Ball Quotient Compactifications With a
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Holzapfel’s Conjecture On Ball Quotient Surfaces

e Conjecture: (Rolf-Peter Holzapfel - 1998) "... up to
birational equivalence and compactifications, all complex
algebraic surfaces are ball quotients".

Ball Quotient Compactifications



Holzapfel’s Conjecture On Ball Quotient Surfaces

e Conjecture: (Rolf-Peter Holzapfel - 1998) "... up to
birational equivalence and compactifications, all complex
algebraic surfaces are ball quotients".

o Let us consider the complex ball
B = {(z1,22) € C?||z1]* + |22|*> < 1} = SU51/S(Uz x Uy)

and the ball lattices ' C SUy 1, i.e., the discrete subgroups
with finite invariant measure of B/ .
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Holzapfel’s Conjecture On Ball Quotient Surfaces

e Conjecture: (Rolf-Peter Holzapfel - 1998) "... up to
birational equivalence and compactifications, all complex
algebraic surfaces are ball quotients".

o Let us consider the complex ball
B = {(z1,22) € C?||z1]* + |22|*> < 1} = SU51/S(Uz x Uy)

and the ball lattices ' C SUy 1, i.e., the discrete subgroups
with finite invariant measure of B/ .

o Definition: A smooth toroidal compactification (B/I)’ of a
ball quotient B/I is co-abelian if it has an abelian minimal
model.
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o Holzapfel constructs:
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o Holzapfel constructs:

/!
@ a smooth toroidal compactification (B / F(_618)> , whose

abelian minimal model A_; has decomposed complex
multiplication by Q(i);
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Preliminary Results

o Holzapfel constructs:

/
@ a smooth toroidal compactification (IB% / F(_Gig)

, whose
abelian minimal model A_; has decomposed complex

multiplication by Q(i);

@ a ball quotient compactification B/ F(G &) ’ 1, which is

birational to the Kummer surface X_1 of A_; and admits a
double cover (IB%/ r(ff)) — B/ FK638)_1;
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Preliminary Results

o Holzapfel constructs:

/!
@ a smooth toroidal compactification (B / F(_618)> , whose

abelian minimal model A_; has decomposed complex
multiplication by Q(i);

@ a ball quotient compactification B/ F(G &) ’ 1, which is
birational to the Kummer surface X_1 of A_; and admits a

double cover (IB% / r(fig)) m;

@ a rational ball quotient compactification B/ r(6:8) 7, with

rat

Z[i]* x Z[i]*-Galois cover (B/r(ff‘ ) B/rﬁgt{l
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The Aim Of the Present Note

e Main Result - construction of ball quotient
compactifications B/I", which are birational to hyperelliptic,
Enriques or ruled surfaces with elliptic bases.
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The Aim Of the Present Note

e Main Result - construction of ball quotient
compactifications B/I", which are birational to hyperelliptic,
Enriques or ruled surfaces with elliptic bases.

o All co-abelian smooth toroidal compactifications
(B/I) = (B/I) U T with at most 3 rational (—1)-curves
and minimal fundamental group of T/ are Hirzebruch’s
(1.4)\’ ; 3.6)\ (3,6))
<IB%/I:§ ) and Holzapfel’s (IB%/F?{,, ) , (B/Ffi ) .
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Toroidal and Multi-Elliptic Divisors

o Let (B/T) = (B/I') UT’ be a co-abelian smooth toroidal
compactification, £ : (B/I')’ — A be the blow-down of the
(—1)-curves to the abelian minimal model A and T = &(T").
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Toroidal and Multi-Elliptic Divisors

o Let (B/T) = (B/I') UT’ be a co-abelian smooth toroidal
compactification, £ : (B/I')’ — A be the blow-down of the
(—1)-curves to the abelian minimal model A and T = &(T").

o Then T = E T; is a multi-elliptic divisor, i.e., T has

smooth elhptlc irreducible components T and the singular

locus TS = >~ (T;NT;) consists of their intersection
1<i<j<h

points.
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Galois Quotients Of Co-Abelian Compactifications

@ The group G = Aut(A,T) acts on the exceptional divisor of
¢:(B/T) — A and is isomorphic to Aut ((B/T)", T’).
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Galois Quotients Of Co-Abelian Compactifications

@ The group G = Aut(A,T) acts on the exceptional divisor of
¢:(B/T) — A and is isomorphic to Aut ((B/T)", T’).

e As aresult, G acts on B/I" and lifts to a ball lattice g,
containing ' as a normal subgroup with quotient g/l = G.

Ball Quotient Compactifications



Galois Quotients Of Co-Abelian Compactifications

@ The group G = Aut(A,T) acts on the exceptional divisor of
¢:(B/T) — A and is isomorphic to Aut ((B/T)", T’).

e As aresult, G acts on B/I" and lifts to a ball lattice g,
containing ' as a normal subgroup with quotient g/l = G.

@ Any subgroup H of G corresponds to a ball quotient
compactification B/l 'y, which is birational to A/H and
admits an H-Galois covering (B/T) — B/Ig.
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Picard Modular Groups

@ Definition: Let Q(+/—d) be an imaginary quadratic
number field with integers ring O_g4.
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Picard Modular Groups

@ Definition: Let Q(+/—d) be an imaginary quadratic
number field with integers ring O_g4.

o The arithmetic lattice SUg 1(O_q) C SUy; is called full
Picard modular group over O_4.
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Picard Modular Groups

@ Definition: Let Q(+/—d) be an imaginary quadratic
number field with integers ring O_g4.

o The arithmetic lattice SUg 1(O_q) C SUy; is called full
Picard modular group over O_4.

o If a ball lattice I is commensurable with SUg 1(O_4), then
I" it is said to be a Picard modular group.
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The Automorphism Group Is Finite

Proposition: Let us suppose that the smooth toroidal

h
compactification (B/I) = (B/I') U (Z T{) has abelian minimal
i=1

S
model A = E x E, contains s rational curves ) L; with

=1
self-intersection (—1) and each smooth elliptic irreducible
component T} intersects s; among these Lj. If sq,...,sp take

t
values s, ...,s{ with multiplicities ki, ..., k¢, Y ki = h, then
i=1
h
the group G = Aut ((IB/F)/, > T{) is of cardinality
i=1

card(G) <skj!...ki! card(End(E)").
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Finite Automorphism Group Implies:

o Corollary 1: If (B/I)" is Picard modular co-abelian toroidal
compactification then the ball lattice ¢ with
Fa/T =G =Aut ((B/T),(B/T) \ (B/T)) is also a Picard
modular group.
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Finite Automorphism Group Implies:

o Corollary 1: If (B/I)" is Picard modular co-abelian toroidal
compactification then the ball lattice ¢ with
Fa/T =G =Aut ((B/T),(B/T) \ (B/T)) is also a Picard

modular group.

e Corollary 2: The linear parts g, = < : g > € Gla(0_y)

of all g = 7y v)8o € Aut(A, T) can be diagonalized.
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Diagonalizing Isogeny

o Thus, g, with eigenvalues A\; = A\ are g, = M\ls.
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Diagonalizing Isogeny

o Thus, g, with eigenvalues A\; = A\ are g, = M\ls.

o If g, has different eigenvalues A1 # Ay from O_4 then any
isogeny S € Isog(A) = Matax2(O—_q) N Glo(Q(v/—d)) with

a1 (M O
Do =S goS—( 0 Ay

is called a diagonalizing isogeny for g,.
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Diagonalizing Isogeny

o Thus, g, with eigenvalues A\; = A\ are g, = M\ls.

o If g, has different eigenvalues A1 # Ay from O_4 then any
isogeny S € Isog(A) = Matax2(O—_q) N Glo(Q(v/—d)) with

a1 (M O
Do =S goS—( 0 Ay

is called a diagonalizing isogeny for g,.

o Let S = ( b b > for oo & {A1, A2},

)\1—04 )\2—04
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Diagonalizing Isogeny

o Thus, g, with eigenvalues A\; = A\ are g, = M\ls.

o If g, has different eigenvalues A1 # Ay from O_4 then any
isogeny S € Isog(A) = Matax2(O—_q) N Glo(Q(v/—d)) with

a1 (M O
Do =S goS—( 0 Ay

is called a diagonalizing isogeny for g,.

o Let S = ( b b > for oo & {A1, A2},

)\1—04 )\2—04

RSP B _ _
oS_< ” )\2_>\1>fora—)\1,5—/\2,
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Diagonalizing Isogeny

(]

(]

Thus, g, with eigenvalues A\; = A2 are g, = \ls.

If g, has different eigenvalues A\; # Ao from O_4 then any
isogeny S € Isog(A) = Matax2(O—_q) N Glo(Q(v/—d)) with

a1 (M O
Do =S goS—( 0 Ay

is called a diagonalizing isogeny for g,.

)\1—04 )\2—04

RSP B _ _
S—< ” )\2_>\1>fora—)\1,5—/\2,

_ B A2 — A1 B B
S_<)\1—)\2 ~y fora—)\g,5—/\1.

LetS—( b b >f0ra¢{/\17)\2}7
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Hyperelliptic Quotient

o Let h = 7y vyho € Aut(A) and S € Isog(A) be a
diagonilizing isogeny of h, € Gla(O_g).
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Hyperelliptic Quotient

o Let h = 7y vyho € Aut(A) and S € Isog(A) be a
diagonilizing isogeny of h, € Gla(O_g).

e Then the Galois quotient A/(h) is a hyperelliptic surface if
and only if
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Hyperelliptic Quotient

o Let h = 7y vyho € Aut(A) and S € Isog(A) be a
diagonilizing isogeny of h, € Gla(O_g).

e Then the Galois quotient A/(h) is a hyperelliptic surface if
and only if

o (i) the eigenvalues of h, are A\; = 1 and a primitive m-th
root of unity Ao € O* 4\ {1}, m > 1,

Ball Quotient Compactifications



Hyperelliptic Quotient

o Let h = 7y vyho € Aut(A) and S € Isog(A) be a
diagonilizing isogeny of h, € Gla(O_g).

e Then the Galois quotient A/(h) is a hyperelliptic surface if
and only if

o (i) the eigenvalues of h, are A\; = 1 and a primitive m-th
root of unity Ao € O* 4\ {1}, m > 1,

o (i) (U, V) € Am—tor,
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Hyperelliptic Quotient

o Let h = 7y vyho € Aut(A) and S € Isog(A) be a
diagonilizing isogeny of h, € Gla(O_g).

e Then the Galois quotient A/(h) is a hyperelliptic surface if
and only if

o (i) the eigenvalues of h, are A\; = 1 and a primitive m-th
root of unity Ao € O* 4\ {1}, m > 1,

e (ii) (U,V) € An—tor,
o (iii) some (and therefore any) lifting (U, V) € C? of
(U,V) € A satisfies S11V — S91U € S110_q + S210_4.
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The Kummer Surface Of an Abelian Surface

e Any abelian surface A has automorphism —Is and A/(—Is)
is a surface with 16 ordinary double points, covered by the
2-torsion points Ag_ i of A.
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The Kummer Surface Of an Abelian Surface

e Any abelian surface A has automorphism —Is and A/(—Is)
is a surface with 16 ordinary double points, covered by the
2-torsion points Ag_ i of A.

o The quotient X = As—/(~I2) of the blow-up A;— of A
at Ag_tor is a smooth K3 surface, birational to A/(—I2) and
called the Kummer surface of A.
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Enriques Quotient

o Let X be the Kummer surface of an abelian surface A,
g = T(u,v)8 € Aut(A) and S be a diagonalizing isogeny of
go € Glg(o_d).
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Enriques Quotient

o Let X be the Kummer surface of an abelian surface A,
g = T(u,v)8 € Aut(A) and S be a diagonalizing isogeny of
go € Gla(0_q).

o Then Y = X/(g) is an Enriques surface if and only if some
(and therefore any) lifting (U, V) € C2 of (U, V) € A

satisfies the following conditions:
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Enriques Quotient

o Let X be the Kummer surface of an abelian surface A,
g = T(u,v)8 € Aut(A) and S be a diagonalizing isogeny of
go € Gla(0_q).

o Then Y = X/(g) is an Enriques surface if and only if some
(and therefore any) lifting (U, V) € C2 of (U, V) € A

satisfies the following conditions:

o (i) the eigenvalues of g, are A\; = 1 and Ay = —1,
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Enriques Quotient

o Let X be the Kummer surface of an abelian surface A,
g = T(u,v)8 € Aut(A) and S be a diagonalizing isogeny of
go € Glg(o_d).

o Then Y = X/(g) is an Enriques surface if and only if some

(and therefore any) lifting (U, V) € C2 of (U, V) € A

satisfies the following conditions:

o (i) the eigenvalues of g, are A\; = 1 and Ay = —1,
(] (11) (U,V) c AQ—tora
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Enriques Quotient

o Let X be the Kummer surface of an abelian surface A,
g = T(u,v)8 € Aut(A) and S be a diagonalizing isogeny of
go € Gla(0_q).

o Then Y = X/(g) is an Enriques surface if and only if some
(and therefore any) lifting (U, V) € C2 of (U, V) € A

satisfies the following conditions:

o (i) the eigenvalues of g, are A\; = 1 and Ay = —1,
(] (11) (U,V) c AQ—tora
o (iil) go(U,V)=(U,V),
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Enriques Quotient

o Let X be the Kummer surface of an abelian surface A,
g = T(u,v)8 € Aut(A) and S be a diagonalizing isogeny of
go € Gla(0_q).

o Then Y = X/(g) is an Enriques surface if and only if some
(and therefore any) lifting (U, V) € C2 of (U, V) € A

satisfies the following conditions:

o (i) the eigenvalues of g, are A\; = 1 and Ay = —1,

(
(ii) (U,V) c Ag_tor,
(
(

iii) go(U, V) = (U, V),
e (iv) SooU — S15V & S990_q + S120_4,
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Enriques Quotient

o Let X be the Kummer surface of an abelian surface A,
g = T(u,v)8 € Aut(A) and S be a diagonalizing isogeny of
go € Glg(o_d).

o Then Y = X/(g) is an Enriques surface if and only if some
(and therefore any) lifting (U, V) € C2 of (U, V) € A

satisfies the following conditions:

o (i) the eigenvalues of g, are A\; = 1 and Ay = —1,
(i) (U, V) € Az—tor,

(i) £(U, V) = (U, V),

(

(

iV) 8226 — 812{7 & S900_q + S120_4,
o V) S11V —S91U € S5110_q + S210_4.
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Ruled Quotient With an Elliptic Or a Rational Base

e Proposition: (i) If a finite Galois quotient S = A/H of an
abelian surface A is a ruled surface then the base of S is of
genus 1 or 0.
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Ruled Quotient With an Elliptic Or a Rational Base

e Proposition: (i) If a finite Galois quotient S = A/H of an
abelian surface A is a ruled surface then the base of S is of
genus 1 or 0.

o (ii) If go € Gla(O_4) is a linear automorphism of A then
X = A/(go) is a ruled surface with an elliptic base if and
only if the eigenvalues of g, are A\; = 1 and Ay € O* ;\ {1}.
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Ruled Quotient With an Elliptic Or a Rational Base

e Proposition: (i) If a finite Galois quotient S = A/H of an
abelian surface A is a ruled surface then the base of S is of
genus 1 or 0.

o (ii) If go € Gla(O_4) is a linear automorphism of A then
X = A/(go) is a ruled surface with an elliptic base if and
only if the eigenvalues of g, are A\; = 1 and Ay € O* ;\ {1}.

o (iii) If g, € Gla(O_q) has eigenvalues A} = 1,
Ao € O 4\ {1} then for any A3 € O* ;\ {1} the quotient
Y = A/(go, Asla) is a ruled surface with a rational base and
therefore a rational surface.
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Criterion For an Abelian Ball Quotient Model

e Theorem: (Holzapfel) The blow-up of an abelian surface A
at the singular locus TS"& = 5~ (T;NTj) of a
1<i<j<h

h
multi-elliptic divisor T = > T; is smooth toroidal

i=1
compactification (B/I)’ of a ball quotient if and only if
A =E x E and T has singularity rate

h .
> card(T; N 'Tome)

i=1 _y
card(Tsing) '
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Criterion For an Abelian Ball Quotient Model

e Theorem: (Holzapfel) The blow-up of an abelian surface A
at the singular locus TS"& = 5~ (T;NTj) of a
1<i<j<h

h
multi-elliptic divisor T = > T; is smooth toroidal

i=1
compactification (B/I)’ of a ball quotient if and only if
A =E x E and T has singularity rate

h .
> card(T; N 'Tome)

i=1 _y
card(Tsing) '

@ The smooth elliptic curves on A = E x E are of the form

Ea b + (Pi, Qi) = {(aiP + Pi,biP + Q;) | P € E}.
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Holzapfel’'s Co-Abelian Compactification

Over Gauss Numbers With 6 Exceptional Curves

Proposition: (Holzapfel - 2001) There is a smooth Picard
/
modular (IB% / F(fis)> , such that the contraction of the rational

/
(—1)-curves & : (IB% / I-(jjis)> — A_; provides the abelian surface
A {=FE_1xE_{,E_1 = (C/(Z + Zi) and the multi-elliptic
divisor £(T") = T = Z T; with Ty = By for 1 < k < 4,

=1
Tm+4—QmXE17 m+6:E—1Xmeor1§mS27
Q1 = (modZ+Z1) Qo = i1Q1.
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The Automorphism Group Of (B/ I_(,Gig)

e Proposition: The group G(_ﬁig) = Aut(A_q, T(_Gis)) is
generated by the translation 7q,, with Qg3 = (Qz, Q3),
Q3 = %(modZ + Zi), the transposition 6 of the elliptic
factors of A_1 = E_1 x E_; and the multiplications I, J by i
on the first, respectively, the second factor of A_j.
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The Automorphism Group Of (B/ I_(,Gig)

e Proposition: The group G(_ﬁig) = Aut(A_q, T(_Gis)) is
generated by the translation 7q,, with Qg3 = (Qz, Q3),

Q3 = %(modZ + Zi), the transposition 6 of the elliptic
factors of A_1 = E_1 x E_; and the multiplications I, J by i
on the first, respectively, the second factor of A_j.

The representation ¢ : G(fig) — Sg(Ty,...,Tg) has

Kerp = (1q,,(il2)) ~ Z4 and Imy of order 16, which is
contained in S4(Ty,...,T4) X Sg(Ts,...,Ts) and surjects
onto the dihedral groups D4(T1, T2, T3, T4) and

D4(T5, T, Tg, Ts).
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New Galois Quotients Of the Co-Abelian

/
e Theorem: (i) The quotient of (]B/ F(_6i8)) by the cyclic
group
H; = <TQ33 ( (1) (1) >> C G(—GiS)

of order 2 is B/ r(ﬁ ”; with hyperelliptic minimal model
A_y/H;.
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New Galois Quotients Of the Co-Abelian

/
e Theorem: (i) The quotient of (]B/ F(_618)) by the cyclic
group
H; = <TQ33 ( (1) é >> C G(—GiS)

of order 2 is B/ r(ﬁ ”; with hyperelliptic minimal model
A_y/H;.

. : 6.8))’
e (ii) The quotient of (IB% JTE ) by the subgroup
-1 0
Hy = (1o, Qs ( 0 1 >> C Gg}ig)

of order 4 is B/T'}; r Enr—1 With Enriques minimal model,
covered by the Kummer surface X_1of A_y.
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New Galois Quotients Of the Co-Abelian

(iii) The quotient of (IB% / F(G 8 ) by the cyclic subgroup
10 (6.:8)
H3—<<0 1 >>CG—1

of order 4 is B/ rﬁiﬁll, birational to a ruled surface with an
elliptic base.
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Kummer Quotients Of Co-Abelian Ball Quotients

Hirzebruch’s (IBa/r(jg‘))' and Holzapfel’s (IBa/r(j”gf‘))', (E/r(f’f))'
admit holomorphic involutions, leaving invariant their toroidal
compactifying divisors. The corresponding orbit spaces are ball
quotient compactifications B/I'ks, birational to the Kummer
surfaces X_q of the abelian minimal models A_4.
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Holzapfel’'s Co-Abelian Compactification

Over Gauss Numbers With 3 Exceptional Curves

Proposition: (Holzapfel - 2001) There is a smooth Picard
/
modular (IB% / r(f‘f)) , such that the contraction of the rational

/
(—1)-curves & : (B/F(_Sf)> — A_; yields the abelian surface
A1=E_ 1 xE_{,E_1= (C/(Z + Zi) and the multi-elliptic
divisor ¢(T’) = T®9) = Z T; with Ty = E1, To = By 144,

T3 =Ei1+ Qs30, Ty = El i+ Qs0, Ts = E1-51, Te = Eo,1,
Qa0 = (Qg, Qo), Q3 = 1J”(modZ + Zi), Qo = 0(mod Z + Zi).
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The Automorphism Group And

" : 3,6)
a Hyperelliptic Quotient Of (B / rEl ))

@ Proposition: The group G(_?’iﬁ) = Aut(A_q, T(_3i6)) =

<112’TQ30 _1- 1- » TQo3 ! 0 » TQo3 Lol >
-1 141 1 i 1 -1

is of order 96 and ¢ : G(ff) — S¢(T1,...,Te) has
Kerp = (ilp) ~ Z4 and Imep ~ Sj.
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The Automorphism Group And

" : 3,6)
a Hyperelliptic Quotient Of (B / rEl ))

@ Proposition: The group G(_?’iﬁ) = Aut(A_q, T(_3i6)) =

—1i 1 1 1 —1+41
<112’ TQs30 1- : » TQos 0 » TQos o
—1 141 1 1 1 —1

is of order 96 and ¢ : G(ff) — S¢(T1,...,Te) has
Kerp = (ilp) ~ Z4 and Imep ~ Sj.
!/
e Proposition: (i) The quotient of (B/ r(_?’f) ) by the cyclic
group

-1 1 3,
Hy = (7qq < 0 1 >> - G(flﬁ)

is B/rgé?ll with hyperelliptic minimal model A_;/H;.
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Existence And Non-Existence Of (B/ F(Eiﬁ)

1 0
1+1 -1
determines the ruled surface with an elliptic base

f urtace wii
<B/r(}16)) /(h(3 :6) ) = B/rrif) , and the rational surface

/ E —(36)
(B/rC0) /O i) = BrG0

e (ii) The involution h(3 6 = € G(_316)
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Existence And Non-Existence Of (B/ F(Eiﬁ)

1 0
1+1 -1
determines the ruled surface with an elliptic base

f urtace wii
<B/r(}16)) /(h(3 :6) ) = B/rrif) , and the rational surface

/ E —(36)
(B/rC0) /O i) = BrG0

e (ii) The involution h(3 6 = € G(_316)

o (iii) The co-abelian smooth toroidal compactification

!
B/ I'(_?’iﬁ)) is not a finite Galois cover of a ball quotient
with Enriques minimal model.
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Hirzebruch’s Co-Abelian Compactification

Over Eisenstein Numbers With 1 Exceptional Curve

27i

o The ring of Eisenstein integers O_3 = Z + pZ with p =e’s
is the integers ring of Q(+/—3).
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Hirzebruch’s Co-Abelian Compactification

Over Eisenstein Numbers With 1 Exceptional Curve

27i

@ The ring of Eisenstein integers O_3 = Z + pZ with p =e¢
is the integers ring of Q(1/—3).

e Proposition: (Hirzebruch - 1984) There is a smooth Picard

/
modular (IB / I'(l’4)) such that contraction of the rational

(—1)-curves ¢ : (13%/r(1 A

surface A_g3 = E_3 x E_3, E_3 = C/O_3 and the

4
multi-elliptic divisor £(T') = T = STy with
i=1

Ty =Eio, To=Ei1, Tz3=E,1, Ts=Egp:.

) — A _3 produces the abelian
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' 14
The Automorphism Group Of (B/ r£3 )

Proposition: The group

1,4 14 . -
G(_g):Aut(A—3,T(—3)):<p12’ ( I —p >7 ( Lo >>

is of order 72 and ¢ : G(_1:3)4) — S4(T1,...,Ty) has
Kerp = (pla) ~ Zg and Imp = A4.
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. : . 1.4
Galois Quotients Of (B/ FSB )

e Proposition: (i) The element g(1 D = ( } _Op > € G(_1§)4)
of order 3 determines a ruled surface with an elliptic base

(B/r(lvﬁ‘)),/(g(l 4) ) = m and a rational surface
(Br0)' elh?, 1 = BT,
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. : . 1.4
Galois Quotients Of (B/ FSB )

e Proposition: (i) The element g(1 D = ( } _Op > € G(_1§)4)
of order 3 determines a ruled surface with an elliptic base

( a ruled st
(]E%/F(l’4)) /(g! (14 ) =B/ 14)3 and a rational surface

rul

(B/r%2) /2%, -1) =BT,

@ (ii) There are no hyperelliptic or Enriques ball quotient
/
compactifications, covered by (IBS/ F(_lé4)) .
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Holzapfel’'s Co-Abelian Compactification

Over Eisenstein Numbers With 3 Exceptional Curves

Proposition (Holzapfel - 1986) There is a smooth Picard
/
modular (IB% / F(Ef)) , such that the contraction of the rational

/
(—1)-curves & : (B/I—(ff)) — A_3 results in the abelian surface
A 3=FE _3xE_ 3, E_3 = C/O_3 and the multi-elliptic divisor

gy =180 = 2 T; with Ty = Ey9, Ty = E10 + P,

T3—E10+2P01, T4—E\ﬁ1,T5 E, /=31, Te = Eo,1,
P01 = (Pg,Pl), PO = O(mod O_ ), = %(mod 073).
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. 3,6
The Automorphism Group Of (B/ r£3 )

Proposition: The group

1 —pv-3 .
GO = Aut(A 5, TY) = (7p,,, pla, ( 0 p—,o >> with
p = e%, P01 = (Po,Pl), Po = O(mod 0_3), P1 = Tp(mod(’) )
is of order 54 and ¢ : G(_?’:’,)ﬁ) — S¢(T1,...,Te) has
Kerp = (p*Is) ~ Z3 and Tmyp = S3(T1, T2, T3) x A3(T4, Ts, Ts).
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Galois Quotients Of (B/ FSB )

e Proposition: (i) The element
@36 _ (1 —v=3
&3 0 02
ruled surface with an elliptic base

<IB%/F @, 6)) /(g™ (3 6) )y =B/T i6) 5 and the rational surface

(BrCPY /60, pta) =B/rED,

€ G(E’:’,,G) of order 3 determines the
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Galois Quotients Of (B/ FSB )

e Proposition: (i) The element
@36 _ (1 —v=3
&3 0 02
ruled surface with an elliptic base

<IB%/F G, 6)) /(g™ (3 6) )y =B/T i6) 5 and the rational surface

(BrCPY /60, pta) =B/rED,

€ G(E’:’,,G) of order 3 determines the

@ (ii) The co-abelian smooth toroidal compactification

/
<]B / r(j"f)) does not admit finite Galois quotients, which are

hyperelliptic or Enriques ball quotient compactifications.
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Lower Bound On the Fundamental Groups

o Lemma: Let ¢ : (B/T) — A = E x E be the blow-down of
the (—1)-curves on a smooth toroidal compactification
(B/I)" and T = £(T') be the image of the toroidal
compactifying divisor T = (B/I')" \ (B/I') on the abelian
minimal model A.
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Lower Bound On the Fundamental Groups

o Lemma: Let ¢ : (B/T) — A = E x E be the blow-down of
the (—1)-curves on a smooth toroidal compactification
(B/I)" and T = £(T') be the image of the toroidal
compactifying divisor T = (B/I')" \ (B/I') on the abelian
minimal model A.

@ Then any smooth elliptic irreducible component T; of T
and its proper transform T} C T’ admit a finite (not
necessary Galois) covering E — T ~ TI.
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Intersection Number

o Lemma: Let A_y = E_q X E_q be an abelian surface with
decomposed complex multiplication by Q(v/—d),
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Intersection Number

o Lemma: Let A_y = E_q X E_q be an abelian surface with
decomposed complex multiplication by Q(v/—d),

o Ty = Eak’bk + (Pk, Qk) with ay, by € End(E,d)7 k e {i,j} be
elliptic curves on A_q,
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Intersection Number

o Lemma: Let A_y = E_q X E_q be an abelian surface with
decomposed complex multiplication by Q(v/—d),

o Ty = Eak’bk + (Pk, Qk) with ay, by € End(E,d)7 k e {i,j} be
elliptic curves on A_q,

N = akﬂ'l(E—d) + bkﬂ'l(E—d) C 7T1(E_d).
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Intersection Number

o Lemma: Let A_y = E_q X E_q be an abelian surface with
decomposed complex multiplication by Q(v/—d),

o Ty = Eak’bk + (Pk, Qk) with ay, by € End(E,d)7 k e {i,j} be
elliptic curves on A_q,

o

N = akﬂ'l(E—d) + bkﬂ'l(E—d) C 7T1(E_d).

aj aj

Aij = det ( bi bJ > s Ng(\/jd) : End(E_d) — 2207
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Intersection Number

o Lemma: Let A_y = E_q X E_q be an abelian surface with
decomposed complex multiplication by Q(v/—d),

Ty = Eak’bk + (Pk, Qk) with ay, by € End(E,d)7 k e {i,j} be
elliptic curves on A_q,

°
Ak = agmi(E_q) + bemi(E—q) C m1(E_q).
o
- ai 4 Q(W=d) . _, 720
Aj; = det ( by b; > , NQ :End(E_q) 7=,
@ Then
Q(v=d)
N A
T.T, Q (Aj)

T (T m(E_)ll(A7 A N (Ty)) = (A A N (E_q))]
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Multi-Elliptic And Toroidal Divisors

With Minimal Fundamental Groups

o Definition: The irreducible components T} of T’ or,
equivalently, T; of T have minimal fundamental groups if
T! ~ T; ~ E are isomorphic to the elliptic factor of the
abelian minimal model A = E x E of (B/I)’.
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Multi-Elliptic And Toroidal Divisors

With Minimal Fundamental Groups

o Definition: The irreducible components T} of T’ or,
equivalently, T; of T have minimal fundamental groups if
T! ~ T; ~ E are isomorphic to the elliptic factor of the
abelian minimal model A = E x E of (B/I)’.

o If mi(T;i) = m1(Tj) = m1(E) are minimal then
v=d
TiT; = Nov =Y (ay).
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Uniqueness Result

Theorem: Up to an automorphism and a complex conjugation,

/ /! !/
Hirzebruch’s (B/r9§4)> and Holzapfel’s (IB%/F(E:’,F)) , (B/r(j)’iﬁ))
are the only co-abelian smooth toroidal compactifications (B/I)’

with at most three rational (—1)-curves and minimal
fundamental groups of T/ C T" = (B/I)"\ (B/I).

Ball Quotient Compactifications



Towards The Ultimate Proof Of Holzapfel’s Conjecture

@ There remains to be shown
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@ There remains to be shown

e the existence of ball quotient compactifications,
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Towards The Ultimate Proof Of Holzapfel’s Conjecture

@ There remains to be shown

e the existence of ball quotient compactifications,

e which are birational to elliptic surfaces or ruled surfaces
with bases of genus at least 2.
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