
IntegrableIntegrable Dynamical Systems Associated with Dynamical Systems Associated with 
Plane CurvesPlane Curves

VassilVassil VassilevVassilev, Peter , Peter DjondjorovDjondjorov
Institute of Mechanics Institute of Mechanics –– Bulgarian Academy of SciencesBulgarian Academy of Sciences

andand

IvaIvaïlolo MladenovMladenov
Institute of Biophysics Institute of Biophysics –– Bulgarian Academy of SciencesBulgarian Academy of Sciences

XthXth International ConferenceInternational Conference
Geometry, Geometry, IntegrabilityIntegrability and Quantizationand Quantization

June 6June 6--11, 11, VarnaVarna, Bulgaria, Bulgaria



A. Suppose that the curvature κ(s) of a plane curve Γ is given explicitly
as a function of the arclength s, i.e., the intrinsic equation of the curve Γ
is known.
Then, it is possible to recover the embedding (position vector)

x(s) = (x(s), y(s)) ∈ IR2

of the curve in the plane (up to a rigid motion) by quadratures in the
standard manner.
First, recall that the unit tangent t (s) and normal n (s) vectors to the

curve Γ:

t (s) =

µ
dx(s)

ds
,
dy(s)

ds

¶
, n (s) =

µ
−dy(s)

ds
,
dx(s)

ds

¶
are related to the curvature κ(s) through Frenet-Serret formulas

dt (s)

ds
= κ (s)n (s) ,

dn (s)

ds
= −κ (s) t (s) .



The Frenet-Serret relations provide the following system of two second-
order ODEs

d2x (s)

ds2 + κ (s)
dy (s)

ds
= 0,

d2y (s)

ds2 − κ (s) dx (s)
ds

= 0

which is readily integrable by quadratures to give the parametric equations
of the curve Γ.
Indeed, in terms of the slope angle ϕ (s) of the curve Γ one has

κ (s) =
dϕ (s)

ds
,

dx (s)

ds
= cos (ϕ (s)) ,

dy (s)

ds
= sin (ϕ (s))

and hence, the parametric equations of the curve Γ can be expressed by
quadratures

x (s) =

Z
cos (ϕ (s)) ds, y (s) =

Z
sin (ϕ (s)) ds

where

ϕ (s) =

Z
κ (s) ds.



B. Suppose now that the curvature of the curve Γ is given as a function
of the position of the points the curve is passing through, that is

κ = K(x, y)

K(x, y) being a known function. In this case, the curve may be thought
of as parametrized by a parameter t, the co-ordinates x(t), y(t) of the
position vector being determined by the system of equations

ẍ+K(x, y)ẏ = 0, ÿ −K(x, y)ẋ = 0

where dots denote derivatives with respect to t.

The following two examples show that such a situation is not artificial:
Euler’s elastica

κ = a1y + a2, a1, a2 ∈ IR
Generalized (Lévy’s) elastica

κ = b1
¡
x2 + y2¢+ b2, b1, b2 ∈ IR

(1)
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C. The aim of the present note is to study the integrability of system (1)
regarded as a dynamical system of two degrees of freedom describing the
motion of a particle of unit mass, t playing the role of time.

• A sufficient condition for the integrability of a system of form (1) by
quadratures is the respective function K(x, y) to be such that the system
to possess two different constants of motion.

• Since the magnitude
p
ẋ2 + ẏ2 of the particle velocity is a constant of

motion for any system of form (1), the problem is to find the conditions
under which system (1) has at least one more constant of motion.

• For that purpose, first, it is shown that (1) is a Lagrangian system by
constructing an appropriated Lagrangian L, determined explicitly through
the function K(x, y), whose Euler-Lagrange equations are Eqs. (1).
• Then, a necessary and sufficient condition is found for the Lagrangian
L to admit a symmetry group, which, by virtue of Noether’s theorem,
provides the existence of the sought constant of motion.

• Finally, a constructive procedure is suggested determining how, in such
a case, to express the solutions of system (1) by quadratures.



(2)

The Lagrangian

• It is easy to check that equations (1), that is

ẍ+K(x, y)ẏ = 0, ÿ −K(x, y)ẋ = 0

are the Euler-Lagrange equations associated with the action functional

A =

Z
L(x, y, ẋ, ẏ)dt

whose Lagrangian L can be taken of the form

L =
1

2

¡
ẋ2 + ẏ2¢+ F (x, y) ẋ+G (x, y) ẏ

where the functions F (x, y) and G (x, y) are such that

∂

∂y
F (x, y)− ∂

∂x
G (x, y) = K(x, y).



Indeed, we have

Lx = ẋ
∂

∂x
F (x, y) + ẏ

∂

∂x
G (x, y) , L _x = ẋ+ F (x, y)

Ly = ẋ
∂

∂y
F (x, y) + ẏ

∂

∂y
G (x, y) , L _y = ẏ +G (x, y)

and hence

Lx −
d

dt
L _x = −ẍ− ẏ

µ
∂

∂y
F (x, y)− ∂

∂x
G (x, y)

¶
Ly −

d

dt
L _y = −ÿ + ẋ

µ
∂

∂y
F (x, y)− ∂

∂x
G (x, y)

¶
.

Comparing the above formulas with system (1), we see that L can be
regarded as the Lagrangian of this system provided that relation (2) hold.



Symmetries of the Lagrangian

• The invariance properties of the Lagrangian

L =
1

2

¡
ẋ2 + ẏ2¢+ F (x, y) ẋ+G (x, y) ẏ

with respect to local Lie groups of point transformations of the dependent
variables x, y are studied. Using the standard procedure, the following
conditions are obtained for a Lagrangian of the above form to admit a
variational symmetry of the considered type:

(ay + b)
∂F (x, y)

∂x
− (ax+ c) ∂F (x, y)

∂y
− aG (x, y) = 0

(ay + b)
∂G (x, y)

∂x
− (ax+ c) ∂G (x, y)

∂y
+ aF (x, y) = 0

where a, b, c ∈ IR and consequently

(ay + b)
∂

∂x
K(x, y)− (ax+ c) ∂

∂y
K(x, y) = 0



Group classification

Case I. a 6= 0 (w.l.g. one may set a = 1)

F = −V (ρ) cosϑ+ U (ρ) sinϑ, G = U (ρ) cosϑ+ V (ρ) sinϑ

K(x, y) = f(ρ)

ρ = (x+ x0)
2
+ (y + y0)

2
+ ρ0, ϑ = arctan

µ
− y + y0

x+ x0

¶
Case II. a = 0

K(x, y) = g(u), u = cx+ by + u0

Here x0, y0, ρ0, u0 ∈ IR, f , g, U and V are arbitrary functions.



Conservation laws and integrability

In Case I, Noether’s theorem implies the following conservation law

p = (y + y0) ẋ− (x+ x0) ẏ + (y + y0)F (x, y)− (x+ x0)G (x, y)

and we have two constants of motion p and v =
p
ẋ2 + ẏ2 which under

the transformation of the dependent variables of the form

x =
√
ρ− ρ0 cosϑ− x0, y =

√
ρ− ρ0 sinϑ− y0

give the relations

ϑ̇ =
1

ρ− ρ0
(p− U (ρ)) , ρ̇2 = 4v (ρ− ρ0)− 4ϑ̇2 (ρ− ρ0)

2

and now, the integrability of the respective dynamical system is obvious.
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