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0. Introduction.

(]/\\4/ ,g) : oriented 4-dim. Riemannian manifold

(M, g) : oriented surface

f: M — M : isometric immersion

A2 (M) : vector bundle of anti-selfdual 2-forms on M
f#A2 (M) : pull-back bundle of A2 (M) by f
U(f#Az_(M)) : unit sphere bundle of f#AZ_(M)

J € T(U(f#A2(M))) : twistor lift of M
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U(f#(A2(M))) C f#(A2(M)) - A% (M)

e For the study of surfaces using the twistor lifts, see the following
papers:

(1) E. Calabi (J. Diff. Geom., 1967),

(2) R. Bryant (J. Diff. Geom., 1982),

(3) T. Friedrich (Ann. Glob. Anal. Geom., 1984),

(4) I. Khemar (arXiv:math:DG/0803.3341v2) and - - -

()



e In this talk,

surfaces whose twistor lifts are harmonic sections

are considered. In particular, we determine such surfaces in hyperKahler

manifolds for low genus cases.

e This talk is consists of

1. Twistor spaces and twistor lifts.
2. Harmonic sections.

3. Low genus cases.

4. Applications.



1. Twistor spaces and twistor lifts.

(M ,g) : oriented 4-dim. Riemannian manifold
A2_(M ) : vector bundle of anti-selfdual 2-forms on M
(M, g) : oriented surface

f: M — M : isometric immersion

For each x € M, take an orthonormal basis e, es, e3, e4 of Tf(w)M such

that

)
(1) ey, ex are compatible with the orientation of M,

N\

(2) es3, e4 are normal to T, M,

\ (3) ey, ez, e3,e4 are compatible with the orientation of M.



w1, wa, w3, wy : dual basis of ey, e, e3, e4.

Def. : The section J € T'(U(f#A2(M))) defined by

J(x) i=wi Aws —ws Awy  (x € M)

is called the twistor lift of M.

e The unit sphere bundle Z(M ):=U (AQ_(M )) is called the twistor space

—~—

of M.



e Using the metric g, Az_(M ) can be identified with a subbundle Q of

the bundle of all skew symmetric endomorphisms of T M.

e U(Q)(= U(Az_(M))) is the bundle whose fiber is consists of all com-

plex structures preserving the the metric and orientation of M.



e On the twistor space Z (M ), an almost complex structure JZ can be

defined as follows :

K : connection map of Q = A2 (M)
(w.r.t. connection induced from the Levi-Civita connection of M )

P : Z(M) — M : bundle projection

We have the decomposition
T,Z(M) =TrZ(M) & T3 Z(M)

where, TJ;Z(M) = ker Ky and Ty Z(M) = ker p.4.



We define an almost complex structure JZ by

JZ(X) = (9(p«(X)))g
for X € T*Z(M), and
JZ(X) = J(X)

for X € T)Z (M ), where J is the canonical complex structure on each

fiber (&2 S?)



e It is well-known that

JZ is integrable <—— M is self-dual

(M. F. Atiyah, N. J. Hitchin and I. M. Singer).



Def. : If the twistor lift J is horizontal map (that is, VJ = 0), the

surface M is called superminimal .

e We define J+ by
J+(e3) = —eq and J(ey) = es.

e Let h be the second fundamental form of M. Then we see that M

is superminimal <= h(JX,Y) = Jth(X,Y) forall X,Y € TM
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Def. : If (f#oj)* o = JZo(fu o0 J)., then the surface M is said

to be twistor holomorphic .

e Define 3 by
B(X,Y)=h(X,JY) —J h(X,Y)+J h(JX,JY) + h(JX,Y)

for X,Y € TM.

e M is twistor holomorphic <— 3 = 0.

e M is superminimal <— M is minimal and twistor holomorphic.

(11)



2. Harmonic section.

(M, g) : n-dim. compact Riemannian manifold
E : Riemannian vector bundle over M

g¥ : fiber metric of E

V¥ : connection of E compatible with g¥

K¥ : connection map of V¥

p: E — M : bundle projection

We define the canonical metric G on E by

G(S56) = g(p«(¢), p(¢)) + g"(KF(¢), K¥({))

for all ( € TFE.
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U(FE) : unit sphere bundle of E

We give the induced metric of G on the submanifold U(E)(C E).

£ : the energy functional on C*(M,U(FE))

Def. : The section £ € I'(U(FE)) is said to be harmonic section if

it holds that

d
2l &)],_, =0

for all variation & € T'(U(FE)) of £(= &).
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e In general, harmonic sections are not harmonic maps.

e The twistor lift J € T'(U(f#A2(M))) is harmonic section <>

[J, AVJ] = o.

(14)



3. Low genus cases.

M : compact surface
H : mean curvature vector field of M

V<L : normal connection

We define 63 by

(68)(X) = = > _(V.,8) (i, X)

for all X € TM, where u;, us is an orthonormal frame and V'3 is the

covariant derivative of 3.
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Thm. : If M is a self-dual Einstein manifold, then the following

conditions are mutually equivariant :

(1) The twistor lift J of M is harmonic section.

(2) For all X € TM, it holds that V7, H = J-VxH.
(3) 03 = 0.

(16)




J 1s a harmonic section

olomorphic

superminimal
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M : hyperkahler manifold
M : oriented, connected and compact surface in M
X(T+M) : Euler number of the normal bundle T+-M

q : genus of M

o x(T+M) € 2Z.
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Thm. : Assume that the twistor lift J is a harmonic section and

g = 0. Then we have

(1) x(T+M) > 4 = M is a non-superminimal minimal surface.

(2) x(T+M) = 2 = M is superminimal .

(3) x(T+tM) < 0 = M is a non-superminimal twistor

holomorphic surface.
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J 1s a harmonic section

M olomorphi
%

superminimal
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Similarly, we have

Thm : Assume that the twistor lift J is a harmonic section and

g = 1. Then we have
(1) x(T+M) > 2 = M is a non-superminimal minimal surface.
(2) x(T+M) =0= VtH = 0.

(3) x(T+M) < —2 = M is a non-superminimal twistor holomorphic

surface.

e There is a noncompact surface such that

(1) [J, AeJN] — 0 (J is a harmonic section),
(2) not twistor holomorphic,
(3) H is not parallel w.r.t. V-,

(21)



4. Applications.

When M = R*, we have

Cor. : Assume that M is an oriented, connected and compact

surface in R?. If the twistor lift of M is a harmonic section and

g = 0, then M is twistor holomorphic.

Cor. : Assume that M is an oriented, connected and compact

surface in R%. If the twistor lift of M is a harmonic section and

q = 1, then M is twistor holomorphic or CMC surface in R’ or
S3(r).

(22)



Moreover, using this corollary, we also obtain the following results cor-

responding to “Hopf’s Theorem” for a CMC surface in R3.

Cor. (cf. D. Hoffman) : Assume that M is an oriented, connected

and compact surface in R*. If V' H = 0 and g = 0, then M is totally

umbilic.
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