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The Lawson correspondence in spaceforms

I Let S3
ε be the 3-dim spaceform of curvature ε, M2 a fixed

Riemann surface.

I For fixed λ ∈ R, there exists bijections between sets of
conformal immersions

{
x : M2 → S3

ε |CMC = H
}

, for any
(H, ε) such that H2 + ε = λ.

I This bijection is such that “cousin” immersions x1 ↔ x2
have same induced metric.

I So morally these are “different extrinsic realizations of the
same Riemann surface.”

I Consequence of the Fund. Thm. of Surface Theory:

I the Gauss and Codazzi eqs are necessary and sufficient to
determine an immersion in S3

ε
I cousin surfaces have identical Gauss-Codazzi eqs.

I So alternatively these are “different geometric realizations of
the same system of PDE.”
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Critical surfaces

I Special case λ = 0 yields critical surfaces:

I
{

x : M2 → R3 | minimal
}
←→

{
x̂ : M2 → H3 | CMC1

}
I Given minimal surface x : M2 → R3 with first and second

fundamental forms (I , II ), then (Î , ÎI ) = (I , II + I ) define first
and second fund forms for its Bryant cousin x̂ : M2 → H3

(and conversely).
I Can expect much of the theory of Bryant surfaces to be

analogous to that of minimal surfaces:

I Holomorphic representation in terms of “Weierstrass data”
(Bryant’s theorem)

I Half-space thms, Cohn-Vossen and Osserman-type inequalities
for total curvature, finite index iff finite total curvature, etc.

I But there are important differences too..
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A cousin pair in the upper-half space model of H3

Catenoid Cateniod cousin
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Different view of the Catenoid cousin
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Difficulties...

I The CMC1 “representation theorem” involves a more
complicated integration, making cousin computation difficult.

I Certain techniques are not available on the CMC1 side.
I Example: local “blow-up” argument

I Move a point z0 ∈ M2 to the origin in R3 and do “conformal
deformation”: homotheity by k ∈ R+.

I This adjusts Gaussian curvature at z0 arbitrarily, but preserves
all global properties.

I Bryant surfaces inherit this deformation via the
correspondence, but it is not global.

I We do not regard conformal deformation as “integrable,” in
the sense that it cannot be computed explicitly in general.
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Conformal deformation, λ < 1

I

I

↓ ↓
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Why? The construction:

I Critical surfaces are determined by two holomorphic pieces of
“data”: (g , η), where g : M2 → S2, η ∈

∧1,0 M2.

I Minimal surface x(z) = π ◦ γ(z), where π = Re : C3 → R3,

γ(z) =

∫ z

z0

1
2(1− g2)
i
2(1 + g2)

g

 η

I Similarly, CMC1 x̂(z) = π ◦ F (z), where F is constructed
from:

F̃ =

(
x1

ẋ1−gηx1
η

x2
ẋ2−gηx2

η

)
=

(
ẏ1+gηy1

g2η
y1

ẏ2+gηy2
g2η

y2

)
where x1, x2 and y1, y2 are pairs of lin. indep. solutions of
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ẋ2−gηx2

η

)
=

(
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construction..

I

ẍ − (
η̇

η
) ẋ + (ġη) x = 0 (1)

ÿ − (
g η̇ + ġη

gη
) ẏ + (ġη) y = 0 (2)

I Then F = (det F̃ )−1/2F̃ takes values in SL2C.

I Regarding SL2C = Isom(H3), F is a moving frame along
x̂ = π ◦ F , where π : SL2C→ SL2C/SU2 ' H3.

I This x̂ is the Bryant cousin of the minimal surface x = π ◦ γ.
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ẍ − (
η̇

η
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A new interpretation

I The conformal deformation is the simplest modification of one
of these pieces: (g , η) 7→ (g , kη).

I That this is poorly behaved is unavoidable, but at least it
suggests the correspondence is better understood in terms of
the Gauss map.

I We want to give an interpretation of the correspondence that
makes this precise.

I Re-interpret the theory of Kokubu, Takahashi, Umehara,
Yamada in higher codimension.

I Identify a “tautological” deformation which is integrable.
I Return to the original n = 3 case to compute examples.

I The first step is to “complexify” Möbius geometry...
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I Re-interpret the theory of Kokubu, Takahashi, Umehara,
Yamada in higher codimension.

I Identify a “tautological” deformation which is integrable.

I Return to the original n = 3 case to compute examples.

I The first step is to “complexify” Möbius geometry...
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Michael Deutsch A Möbius geometric interpretation of the Lawson correspondence for minimal surfaces



The Lawson correspondence
Generalized correspondence

n=3 examples

Möbius geometry

I Let Sn ∈ Rn+1 be the standard n-sphere, σ : Sn − {∞} → Rn

stereographic projection.

I The Möbius group Mobn is the set of maps µ : Sn → Sn

preserving the set of hyperspheres.

I A map between Riemannian φ : (M, g)→ (N, h) is conformal
if φ∗h = λg for some λ : M → R+.

I Theorem (Liouville)

Any local conformal map φ : U → V between open subsets
U,V ⊂ Rn is a restiction of σ ◦ µ ◦ σ−1, where µ is a (uniquely
determined) Möbius transformation.

I Viewing the sphere as the projective null cone in Minkowski
space

{
v ∈ Rn+1,1 | v · v = 0

}
/v ∼ λv leads to the

isomorphism Mobn ' SO+
0 (n + 1, 1).

Michael Deutsch A Möbius geometric interpretation of the Lawson correspondence for minimal surfaces



The Lawson correspondence
Generalized correspondence

n=3 examples
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The Lawson correspondence
Generalized correspondence

n=3 examples

Complex Möbius geometry

I Complexify: The null cone Sn, projective Minkowski space
RPn+1, and the Möbius group SO+

0 (n + 1, 1) complexify (plus
Wick rotation) to the standard quadric
Qn =

{
v ∈ Cn+2 | v · v = 0

}
/v ∼ λv , projective space

CPn+1, and Möbius group MobC
n = SOn+2C, respectively.

I What is this geometrically? “A holomorphic conformal str.”:

I Differentiating v · v = 0, can describe the tangent bundle as
TQn = {[v ,w ] | [v ] ∈ Qn, v · w = 0} / ∼.

I The scalar product induces a conformal structure on the
tangent spaces, or specifying a holomorphic distribution of
“null cones” Cp = TpQn ∩ Qn ⊂ p⊥ ∩ Qn = TpQn.

I The Möbius group MobC
n is the set of maps µ : Qn → Qn

preserving the null cone distribution.

I To obtain a Liouville-type theorem, we need Clifford algebras...
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Complex Möbius geometry

I Complexify: The null cone Sn, projective Minkowski space
RPn+1, and the Möbius group SO+
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n=3 examples

Clifford algebra

I Let B be a non-degenerate symmetric bilinear form on Cn.

I The associative algebra ClB(Cn) with unit 1 generated by V
and C and subject to the relation v2 = B(v , v) is the Clifford
algebra of (Cn,B).

I Universal property: Given another assoc algebra A with 1, any
linear map φ : V → A such that φ(v)2 = B(v , v) extends to

an algebra morphism φ̃ : ClB(Cn)→ A. Thus there exist:

I “Main automorphism” a 7→ ā, extending v 7→ −v on Cn.
I “Main anti-automorphism” a 7→ aT , extending v 7→ v on Cn.
I “Adjoint” a 7→ a∗, given by composition a∗ = āT

I The main automorphism splits ClB(Cn) into ±1 eigenspaces
Cl0B(Cn)⊕ Cl1B(Cn) (even and odd subspaces) and defines a
Z2-grading.
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Michael Deutsch A Möbius geometric interpretation of the Lawson correspondence for minimal surfaces



The Lawson correspondence
Generalized correspondence

n=3 examples

Spin group

I Define |a| = aTa ∈ C for all a ∈ ClB(Cn)

I The spin group is:

SpinC
n =

{
µ ∈ Cl0B(Cn) | |µ| = 1, µCnµ−1 ⊂ Cn

}
I SpinC

n acts on Cn by definition, which gives a morphism
ρ : SpinC

n →MobC
n−2 (in fact, the 2:1 universal cover).

I Now split Cn = Cn−2 ⊕ C2 so that B(v , v) = B̃(w ,w) + xy .
Consider S : Cn → M2x2(ClB̃(Cn−2)) given by

v = (w , x , y) 7→ S(v) =

(
w x
y −w

)
.

I Since S(v)2 = B(v , v)I , it extends to an isomorphism
ClB(Cn) ' M2x2(ClB̃(Cn−2)). The image of SpinC

n turns out
to be...
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spin group...

Theorem (Vahlen)

µ =
(
a b
c d

)
∈ SpinC

n iff (some big list of conditions on a, b, c, d):

I a, d ∈ Cl0B(Cn−2), b, c ∈ Cl1B(Cn−2) with d∗a + b∗c = 1 and
d∗b + b∗d = c∗a + a∗c = 0,

I a∗a, b∗b, c∗c , d∗d , awb∗ − bwa∗, cwd∗ − dwc∗ ∈ C,
bd∗, ac∗, awd∗ − bwc∗ ∈ Cn−2, for all w ∈ Cn−2.

I What’s good about that? Take a null vector of the form
(w ,−w2, 1) and look at the projective image under S(w):

[S(w)] =

[
w −w2

1 −w

]
=

[
w
1

] [
1 w∗

]
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LFT form of MobCn action

I Then µ[S(w)]µ−1 = [µS(w)µ∗] can be rewritten[
aw + b
cw + d

] [
(cw + d)∗ (aw + b)∗

]
=

[
µ · w −(µ · w)2

1 −µ · w

]
that is, [S(µ · w)], where µ · w = (aw + b)(cw + d)−1.

I Any local conformal transformation φ : U → V between open
subsets U,V ⊂ Cn−2 is a restriction of S ◦ µ ◦ S−1, where
S = S |{(w ,−w2,1)}, whose image omits exactly ∞ = (0, 1, 0)
plus the “null cone at infinity” C∞ = T∞Qn−2 ∩ Qn−2.

I As a map to the “standard” quadric in CPn−1, the restriction
S : Cn−2 → Qn−2 − C∞ ⊂ CPn−1 is inverse stereo proj from
the hyperplane T∞Qn−2:

w 7→

1
2(1− w2)
i
2(1 + w2)

w


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Michael Deutsch A Möbius geometric interpretation of the Lawson correspondence for minimal surfaces



The Lawson correspondence
Generalized correspondence

n=3 examples

Minimal surfaces of arbitrary codimension

I Let x : M2 → Rn be an immersion. The Gauss map is the
distribution of tangent planes, a map into the Grassmannian
M2 → G2(Rn).

I G2(Rn) is the complex quadric:

I Let {u, v} a conformal basis (u · v = 0, |u| = |v |) for plane P
I Define a map P = span {u, v} 7→ [u − iv ] ∈ CPn−1

I This is a well-defined smooth bijection onto the quadric
Qn−2 =

{
[w ] ∈ CPn−1 |w · w = 0

}
.

I If z = u + iv is a complex coordinate on M2, {xu, xv} is a
conformal basis of the tangent plane, so [xz ] is the Gauss map.

I x is minimal iff the Gauss map is holomorphic [Chern].
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Weierstrass rep and the transform

I Can now use inverse stereographic projection to give a
Weierstrass representation:

x(z) = Re

∫ z

z0

1
2(1− g2)
i
2(1 + g2)

g

 η

where g : M2 → Cn−2 is a holomorphic Clifford algebra-valued
(also called the Gauss map), η a holomorphic 1-form.

I The most general modification to g that preserves these
properties is post-composition with a Möbius transformation:

I Definition
Let µ ∈MobC

n−2 and x : M2 → Rn a minimal surface with
Weierstrass data {g , η}. Define xµ to be the surface determined by

data {gµ, ηµ} =
{

(ag + b)(cg + d)−1, η
(cg+d)∗(cg+d)

}
.
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Generalized correspondence

I This is a non-isometric deformation, unless µ ∈ Spinn, in
which case xµ is a rotation of x by ρ(µ) ∈ SOnR.

I Now let G be a connected semi-simple Lie group of complex
dimension n, and let K ⊂ G be its compact form.

I The Killing form B is non-degenerate on the Lie algebra g.

I Adjoint action preserves B, so by connectedness we have a
morphism Ad : G → SOnC ' SpinC

n / {±I}, which restricts to
K → SOnR on the compact form.

I Given a fixed minimal surface x : M2 → Rn, the group G acts
on x by deformation x 7→ xAd(µ), and the moduli space of
such deformations is Hn

x = G/K .
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Generalized correspondence

I Identifying each tangent space TpHn
x ' ik = i Lie(K ), then B

defines a Riemannian metric on Hn
x , i.e. for the symmetric

pair (G ,K , τ,B), with τ : G → G the involution fixing K .

I Let φ : g→ Cn be an isometry (so that φ∗B is the standard
dot product), and fix a base point z0 ∈ M2:

I Definition (Kokubu, Takahashi, Umehara, Yamada)

Given a minimal immersion x : M2 → Rn, define the canonical
cousin to be x̂ : M2 → G/K such that x̂(z0) = I and x̂ = π ◦ F ,
where F : M2 → G is a solution to F−1dF = φ(∂x) = φ(xzdz).

I The x̂ is isometric to the original immersion x . In fact, this is
Bryant’s representation thm disguised as a definition:

I Theorem (Bryant)

When G = SL2C, the canonical cousin is the Bryant cousin.
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Tautological deformation

I KTUY regard x̂ as a “non-commutative” realization of x . The
system F−1dF = α becomes more and more complicated as n
increases, but has at least one special symmetry:

I Given a second minimal immersion xo : M̃2 → Rn, we can
identify their deformations spaces Hn

x ' Hn
xo and compare the

canonical cousins x̂ , x̂o .

I In the special case xo = xAd(µ) ∈ Hn
x , this identification is

given by multiplying by µ−1.

I Thus if F : M2 → G is a frame for cousin x̂ of x , then
Fo = F ◦ µ−1 is a frame for the cousin x̂o .

I Definition
Given a surface f = π(F ) : M2 → Hn and µ ∈ G , define the
transform fµ = π(Fµ−1).
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Michael Deutsch A Möbius geometric interpretation of the Lawson correspondence for minimal surfaces



The Lawson correspondence
Generalized correspondence

n=3 examples

Tautological deformation

I KTUY regard x̂ as a “non-commutative” realization of x . The
system F−1dF = α becomes more and more complicated as n
increases, but has at least one special symmetry:

I Given a second minimal immersion xo : M̃2 → Rn, we can
identify their deformations spaces Hn

x ' Hn
xo and compare the

canonical cousins x̂ , x̂o .

I In the special case xo = xAd(µ) ∈ Hn
x , this identification is

given by multiplying by µ−1.

I Thus if F : M2 → G is a frame for cousin x̂ of x , then
Fo = F ◦ µ−1 is a frame for the cousin x̂o .

I Definition
Given a surface f = π(F ) : M2 → Hn and µ ∈ G , define the
transform fµ = π(Fµ−1).
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I Given a second minimal immersion xo : M̃2 → Rn, we can
identify their deformations spaces Hn

x ' Hn
xo and compare the

canonical cousins x̂ , x̂o .

I In the special case xo = xAd(µ) ∈ Hn
x , this identification is

given by multiplying by µ−1.

I Thus if F : M2 → G is a frame for cousin x̂ of x , then
Fo = F ◦ µ−1 is a frame for the cousin x̂o .

I Definition
Given a surface f = π(F ) : M2 → Hn and µ ∈ G , define the
transform fµ = π(Fµ−1).
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Equivariance law

I Using the uniqueness part of Cartan-Darboux:

I Theorem ( )

If (x , x̂) are a canonical pair, so are (xAd(µ), (x̂)µ), for all µ ∈ G .

I Thus each explicitly known pair (a solution of F−1dF =
φ(xzdz)) sits in an n-parameter family of explicit pairs.

I Behavior is “opposite” to the conformal deformation:

I Proposition

Transform preserves neither embeddedness of ends nor periods of
minimal surfaces (when the later is preserved, the total curvature is
also), but preserves both for regular ends of Bryant surfaces.

I In the case n = 3, Clifford operations are trivial, and
Ad : SL2C→ SpinC

3 is an isomorphism, so we get all Möbius
deformations.
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Michael Deutsch A Möbius geometric interpretation of the Lawson correspondence for minimal surfaces



The Lawson correspondence
Generalized correspondence

n=3 examples

Equivariance law

I Using the uniqueness part of Cartan-Darboux:

I Theorem ( )

If (x , x̂) are a canonical pair, so are (xAd(µ), (x̂)µ), for all µ ∈ G .

I Thus each explicitly known pair (a solution of F−1dF =
φ(xzdz)) sits in an n-parameter family of explicit pairs.

I Behavior is “opposite” to the conformal deformation:

I Proposition

Transform preserves neither embeddedness of ends nor periods of
minimal surfaces (when the later is preserved, the total curvature is
also), but preserves both for regular ends of Bryant surfaces.

I In the case n = 3, Clifford operations are trivial, and
Ad : SL2C→ SpinC

3 is an isomorphism, so we get all Möbius
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Catenoid cousins: M2 ' C− {0} and (g , η) = (1
z , kdz)
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deformation: µ =
(

1 i
2

0 1

)
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0 1
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Voss cousins: M2 ' C− {±1} and
(g , η) = ( z , (z − 1)−1(z + 1)−1dz)
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deformation: µ =
(
1 + i 0
0 (1 + i)−1

)

a = 1+1 a = 1+1
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Bessel cousins: M2 ' C− {0} and (g , η) = (z2, dz
z )
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different views of the minimal surface

Above Side Below

Front Front Back
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deformation: µ =
(
1 0
0 1

)
= I
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deformation: µ =
(

1 3i
4

0 1

)
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deformation: µ =
(
1 i
0 1

)
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Thank you.

Michael Deutsch A Möbius geometric interpretation of the Lawson correspondence for minimal surfaces


	The Lawson correspondence
	Generalized correspondence
	n=3 examples

