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Introduction

Viscous ¯ngering (Sa®man-Taylor instability) is the formation of pat-
terns in the interface between two °uids in a Hele-Shaw cell. It occurs
during injection when a less viscous °uid displaces a more viscous one. It
can also occur due to gravity if a horizontal interface separates two °uids
of di®erent densities and the heavier one is above the other.



Introduction
Sa®man-Taylor instability also occurs in many other frameworks, e.g.

in a Hele-Shaw cell subjected to pressure, radial magnetic ¯eld or rotation.



Coordinates and interface description
Let the interface be given by means of the coordinates x(s), y(s) in a

certain Cartesian coordinate frame in the Euclidean plane with s being
the interface arclength. The unit tangent vector t(s) and the unit normal
vector n(s) are related to the curvature ·(s) through the Frenet-Serret
formulas

t0(s) = ·(s)n(s); n0(s) = ¡·(s)t(s):



State of the art

Nye J.F., H.W.Lean and A.N.Wright.
Interfaces and falling drops in a
Hele-Shaw cell. Eur. J. Phys.
5, 73-80, 1984.

Nye et.al. (1984) studied gravitationally
driven Sa®man-Taylor ¯ngering using oil
above air in a Hele-Shaw cell. They de-
rived the expression

· =
d'
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= ¡Y

for the curvature of the interface between
the two °uids and
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p
2
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where Ã = (c+ cos')1=2 and (X;Y ) are
the scalled coordinates.



State of the art
Recall that within the approximations used by Nye et.al. an expression
for the curvature of form · = ¡Y is obtained. It is not a surprize that
such curvature gives rise to the prominent Euler elasticae presented below



State of the art
It is noteworthy that Euler elasticae is in-
herent in many di®erent ¯elds of science.
Most of all, elasticae appears in prob-
lems more or less related to the shapes
of plane curves.

However, other examples also exist.
Here is an illustration of elasticae curves
vizualizing the vibration of a pendulum.

Djondjorov P.A., M.TS. Hadzhilazova, I.M.
Mladenov and V.M. Vassilev. Explicit
parameterization of Euler elastica. Ninth
International Conference on Geometry,
Integrability and Quantization, June 8{
13, 2007, Varna, Bulgaria, Ed. I.M. Mlade-
nov, SOFTEX, So¯a 2008, pp 1{12.



State of the art

It is shown by many authors, see e.g., Leandro et.al. (2008) and
Oliveira et.al. (2008), that in a rotating Hele-Shaw cell the equation,
balancing the centrifugal force and the surface tension can be integrated
to yield the expression

·(r) = −(r2 ¡ºr2);

for the curvature of the interface between the two °uids, where − is the
dimensionless angular velocity and ºr is the radius at which · vanishes.
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State of the art
In these papers, the embedding Á = Á(r) of the interface is obtained

in terms of the angle Ã by the following two integrals

Ã = arcsin

µ
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¶
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r0

1

t
tanÃ(t)dt;

where r0 is the radius of a certain ¯xed
point of the interface.

However, the integrals are too com-
plicated and the authors of the aforemen-
tioned papers proceed the analysis evalu-
ating the foregoing integrals numerically.

Here, we follow another way to de-
termine the parametric equations for the
interface in an explicit analytic form.



Differential equations

Djondjorov, P., Vassilev, V., Mladenov, I., Plane curves associated with
integrable dynamical systems of the Frenet-Serret type, Trends in dif-
ferential geometry, complex analysis and mathematical physics. World
Scienti¯c - Singapore, pp. 56-62, 2009.

Vassilev, V., Djondjorov, P., Mladenov, I., Integrable dynamical systems
of the Frenet-Serret type, Ibid, pp. 234-244.

It is easy to see that Frenet{Serret formulae can be written as the fol-
lowing system for the coordinates of the position vector r(s) = (x(s); y(s))
of the interface

x00 + ·(r)y = 0; y00 ¡ ·(r)x = 0; ·(r) = −(r2 ¡ºr2):

Such a dynamical system is studied by the authors of the present analysis
within another context in



Parametric equations

In these papers we show that the coordinates of the position vector
can be expressed through the curvature ·(s) and the slope angle

'(s) =

Z
·(s)ds

in the form
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4−
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Hence, if the curvature ·(s) and the slope angle '(s) are known functions
of the arclength, the foregoing expressions for x(s) and y(s) are parametric
equations of the interface.



Differential equation for the curvature
In polar coordinates the foregoing dynamical system trahsforms to an

independent di®erential equation for r(s) and another equation for the
polar angle. Substituting the expression r2 = ºr2 + ·=− in the equation
for r(s), one easily obtains an equation for the curvature of form

·00 + ·3 ¡ ¹·¡ 4− = 0:

It possesses an apparent ¯rst integral of form

(·0)
2
= P (·(s)); P (·) = 2E ¡ 1

4
·4 +

1

2
¹·2 + 4−·;

where E is an integration constant.
We now proceed with determination of the solutions to this equation

for the curvature. Depending on the values of the coe±cients ¹, − and E,
two cases for the intrinsic equation of the interface and the corresponding
slope angle '(s) are to be considered.
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Case 1. The polynomial P (·) has two real
roots ® < ¯ and two complex conjugate roots °
and ±. In this case there exist both periodic and
nonperiodic solutions for the curvature · (s).

Periodic solutions exist in the cases when
(3®+ ¯)(®+3¯) 6= 0 and ´ = (° ¡ ±)=(2i) 6= 0.
They are of the form



where
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:

Nonperiodic solutions are obtained in the cases in which

(3®+ ¯)(®+ 3¯) = ´ = 0:

They are of the form

·2 (s) = ³ ¡ 4³

1 + ³2s2
; '2 (s) = ³s¡ 4 arctan (³s)

where ³ = ® if 3®+ ¯ = 0 and ³ = ¯ if ®+ 3¯ = 0.



Equilibrium shapes of the fluid interface

Examples of simple curves that are appropriate for the observed in-
terface shapes in the ¯xed Cartesian frame (above) and in the moving
co-frame associated with the curve (below).



Equilibrium shapes with points of contact
In a rotating Hele-Shaw cell, there exist values of the angular velocity

at which the interface exhibits shapes with points of contact that can be
considered as the onset of drop formation and separation. Shapes in the
¯xed Cartesian frame (above) and in the moving co-frame associated with
the curve (below).



Case 2. The polynomial P (») has four real
roots ® < ¯ < ° < ±. Then, two periodic
solutions exist:

·3 (s) = ± ¡ (± ¡ ®) (± ¡ ¯)

(± ¡ ¯) + (¯ ¡ ®) sn2 (us; k)

'3 (s) = ±s¡ ± ¡ ®

u
¦

µ
¯ ¡ ®

¯ ¡ ±
; am(us; k); k

¶
and

·4 (s) = ¯ +
(° ¡ ¯) (± ¡ ¯)

(± ¡ ¯)¡ (± ¡ °) sn2 (us; k)

'4 (s) = ¯s¡ ¯ ¡ °

u
¦

µ
± ¡ °

± ¡ ¯
; am(us; k); k

¶
where

u =
1

4

p
(° ¡ ®) (± ¡ ¯); k =

s
(¯ ¡ ®) (± ¡ °)

(° ¡ ®) (± ¡ ¯)
:



Equilibrium shapes of the fluid interface
Curvatures belonging to Case 2 always give rise to self-intersecting

curves. Here is an example of 4-fold symmetric curves in the ¯xed Carte-
sian frame (above) and in the moving co-frame associated with the curve
(below). The curves in the most right column clarify the actual size and
positions of the two curves.

·4(s)·3(s)
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