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Definition

A toric symplectic manifold is a connected symplectic

porie K manifold (82", w), equipped with an effective Hamiltonian
action of the n-torus:

7:T" = R"/27Z" — Ham(B,w).

The corresponding moment map, unique up to an additive
constant, will be denoted by

i B — Lie*(T") = (R")* = R".
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We will also use the usual identification with C” given by

Zi=Uui+1ivp, j=1,...,n.
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We will also use the usual identification with C” given by
Zi=ui+1ivy, j=1,...,n.
The standard T"-action 7, on R2", given by
Wiy ¥n)- (21, zn) = (eV1z,...,e "z,

is Hamiltonian, with moment map /., : R2" — R” given by

’
ust(u1,...,un,v1,...,vn):é(u12+v12,...,uﬁ+v,§).
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Hence, (P", wgs, 7rs, irs ) is an example of a compact
symplectic toric manifold.
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is Hamiltonian, with moment map ygs : P” — R given by
1
pes|2o; z1; . Zn] = W(\IZMIZ? s lzall?)

Hence, (P", wgs, 7rs, irs ) is an example of a compact
symplectic toric manifold.

Note that the image of prs is the convex hull of the images
of the n+ 1 fixed points of the action, i.e. the standard
simplex in R".
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Atiyah-Guillemin-Sternberg and Delzant
Theorems (1982)

Atiyah-Guillemin-Sternberg’82

Let (B,w) be a compact, connected, symplectic manifold,
equipped with a Hamiltonian T™-action with moment map
w: B — Lie*(T™).

Then, the image p(B) of the moment map is the convex
polytope given by the convex hull of the images of the fixed
points of the action.

This will be usually called the moment polytope and
denoted by P.

Delzant’'82

The moment polytope is a complete invariant of a compact
toric symplectic manifold.
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B = 1, ~'(P) = {points of B where T"-action is free}
Toric K

Metrics o~ [5 x T = {(X,y) T Xe IE, C (Rn)*, y e Rn/z']TZn}

such that w|g = dx A dy = standard symplectic form

Definition

(x,y) = symplectic/Darboux/action-angle coordinates.

@ Bisan open dense subset of B.
@ In these coordinates, the moment map 1. : B — P'is
given by pu(x,y) = x.
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A compatible almost complex structure on a symplectic
ek manifold (B, w) is an almost complex structure J on B, i.e.
Metics J € [(End(TB)) with J? = —Id, such that

9u(,) =w(-J)

is a Riemannian metric on B. This is equivalent to
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w(dJ) =w(-) and w(X,JX)>0,V0+£Xe TB.

The space of all compatible almost complex structures on a
symplectic manifold (B, w) will be denoted by 7 (B, w).
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@ For any symplectic manifold (B, w), the space J(B,w)
is non-empty, infinite-dimensional and contractible.

Nties @ A Kahler manifold can be defined as a symplectic
manifold with an integrable compatible complex
structure.

@ The space of integrable compatible complex structures
on a symplectic manifold (B, w) will be denoted by
I(B,w) C J(B,w).

@ In general, Z(B,w) can be empty or have non-trivial
topology.
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Definition
A toric compatible complex structure on a toric symplectic

manifold (B2",w, ) is a
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T"-invariant J € Z(B,w) C J(B,w).

The space of all such will be denoted by

I7(B,w) c T (B,w).

@ It follows from the classification theorem of Delzant that
7" (B, w) is non-empty for any compact toric symplectic
manifold.
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matrices, with S positive definite,
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where R = R(x) and S = S(x) are real symmetric (n x n)
matrices, with S positive definite, i.e.

Z(x) = R(x) + iS(x) e Siegel Upper Half Space, ¥V x € P.
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For integrable toric compatible complex structures we have
that:

Toric K
Metrics n n BZ Z
JeI™ c g7 o 24 _ 0K

OXk ox;

e3f:P—C, f(x)=r(x)+is(x), such that
?f 0Pr L d%s
oxi0x; — Oxi0x;  Ox;0x;

Z,'j: :Ff,-j+iS,-j
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h:P—R
Torio K is the Hamiltonian of a 1-parameter family
¢t:B—B

of T"-equivariant symplectomorphisms, given in
action-angle coordinates (x, y) on B= P x T" by

oh
oe(x,y) = (x,y — ta)
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The natural action of such a ¢; on 7", given by
or-J = (dor) " 0 Jo (der).

corresponds in the Siegel Upper Half Space parametrization
to
¢t-(Z=R+iS)=(R+tH)+iS,

9%h
A=) = <ax,-ax/> '

where
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Siegel Upper Half Space Parametrization, i.e. such that
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Meties 0 —§1
J=1|.. ...
S 0
with )
0°s
S = 8(x) = (s5(x)) = (8x,-<9xj>
for some

real potential function s: P — R.
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g('7 ) = w('v J)
Metics on M = P x T" can the be written in matrix form as
0 / 0 -S1 S 0
g= ||l T
—1 0 S 0 0 S1

with
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the symplectic potential of both the complex structure J
and the metric g

@ This particular way to arrive at the above form for any
J € ™ is due to Donaldson, and illustrates a very
particular part of his formal general framework for the
action of the symplectomorphism group of a symplectic
manifold on its space of compatible (almost) complex
structures.
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giving the standard identification between R?" and C”. In
action-angle coordinates (x, y) on
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21 = (R?\ {(0,0)})" = (R*)" x T" = P x T",
its symplectic potential is given by
s:P=(R")"—R

X=(X{,...,Xn) — S(x Zx,log X;)
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UEEREEl complex structure has the matrix form

Toric K 0 diag(—2X,-)

Metrics
diag(1/2x;) : 0
while the standard flat Euclidean metric becomes

diag(1/2x,) : 0
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Miguel Abrev P c R", a canonical symplectic reduction construction
of Delzant associates a compact Kahler toric manifold
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@ Let F; denote the i-th facet of the polytope. The affine
defining function of F; is the function

/i :R" — R
X — li(x) = (x,v;) — A,

where v; € Z" is a primitive inward pointing normal to F;
and \; € R is such that /|, = 0. Note that /[ > 0.



Examples - Compact Toric Symplectic
Manifolds

Toric
Kéhler-Sasaki
Geometry

Miguel Abreu

Guillemin’94

porie K In appropriate action-angle coordinates (x, y), the canonical
symplectic potential sp : P — RR for Jp| is given by

d
5p() = 3 > 6i(x)log i(x)

i=1

where d is the number of facets of P.
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where r = ), x;. The canonical symplectic potential
p: P — R, given by

Zx, log x; + 5(1 = r)log(1 = 1),

defines the standard complex structure Jrg and
Fubini-Study metric grs on P".
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LetJ e IT”(BP, wp)- then,uin suitable action-angle
coordinates (x, y) on B= P x T", J is given by a symplectic

9

potential s : P — R of the form

s(x) = sp(x) + h(x),

where h € C*(P),




Toric 9-Lemma in Action-Angle Coordinates

Toric
Kéhler-Sasaki

Miguel Abreu
LetJ e IT”(BP, wp)- then,uin suitable action-angle
coordinates (x, y) on B= P x T", J is given by a symplectic

Toric K 2

Metrics potential s : P — R of the form

s(x) = sp(x) + h(x),

where h € C(P), Hessx(s) > 0in P and
det(Hessx(s)) = (6(x) [];£)~", with 6 € C>(P) and
d(x) >0, Vx € P.
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Toric 9-Lemma in Action-Angle Coordinates

LetJ e IT”(BP, wp)- then,uin suitable action-angle
coordinates (x, y) on B= P x T", J is given by a symplectic

9

potential s : P — R of the form

s(x) = sp(x) + h(x),

where h € C(P), Hessx(s) > 0in P and
det(Hessx(s)) = (6(x) [];£)~", with 6 € C>(P) and
d(x) >0, Vx € P.

Conversely, any such s is the symplectic potential of a
J € I""(P x T") that compactifies to a well defined

J € ITH(BP, wp).
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where (sj) = Hessy(s) for s: P c R" — R.
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where (sj) = Hessy(s) for s: P c R" — R.
@ Formula for its scalar curvature [A.98]:
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Miguel Abreu (slj) O
g= | .
0 ()

where (sj) = Hessy(s) for s: P c R" — R.
@ Formula for its scalar curvature [A.98]:

) [ i Olog(det Hess(s } 2k
=25 |¢ Z
jk

ox; OXx OX;0Xx

@ (Donaldson’02) Appropriate interpretation of th|s
formula by viewing the scalar curvature as a moment
map for the action of the symplectomorphism group of
a symplectic manifold on its space of compatible
complex structures.
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[k =0,b=0] (need c > 0)

2
s"(x) = 15 = ||88y|\"2 =c, s(x) = g—c = cylinder of radius v/c
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[k =0,b=0] (need c > 0)
s"(x) = 1. ||£|\"2 =c, s(x) = X = cylinder of radius v/c
- ay" 7’ - 2c y

[k = 0,b > 0] (can assume ¢ = 0, need x > 0)

s"(x) = 21@ = s(x) = 23 : %xlogx = cone of angle 7b
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[k =0,b=0] (need c > 0)
1 2

s"(x) = o= ||88y|\"2 =c, s(x) = g—c = cylinder of radius v/c

[k = 0,b > 0] (can assume ¢ = 0, need x > 0)

s"(x) = = s(x) = 23 : %xlogx = cone of angle 7b

If b=1/m, m e N, get orbifold flat metric on C/Z,.
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Metrics in Real Dimension 2

Toric
Kéhler-Sasaki
Geometry

[k # 0] (can assume b = 0)

Miguel Abreu

1
s'"(X) = ——
Toric K ( ) C—kX2

Metrics

>0

[k > 0] (need c>0and —\/c/k < x < \/c/k)

s(x) L

|(x+ V/e/K) log(x + v/c/k)

+(—x + \/c/K)log(—x + c/k)]

N

1
_ﬁ.

Singular american football metric. Smooth european football
metric of Gauss curvature k iff c = 1/k.
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Examples - Toric Constant Scalar Curvature
Metrics in Real Dimension 2

Toric
Kéhler-Sasaki

Geometry [k <0,c> O] (X € R)

Miguel Abreu

= I |
ook S(x) = |/ 5 arctan < - x) = hyperboloid

Metrics

[k <0,c < 0] (need x > +/c/k)

1 1
s(xX) = — - = |[(x—+/c/k)log(x — \/c/k
() = 5 |0 = VoK) log(x — v/e/K)

—(x++/c/k)log(x + \/c/k)}
Singular hyperbolic planes. Smooth hyperbolic planes of
Gauss curvature k iff c = 1/k.
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B A symplectic cone is a triple (M, w, X), where (M, w) is a
connected symplectic manifold and X € X' (M) is a vector
field generating a proper R-action p; : M — M, t € R, such
that p;(w) = e?'w. Note that the Liouville vector field X
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Definition of Symplectic Cone

Definition

A symplectic cone is a triple (M, w, X), where (M,w) is a
connected symplectic manifold and X € X' (M) is a vector
field generating a proper R-action p; : M — M, t € R, such
that p;(w) = e?'w. Note that the Liouville vector field X
satisfies Lxw = 2w, or equivalently

. 1:1 . .
symplectic cones «+—— co-oriented contact manifolds

In particular, (M, w, X) is the symplectization of
(N := M/R,¢ = m.(ker(«(X)w)), where 7 : M — M/R.
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equipped with a compatible complex structure J € Z(M, w)
such that the Reeb vector field K := JX is Kahler, i.e.
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Definition of Kahler-Sasaki Cone

Toric
Kéhler-Sasaki

Geometry Definition

EEPCETN A Kahler-Sasaki cone is a symplectic cone (M, w, X)
equipped with a compatible complex structure J € Z(M, w)
such that the Reeb vector field K := JX is Kahler, i.e.

Toric KS Lxkw=0 and LkgJ=0.

Metrics

Note that K is then also a Killing vector field for the
Riemannian metric

gJ('a ) = w(" J) °

Any such J will be called a Sasaki complex structure on the
symplectic cone (M, w, X). The space of all Sasaki complex
structures will be denoted by Zg5(M, w, X).
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@ X is the gradient vector field of r?/2.
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Properties of Kéhler-Sasaki Cones

WSS Define r = ||K|| = ||X| : M — R*. Then
seomey @ K is the Hamiltonian vector field of —r?/2;
@ X is the gradient vector field of r?/2.
Define a := «(X)w/r? € Q'(M). Then

Miguel Abreu

Toric KS w= d(r2a)/2 , a(K)=1 and Lxa=0.

Metrics

Define N := {r =1} ¢ M and let ¢ := ker «|y. Then

(N, &, aln, gy|n) is a Sasaki manifold.




Properties of Kéhler-Sasaki Cones

Toric

Kahler-Sasaki Define r := HKH = ||XH ‘M — RT. Then

Geometry

o A @ K is the Hamiltonian vector field of —r2/2;
@ X is the gradient vector field of r?/2.
Define a := «(X)w/r? € Q'(M). Then

Torio K8 w=d(r’a)/2, a(K)=1 and Lxa=0.
Define N := {r =1} ¢ M and let ¢ := ker «|y. Then
(N, &, aln, gy|n) is a Sasaki manifold.
Define B:= N/K. Then TB =~ ¢ and
(B, dal¢, J|¢) is a Kéhler space,

the Kahler reduction of (M, w, X, J) by the action of K.
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Kéahler-Sasaki Cones
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KablerSasak A KS cone (M,w, X, J), with Reeb vector field K = JX, is
B said to be:

@ regular if K generates a free S'-action.
@ quasi-regular if K generates a locally free S'-action.

Miguel Abreu

ke @ irregular if K generates an effective R-action.
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Metrics
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@ a Kahler orbifold if the KS cone is quasi-regular.
@ only a Kahler quasifold if the KS cone is irregular.



Regular, Quasi-Regular and Irregular

Kéahler-Sasaki Cones

Toric

KablerSasak A KS cone (M,w, X, J), with Reeb vector field K = JX, is
g said to be:

@ regular if K generates a free S'-action.
@ quasi-regular if K generates a locally free S'-action.

Miguel Abreu

ke @ irregular if K generates an effective R-action.
oric
Metrics

Note that the Kahler reduction B = M//K is
@ a smooth Kahler manifold if the KS cone is regular.
@ a Kahler orbifold if the KS cone is quasi-regular.
@ only a Kahler quasifold if the KS cone is irregular.

Note that the Sasaki manifold determined by a KS cone is
always smooth.
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moment map x. : M — g* can be chosen so that
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Kéhler-Sasaki

Geometry Lemma
B L ct G be a Lie group. Any X-preserving symplectic G-action
on a symplectic cone (M, w, X) is Hamiltonian. Moreover, its
moment map x. : M — g* can be chosen so that

Metrics

Toric KS w(pe(m)) = 62tpt(m)7 Yme M, teR.

Definition

A toric symplectic cone is a symplectic cone (M, w, X) of
dimension 2(n + 1) equipped with an effective X-preserving
T+ 1-action, with moment map . : M — t* = R such that
p(pe(m)) = €'pi(m), Yme M, t R,
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Toric Symplectic Cones

Toric
Kéhler-Sasaki

Geometry Lemma

B L ct G be a Lie group. Any X-preserving symplectic G-action
on a symplectic cone (M, w, X) is Hamiltonian. Moreover, its
moment map x. : M — g* can be chosen so that

Toric KS

i w(pe(m)) = €¥pi(m), Yme M, t € R.

Definition

A toric symplectic cone is a symplectic cone (M, w, X) of
dimension 2(n + 1) equipped with an effective X-preserving
T+ 1-action, with moment map ;. : M — ¢ = R™" such that
w(pr(m)) = €p(m), Ym e M, t € R. lts moment cone is
defined to be the set C := (M) U {0} c R,

| A
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Toric (R {0}, wy, Xy1), with linear coordinates

Kéhler-Sasaki

Geometry (U1,...,Ups1,Vq,..., Vpy1) such that
Miguel Abreu
n+1
Wy =duAdv:= Zduj/\dvj
j=1
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Metrics and
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equipped with the standard T"*"-action, is a toric symplectic
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Example - (R2™ 1\ {0}, wy, Xy

(R2(DN\ {0}, wy, Xy), with linear coordinates

(U1,...,Ups1,Vq,..., Vpy1) such that
n+1
Wy =duAdv:= Zduj/\dvj
j=1
and

0 o /o9 9
Xst 8 + V% ; (UjaU/ -+ V/avl> s

equipped with the standard T"*"-action, is a toric symplectic
cone with moment map pg : R2("1)\ {0} — R™1 given by

1
2 2 2 2
,U/st(U'],,Un+1,v1,7vn+1):§(U1+V1,,Un+1+vn+1)
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Example - (R2™ D\ {0}, wy, Xy)

(R2(M1)\ {0}, wy, X(), with linear coordinates
(U1,...,Ups1,Vq,..., Vpy1) such that

n+1
Wy =duAdv:= Zduj/\dvj
=1

and 1
e 0o & B 0
Xst 8 + V% ; (UjaU/ -+ V/avl> s

equipped with the standard T"*"-action, is a toric symplectic
cone with moment map pg : R2("1)\ {0} — R™1 given by

1
2 2 2 2
,U/st(U'],,Un+1,v1,7vn+1):§(U1+V1,,Un+1+vn+1)

lts moment cone is C = (R})"' c R™1.
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Tori 0 oo
kanersasai [l Definition (Lerman)

Geometry

WP A cone C C R is good if there exists a non-empty
minimal set of primitive vectors vy, ..., vy € Z™ such that

(i) C=N_{x e R™ . 15(x) = (x,va) > O}

oreKs (i) any codimension-k face F of C, 1 < k < n, is the
Metrics intersection of exactly k facets whose set of normals
can be completed to an integral base of Z"*1.

Theorem (Banyaga-Molino, Boyer-Galicki, Lerman)

For each good cone C c R"*" there exists a unique toric
symplectic cone (Mg, we, Xg, 11c) with moment cone C.




Classification of Good Toric Symplectic Cones

Tori 0 oo
kanersasai [l Definition (Lerman)

Geometry

WP A cone C C R is good if there exists a non-empty
minimal set of primitive vectors vy, ..., vy € Z™ such that

(i) C=N_{x e R™ . 15(x) = (x,va) > O}

oreKs (i) any codimension-k face F of C, 1 < k < n, is the
Metrics intersection of exactly k facets whose set of normals
can be completed to an integral base of Z"*1.

Theorem (Banyaga-Molino, Boyer-Galicki, Lerman)

For each good cone C c R"*" there exists a unique toric
symplectic cone (Mg, we, Xg, 11c) with moment cone C.

Like for compact symplectic toric manifolds, existence
follows from a symplectic reduction construction starting
from a symplectic vector space.
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symplectic cone (Mg, we, Xe, 1) (at level one).
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Gy Let P c R"” be an integral Delzant polytope. Then, its
Miguel Abreu standard cone
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Toric KS is a good cone. Moreover
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Boothby-Wang manifold of (Bp,wp). The restricted
T +1-action makes it a toric contact manifold.



Boothby-Wang Cones (Lerman)

Toric
Kéhler-Sasaki

Gy Let P c R"” be an integral Delzant polytope. Then, its
Miguel Abreu standard cone

C:={z(x,1)eR"xR : xe P, z>0} c R™'

s is a good cone. Moreover
(i) the toric symplectic manifold (Bp,wp, 1p) is the
ST = {1} x S' ¢ T symplectic reduction of the toric
symplectic cone (Mg, we, Xe, 1) (at level one).
(i) (Ne:= pg' (R" x {1}), ¢ := ((Xc)we) n,) is the
Boothby-Wang manifold of (Bp,wp). The restricted
T"+1-action makes it a toric contact manifold.

(ii) (Mg,wc) is the symplectization of (Ng, a¢).
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Example: Boothby-Wang Cone of the Standard

Simplex

P Let P C R” be the standard simplex, i.e. Bp = P". Its
Geometry standard cone C ¢ R"*! is the moment cone of
EERE (M = C"1\ {0}, wy, Xyt) equipped with the T™-action

given by

(Y17~ -'aYnaYn+1) : (21)"'7Zﬂ7zn+1)
Toric KS . P .
Metrics — (e—’(Y1 +,Vn+1)z1 e, e_’(yn+}’n+1)zn’ e Vn+1 Zn+1)

The moment map pc : C™1\ {0} — R™ ' is given by
1
MC(Z) = §(|Z‘| |27 sy |Zn‘27 ’21 ’2 +oeeet |ZI7‘2 + |Zn+1 ’2) :

and

Ne =g (R" x {1}) = {ze C™" : ||z|2 = 2} = &2,
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K = JX is part of the torus action.



Toric Kahler-Sasaki Cones

Toric

Kahler-Sasaki Definition

Geometry

eyt A toric Kahler-Sasaki cone is a toric symplectic cone
(M,w, X, 1) equipped with a toric Sasaki complex structure
J € Ig(M, w).

Metice. e It follows from the classification theorem that any good

toric symplectic cone has toric Sasaki complex
structures.

@ On a toric Kahler-Sasaki cone (M, w, X, 11, J), the
Kahler action generated by the Reeb vector field
K = JX is part of the torus action.

@ The K&hler reduction B = M/ /K is a toric Kahler
space: manifold (regular case), orbifold (quasi-regular
case) or quasifold (irregular case).
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kaner-asaki [N uw(M)=C\ {0} > C = interior of C.

Geometry
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Cone Action-Angle Coordinates on (M, w, X, 1)

kaner-asaki [N uw(M)=C\ {0} > C = interior of C.

Geometry

Miguel Abreu

M = 1 (C) = {points of M where T"*"-action is free}
~ Cx T = {(x,y) :xeC,yeTm! ER”+1/27TZn+1}

Metics. such that w|y = dx A dy = standard symplectic form,
9 n-+1 9
u(x,y)=x and Xl X o ;1 Xj Ix

Definition

(x,y) = cone symplectic/Darboux/action-angle coordinates.




Cone Action-Angle Coordinates on (M, w, X, 1)

kaner-asaki [N uw(M)=C\ {0} > C = interior of C.
Geometry

Miguel Abreu

M = 1 (C) = {points of M where T"*"-action is free}
~ Cx T = {(x,y) :xeC,yeTm! ER”+1/27TZn+1}

i such that w|;, = dx A dy = standard symplectic form,
) n+1 9
/L(X,y):X and X|M:2X8X:2;X’axl

Definition

(x,y) = cone symplectic/Darboux/action-angle coordinates.

M is an open dense subset of M.
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for some symplectic potential s : C — R,



Toric Sasaki Complex Structures in Cone

Action-Angle Coordinates

Kaier Sasaki Any toric Sasaki complex structure J € IST(M, w, X) can be

ety written in suitable cone action-angle coordinates (x, y) on
Miguel Abreu M ~ C % Tn+1 as

0o -S!
J =
Toric KS S 0

Metrics

with

S = 8(x) = (sj(x)) = s\ .o
N A\ - aX,@Xj
for some symplectic potential s : C — R, such that
S(e'x) = e !S(x), VteR, xe C,

i.e. S(x) = Hessy(s) is homogeneous of degree —1.
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In other words, the action generated by K is part of the
torus action.
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Coordinates

s  The Reeb vector field K := JX of such a toric Sasaki

Geometry complex structure J € Ig(l\”/l, w, X) is given by
Miguel Abreu
n+1 9 n-+1
K= Zb;a—y_ with b =2 " s5x;.
i=1 ! j=1
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Lemma (Martelli-Sparks-Yau)

If S(x) = (sj(x)) is homogeneous of degree —1, then

Ks := (b1, ..., bn1) is a constant vector.

In other words, the action generated by K is part of the
torus action. Moreover,

regularity of toric KS cone < rationality of Ks € R,



Characteristic Hyperplane and Polytope

sl The norm of the Reeb vector field is then given by
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sl The norm of the Reeb vector field is then given by
IK|I” = 110, Ks)II? = bisb; = bys”(2sxk) = 2bix; = 2(x, Ks) .

Geometry

Miguel Abreu
Hence
IKI[ >0« (x,Ks) >0 and [K|=1% (x,Ks) =1/2.
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Definition (Martelli-Sparks-Yau)

The characteristic hyperplane Hx and polytope Pk of a toric
Kéhler-Sasaki cone (M, w, X, 1, J), with moment cone
C c R™1 are defined as

Hi = {x e R™ . (x,Ks)=1/2} and Pyx:=HxnNC.
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sl The norm of the Reeb vector field is then given by
Geometry

K| = [|(0, Ks)||? = bis"b; = bis!(2sjxk) = 2bix; = 2(x, Ks) .

Hence

IKI[ >0« (x,Ks) >0 and [K|=1% (x,Ks) =1/2.

Miguel Abreu
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Definition (Martelli-Sparks-Yau)

The characteristic hyperplane Hx and polytope Pk of a toric
Kéhler-Sasaki cone (M, w, X, 1, J), with moment cone

C c R™1 are defined as

Hi = {x e R™ . (x,Ks)=1/2} and Pyx:=HxnNC.

Note that N := .~ '(H) is a toric Sasaki manifold and Py is
the moment polytope of B= M//K.
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Toric KS M, ..., A\g € R. Assume that P has a non-empty interior and

Metrics the above set of defining inequalities is minimal.
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Toric Let P ¢ R™ be a polyhedral set defined by

Kéhler-Sasaki
Geometry d

Miguel Abreu P— m{x c Rn+1 : ga(X) - <X, Va> + )\a > O}
a=1
where vy, ..., vy € Z™" are primitive integral vectors and
Toric KS M, ..., A\g € R. Assume that P has a non-empty interior and

Metrics

the above set of defining inequalities is minimal.

Burns-Guillemin-Lerman extended Delzant’s symplectic
reduction construction, associating to each such polyhedral
set a toric Kéhler space of dimension 2(n+ 1)

(Mp,wp, p1p, Jp)
such that
pp(Mp) =P and Jp € Z"(Mp,wp).
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Geometr
" In appropriate action-angle coordinates (x, y), the canonical
symplectic potential sp : P — IR for Jp| is given by

Miguel Abreu
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ks sp(x) = 5 > ta(x)l0g la(X).

Metrics a=1
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Note that C := Pisaconeiff \y =--- = Ay = 0. In this

case, S¢ .= Sp is the symplectic potential of a toric Sasaki
complex structure Jg € Z5 (Mg, we), since
Sc(x) = Hessy(s¢) is then homogeneous of degree —1.
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Toric

kanler-sasaki [l Guillemin’94, Burns-Guillemin-Lerman’05

Geometr
" In appropriate action-angle coordinates (x, y), the canonical
symplectic potential sp : P — IR for Jp| is given by

Miguel Abreu

d
1
Toric KS sp(x) = 2 Zfa(X) log £a(x) -
Metrics a=1
Note that C := Pisaconeiff \y =--- = Ay = 0. In this

case, S¢ .= Sp is the symplectic potential of a toric Sasaki
complex structure Jg € Z5 (Mg, we), since

Sc(x) = Hessy(s¢) is then homogeneous of degree —1.
The corresponding Reeb vector field K = (0, K¢) is given by

d
Ke = Zl/a.
a=1




Example: canonical symplectic potential of the

standard cone over the standard simplex

Uie The standard cone over the standard simplex is given by

Kéhler-Sasaki
Geometry
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o C=[{xeR™ : £(x) = (x,13) >0},

i=1

Toric KS .
Metrics y,-:e,-,I:‘I,...,n, and Vn+1:(*17~-->*1a1)'
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Example: canonical symplectic potential of the

standard cone over the standard simplex

Uie The standard cone over the standard simplex is given by

Kéhler-Sasaki
Geometry

Abreu n+1
e C=[{xeR™ : £(x) = (x,13) >0},
i=1
where
Toric KS .
Metrics vi=ei,i=1,...,n, and v, 4= (-1,...,-1,1).

Hence, using r = > 7, x;, we have that
1 n
sc(x) = 5 (; xilog Xx; + (Xp11 — r)log(Xp41 — r))

and
n+1

Kc=> vi=(0,...,0,1).
i=1
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Ks = Ky < (s — §') + const. is homogeneous of degree 1.

Given b € R™1 define

Metics Sp(X) = % ((x, b) log(x, b) — (x, Kc) log(x, Kg)) .
Then s := s¢ + sp is such that K5 = b.
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PR Let s, s : C — R be two symplectic potentials defined on

Geometry the interior of a cone C ¢ R™'. Then
Miguel Abreu

Ks = Ky < (s — ') + const. is homogeneous of degree 1.

Given b € R™1 define

Toric KS 1

Metrics Sp(Xx) = 5 ((x, b)log(x, by — (x, K¢) log(x, K¢g)) .

Then s := s¢ + sp is such that Ks = b. If C is good, this
symplectic potential s defines a smooth Sasaki complex
structure on the symplectic cone (Mg, we, Xe, p1¢) iff

(x,b) >0, Vxe C\ {0},



General Cone Symplectic Potentials

(Martelli-Sparks-Yau)

Uie Let s, s’ : C — R be two symplectic potentials defined on

Kéhler-Sasaki

Geometry the interior of a cone C ¢ R™'. Then
Miguel Abreu

Ks = Ky < (s — ') + const. is homogeneous of degree 1.

Given b € R™1 define

Metics Sp(X) = % ((x, b) log(x, b) — (x, Kc) log(x, Kg)) .

Then s := s¢ + sp is such that Ks = b. If C is good, this
symplectic potential s defines a smooth Sasaki complex
structure on the symplectic cone (Mg, we, Xe, p1¢) iff

(x,b) >0, VxecC\{0}, ie beC*
where C* ¢ R™1 s the dual cone

C*:={xeR™": (v,x)>0,VveC}.



General Cone Symplectic Potentials
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Toric

kahlerSasaki Ml Martelli-Sparks-Yau'05

Geometry
LEEEEE  Any toric Sasaki complex structure J € Z¢ on a toric
symplectic cone (Mg, we, Xg, 1.c), associated to a good
moment cone C € R"*' is given by a symplectic potential
s: C — R of the form

Toric KS
Metrics

S=Sc+Sp+h,

where
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Geometry
LEEEEE  Any toric Sasaki complex structure J € Z¢ on a toric
symplectic cone (Mg, we, Xg, 1.c), associated to a good
moment cone C € R"*' is given by a symplectic potential
s: C — R of the form

Toric KS
Metrics

S=Sc+Sp+h,

where s is the canonical potential, b € C*




General Cone Symplectic Potentials
(Martelli-Sparks-Yau)

Toric
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Geometry

LEEEEE  Any toric Sasaki complex structure J € Z¢ on a toric
symplectic cone (Mg, we, Xg, 1.c), associated to a good
moment cone C € R"*' is given by a symplectic potential

s: C — R of the form

Toric KS
Metrics

S=Sc+Sp+h,

where s is the canonical potential, b € C*andh:C —Ris
homogeneous of degree 1 and smooth on C \ {0}.




General Cone Symplectic Potentials
(Martelli-Sparks-Yau)

Toric

kahlerSasaki Ml Martelli-Sparks-Yau'05

Geometry

LEEEEE  Any toric Sasaki complex structure J € Z¢ on a toric
symplectic cone (Mg, we, Xg, 1.c), associated to a good
moment cone C € R"*' is given by a symplectic potential

s: C — R of the form

Toric KS
Metrics

S=Sc+Sp+h,

where s is the canonical potential, b € C*andh:C —Ris
homogeneous of degree 1 and smooth on C \ {0}.

The dual cone C* can be equivalently defined as
C* =Na{x e R™" : (54, x) >0},

where 1, € Z"*1 are the primitive generating edges of C.
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where (. (x) = Zaéa( ) = (X, Voo) + Acos



Boothby-Wang Symplectic Potentials

Tori Y
kanier susaki [l Definition

Geometry

S Let P C R” be an integral Delzant polytope and C ¢ R
its standard good cone. Given a symplectic potential

s : P — R, define its Boothby-Wang symplectic potential
§:C—Rby

Toric KS
Metrics

8(x, 2) ::zs(x/z)+%zlogz, VxeP, zeR",

If P =N {x €R" : la(x) = (x,va) + Az > 0} and

s(x) = Zza )10g (a(x) — b o (X)10g (- (x)

where (. (x) = Zaéa( ) = (X, Vo) + Aoo, then
5(x,z) = sc(x,z) + sp(x,z) with b=(0,...,0,1).
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Example: Boothby-Wang symplectic potential

of the standard cone over the standard simplex

IS If P C R” is the standard simplex and r = 3", x;, then

Kahler-Sasaki
(Z x;log x; + (1 — r)log(1 — r))

Geometry

Miguel Abreu

Toric KS and

Metrics

25p(x,z) =2 <zsp(x/z) + %zlog z)

= Zn:x,- log(xi/z) +(z—r)log((z—r)/z) + zlog z
i=1

n
= Zx,- log x; + (z — r)log(z — r) = 2s¢(x. 2),

where C is the standard cone over P.
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Suppose (Mp, wp, 1p) is a toric symplectic reduction of
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Symplectic Potentials and Reduction

Toric

kanler-Sasaki il Calderbank-David-Gauduchon’02

Geometry
Symplectic potentials restrict naturally under toric
symplectic reduction.

Miguel Abreu

Suppose (Mp, wp, 1p) is a toric symplectic reduction of

Toric KS (Mg, we, 11c)- Then there is an affine inclusion P ¢ C and

Metrics

any J € Z' (Mg, w¢) induces a reduced J € Z" (Mp, wp).
This theorem says that if
§:C — Ris a symplectic potential for J
then

s:= 8|5 : P — Ris a symplectic potential for J.




Symplectic Potentials and Affine
Transformations

Toric
Kéhler-Sasaki
Geometry

UEEEEE  Symplectic potentials transform naturally under affine
transformations.

Proposition

Toric KS
Metrics



Symplectic Potentials and Affine
Transformations

Toric
Kéhler-Sasaki
Geometry

UEEEEE  Symplectic potentials transform naturally under affine
transformations.

Proposition

Let T € GL(n) and consider the linear symplectic change of
Toric KS action-angle coordinates x’ := T~ 'x and y’ := T'y.

Metrics



Symplectic Potentials and Affine
Transformations

Toric
Kéhler-Sasaki
Geometry

UEEEEE  Symplectic potentials transform naturally under affine
transformations.

Proposition

Let T € GL(n) and consider the linear symplectic change of
Toric KS action-angle coordinates x’ := T~ 'xand y’ := T'y.

Hieties Then P = N2_{x € R" : (4(X) := (X, va) + \a > 0}
becomes
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with v, = Tl and A, = A,
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UEEEEE  Symplectic potentials transform naturally under affine
transformations.

Proposition

Let T € GL(n) and consider the linear symplectic change of
Toric KS action-angle coordinates x’ := T~ 'xand y’ := T'y.

Hieties Then P = N2_{x € R" : (4(X) := (X, va) + \a > 0}
becomes

d
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with v, = T'v, and A, = )\, and symplectic potentials
transform by s’ = so T (in particular, sp: = spo T).



Symplectic Potentials and Affine
Transformations

Toric
Kéhler-Sasaki
Geometry

UEEEEE  Symplectic potentials transform naturally under affine
transformations.

Proposition

Let T € GL(n) and consider the linear symplectic change of
Toric KS action-angle coordinates x’ := T~ 'xand y’ := T'y.

Hieties Then P = N2_{x € R" : (4(X) := (X, va) + \a > 0}
becomes

d
P =T (P)=({X €R": f,(x) = (x,v}) + \; >0}
a=1
with v, = T'v, and A, = )\, and symplectic potentials
transform by s’ = so T (in particular, sp: = spo T). The
corresponding Hessians are related by S’ = T!/(So T)T.
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where S = (sj;) = Hessy(s) for a symplectic potential
Toric KSE s:PCR"—R.
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Symplectic Potentials and Scalar Curvature

Toric

Kahler-Sasaki @ Toric Kahler metric

Geometry

Miguel Abreu S 0

where S = (sj;) = Hessy(s) for a symplectic potential
Toric KSE s:PCR"—R.

Metrics @ Formula for its scalar curvature [A’98]:

0log(det S) 02k
Z oX; |: 8Xk :| Z

anaxk

@ Donaldson’02 - appropriate interpretation for this
formula: view scalar curvature as moment map for
action of Ham(M,w) on Z(M, w).
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Proposition

Miguel Abreu

Let P C R" be a polyhedral set and C C R its standard
cone. Given a symplectic potential s : P — R, lets: C — R
be its Boothby-Wang symplectic potential:

- 1 %
Toric KSE 8(x,2) == zs(x/z) + ézlogz, VxeP,zeR".

Metrics

Then
évc(x./ 2) = Sc(x/z) —22n(n+ 1) .

In particular

§350©8052n(n+1).
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Toric KSE be its Boothby-Wang symplectic potential. Then,
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s defines a toric K&hler-Einstein metric with Sc = 2n(n+ 1)
iff

s defines a toric Ricci-flat Kahler metric.




Boothby-Wang Symplectic Potentials and Toric

Kahler-Sasaki-Einstein metrics

WL In compact Kahler geometry, constant scalar curvature
Geometry metric plus cohomological condition ¢; = A[w] implies
A Kahler-Einstein metric.

Proposition

Let P C R" be a polyhedral set and C C R™1 its standard
cone. Given a symplectic potential s : P — R, lets: C — R
Toric KSE be its Boothby-Wang symplectic potential. Then,

Metrics

s defines a toric K&hler-Einstein metric with Sc = 2n(n+ 1)
iff

s defines a toric Ricci-flat Kahler metric.

When this happens, the corresponding toric Sasaki metric is
Einstein.

<




Calabi’s Family of Extremal Kahler Metrics

Toric

e asal @ Calabi constructed in 1982 a general 4-parameter
family of U(n)-invariant extremal K&hler metrics, which
he used to put extremal K&hler metrics on

Miguel Abreu

HD .= P(O(-m)®C) — P ' n,meN,

in any possible cohomology class.

Toric KSE
Metrics




Calabi’s Family of Extremal Kahler Metrics

Toric

e asal @ Calabi constructed in 1982 a general 4-parameter
family of U(n)-invariant extremal K&hler metrics, which
he used to put extremal K&hler metrics on

Miguel Abreu

HD .= P(O(-m)®C) — P ' n,meN,

in any possible cohomology class. In particular, when
Toric KSE n = 2, on all Hirzebruch surfaces.

Metrics




Calabi’s Family of Extremal Kahler Metrics

Toric

e asal @ Calabi constructed in 1982 a general 4-parameter
family of U(n)-invariant extremal K&hler metrics, which
he used to put extremal K&hler metrics on

Miguel Abreu

HD .= P(O(-m)®C) — P ' n,meN,

in any possible cohomology class. In particular, when
Toric KSE n = 2, on all Hirzebruch surfaces.

Metrics

@ When written in action-angle coordinates, using
symplectic potentials, Calabi’s family can be seen to
contain many other interesting Kéhler metrics [A.’01].




Calabi’s Family of Extremal Kahler Metrics

Toric

e asal @ Calabi constructed in 1982 a general 4-parameter
family of U(n)-invariant extremal Kahler metrics, which
he used to put extremal K&hler metrics on

Miguel Abreu

HD .= P(O(-m)®C) — P ' n,meN,

in any possible cohomology class. In particular, when
Toric KSE n = 2, on all Hirzebruch surfaces.

Metrics

@ When written in action-angle coordinates, using
symplectic potentials, Calabi’s family can be seen to
contain many other interesting Kéhler metrics [A.’01].

@ In particular, it contains a 1-parameter family of
Kahler-Einstein metrics directly related to the
Sasaki-Einstein metrics constructed in 2004 by
Gauntlett-Martelli-Sparks-Waldram [A’08].
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Calabi’s Family in Action-Angle Coordinates

Toric

S Consider symplectic potentials s : (RT)” — R of the form

Geometry

Miguel Abreu n
1
s(x) = > (Z Xzlog x5 + h(r)) , where r = xq + - X.
a=1
Then
Ao iSE Sc(x) = Sc(r) = 2r2f"(r) + 4(n+ 1)rf'(r) + 2n(n + 1)£(r),

where f = h"/(1 + rh”). Moreover, extremal is equivalent to
Sc being an affine function, which is then equivalent to

rn—1

rm—A— Br— Crt1 — Drn+2”’

”
/! _
h'(r) = r+

where A, B, C, D € R are the 4 parameters of the family.
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Geometry
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rn—1

1
/! - e

) = r T A—Br

[C=D=0,B=0, A>0]

Complete Ricci flat K&hler metrics on total space of

Toric KSE O(—n) — P"=1, for any possible cohomology class.

Metres (Calabi’79)

[C=D=0, A B>Q(]

Complete scalar flat K&hler metrics on total space of
O(—m) — P, for any m > 0 and any possible
cohomology class. (LeBrun’88 (n = 2), Pedersen-Poon’88
and Simanca’91 (n > 2))
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Kahler-Sasaki-Einstein Cases in Calabi’s

Family

Toric
Kéhler-Sasaki

Geometry [B:DZO,C:1,O<A<nn/(n+1)n+1]

Miguel Abreu

rn—1

1
/! _ s
) = r+r”(1—r)—A

Torie KSE Kahler-Einstein quasifold metrics with Sc = 2n(n+ 1) on
Metrios certain HJ, := P(O(—m) & C) —s P 1,

For a countably infinite set of values for the variable
parameter A, the corresponding Boothby-Wang cones are
GL(n+ 1) equivalent to good cones - precisely the ones
corresponding to the Sasaki-Einstein metrics of
Gauntlett-Martelli-Sparks-Waldram’04 (at least when n = 2).
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Kéahler-Sasaki-Einstein Cases in Calabi’s
Family - n = 2 examples

Toric
Kéhler-Sasaki
Geometry

Miguel Abreu

N O 1)

p,q €N, 0<qg<p, ged(qg,p) =1
foric KSE even p+q odd p+gq
k* = (p£q)/2 k*=(p+(g-1))/2
Ks = (0,—(/2,3) Ks = (0,(3 —0)/2,3)

0= <3q2 —2p% + py/4p? — 3q2> /q

All these Sasaki-Einstein manifolds are diffeo. to S2 x SS.
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