−1(M̄) be the Hopf cylinder over M̄.

If M̄ is of Type A1, then M is proper-biharmonic if and only
if either

c = 1 and (tanu)2 = 1, or

c∈
[
−3n2+2n+1+8

√
2n−1

n2+2n+5
,+∞

)
\{1} and

(tanu)2 = n+
2c−2±

√
c2(n2 +2n+5)+2c(3n2−2n−1)+9n2−30n+13

c+3
.

If M̄ is of Type A2, then M is proper-biharmonic if and only
if either

c = 1, (tanu)2 = 1 and p 6= q, or

c∈
[
−3(p−q)2−4n+4+8

√
(2p+1)(2q+1)

(p−q)2+4n+4
,+∞

)
\{1} and

(tanu)2 = n
2p+1 + 2c−2

(c+3)(2p+1)

±
√

c2((p−q)2+4n+4)+2c(3(p−q)2+4n−4)+9(p−q)2−12n+4
(c+3)(2p+1) .



As for the other four types of hypersurfaces we have:

Theorem (Fetcu and Oniciuc - 2008)
There are no proper-biharmonic hypersurfaces M = π−1(M̄),
where M̄ is a hypersurface of Type B, C, D or E in complex
projective space CPn(c+3).
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