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Introduction
Nonlinear evolution equations (NLEEs) of soliton type

(qα)t = Fα(q, qx, ...), q = (qα)1≤α≤s (1)

are equations admitting Lax representation

[L,A] = 0

where L,A are linear operators on ∂x, ∂t depending also on some functions
qα(x, t), 1 ≤ α ≤ s ( called ‘potentials’) and a spectral parameter λ.

Hierarchy of NLEEs related to Lψ = 0 (auxiliary linear problem)
– the evolution equations obtaine changing A.

Integration. Most of the schemes share the property: the Lax repre-
sentation permits to pass from the original evolution defined by the equa-
tions (1) to the evolution of some spectral data related to the problem
Lψ = 0: Faddeev, Takhtadjian 1987; Gerdjikov, Vilasi, Yanovski
2008.



The Caudrey-Beals-Coifman system (CBC system), called the
Generalized Zakharov-Shabat system (GZS system) in the case
when the element J is real, is one of the best known auxiliary linear
problems:

Lψ = (i∂x + q(x)− λJ)ψ = 0 (2)

Originally J was fixed, real and traceless n×n diagonal matrix with mutu-
ally distinct diagonal elements and q(x) is a matrix function with values in
the space of the off-diagonal matrices, Zakharov, Manakov, Novikov,
Pitaevski 1981. The assumption that J is a real simplifies substantially
both the spectral theories of L and the Recursion Operators Gerdjikov,
Kulish 1981; Gerdjikov 1986.

Next step: the case when J is a complex, traceless n × n matrix
with mutually distinct diagonal elements and q(x) is a matrix function
taking values in the space of the off-diagonal matrices. Caudrey 1982,
Beals and Coifman 1984, 1985; Beals, Sattinger 1991; Zhou 1989



Final step: The case when q(x) and J belong to a fixed simple Lie
algebra g in some finite dimensional irreducible representation, Gerd-
jikov, Yanovski, 1994. The element J should be regular, that is ker ad J

(ad J(X) ≡ [J,X], X ∈ g) is a Cartan subalgebra h ⊂ g. q(x) belongs to
the orthogonal complement h⊥ = ḡ of h with respect to the Killing form:
〈X, Y 〉 = tr (adXad Y ); X, Y ∈ g. Thus q(x) =

∑
α∈∆ qαEα where Eα

are the root vectors; ∆ is the root system of g. The scalar functions
qα(x) are defined on R, are complex valued, smooth and tend to zero as
x→ ±∞. We can assume that they are Schwartz-type functions. Classi-
cal Zakharov-Shabat system is obtained for g = sl (2,C), J = diag (1,−1).

AKNS approach to the soliton equations.

We construct the so-called adjoint solutions of L that is functions of
the type w = mXm−1 where X = const , X ∈ g and m is fundamental
solution of Lm = 0. Indeed they satisfy the equation:

[L,w] = (i∂xw + [q(x)− λJ,w]) = 0



Let wa = π0, w
d = (id − π0)w where π0 is the orthogonal projector

(with respect to the Killing form) of w over h⊥ and h respectively. Then
1. If a suitable set of adjoint solutions (wi(x, λ))i is taken, for λ
on the spectrum of L the functions wa

i (x, λ) form a complete set
in the space of potentials q(x).
2. If one expands the potential over (wi(x, λ))i as coefficients one
gets the minimal scattering data for L.

Recursion Operators

Passing from the potentials to the scattering data can be considered as
Generalized Fourier Transform. For it wa

i (x, λ) play the same role the
exponents play in the Fourier Transform. The Recursion Operators
(Generating Operators, Λ-operators) are the operators for which
the adjoint solutions wa

i (x, λ) introduced above are eigenfunc-
tions and therefore for the Generalized Fourier Transform they
play the same role as the differentiation operator in the Fourier
Transform method.



For the above reason Recursion Operators play important role in the
theory of soliton equations - it is a theoretical too which apart from
explicit solutions can give most of the information about the NLEEs.
Through them can be obtained:

i) The hierarchies of the nonlinear evolution equations solvable
through L

ii) The conservation laws for these NLEEs

iii) The hierarchies of Hamiltonian structures for these NLEEs

It is not hard to get that the Recursion Operators related to L have
the form

Λ±(X(x)) = (3)

ad −1
J

i∂xX + π0[q,X] + iad q

x∫
±∞

(id − π0)[q(y), X(y)]dy.


where of course ad q(X) = [q,X] and X is a smooth, fast decreasing func-
tion with values in h⊥.



Recursion Operators name origin

For NLEEs such that [L,A] = 0 where A is of the form

A = i∂t +
n∑
k=0

λkAk, An ∈ h, An = const , An−1 ∈ h⊥

it follows that An−1 = ad −1
J [q, A] and for 0 < k < n− 1 and the recursion

relations

π0Ak−1 = Λ±(π0Ak), (id − π0)Ak = i(id − π0)

x∫
±∞

[q, π0Ak](y)dy(4)

Then the NLEEs related to L can be written into one of the two forms:

iad −1
J qt + Λn

±
(
ad −1

J [An, q]
)

= 0 (5)

Thus the Recursion Operators can be introduced also purely
algebraically as the operators solving the above recursion rela-
tions.



Geometric Interpretation

The Recursion Operators have interesting geometric interpretation as
dual objects to a Nijenhuis tensors N on the manifold of potentials on
which it is defined a special geometric structure, Poisson- Nijenhuis struc-
ture. In their turn the NLEEs related to L are fundamental fields of that
structure. This interpretation has been given by F Magri, Magri 1978.
In full the geometric theory of the Recursion Operators is presented in
Gerdjikov, Vilasi, Yanovski 2008. Summarizing, the Recursion Op-
erators have three important aspects:

• They appear naturally considering recursion relations arising
from the Lax representations of the NLEEs related with L.

• In the Generalized Fourier expansions they play the role sim-
ilar of the role of differentiation in the Fourier expansions.

• Their adjoint operatos are Nijenhuis tensors for some special
geometric structure on the manifold of potentials - Poisson-
Nijenhuis structures.



We shall discuss here the implications of the Mikhailov-type reductions
on the theory of Recursion Operators. It has been considered recently
in several papers, for example Gerdjikov, Mikhailov, Valchev 2010;
Valchev 2011, Gerdjikov, Grahovski, Mikhailov, Valchev, 2011;
Yanovski 2011. In these papers the case of the CBC system in pole
gauge is treated. The CBC system in canonical gauge (the one we dis-
cuss) subject to reductions has been considered earlier. For example, in
Grahhovski 2002, Grahovski 2003 were investigated the implications
to the scattering data. In Gerdjikov, Kostov, Valchev 2009 the Re-
cursion Operators has been considered from spectral theory viewpoint.
A general result about the geometry of the Recursion Operators for L is
presented in Yanovski 2012. From the other side, though there are num-
ber of papers treating what happens with the spectral expansions related
with the Recursion Operators in concrete situations with Zp reductions,
there has been no general treatment and in this article we shall try to fill
this gap.



Fundamental analytical solutions for the CBC system

If q(x) =
∑

α∈∆ qα(x)Eα we define: ‖q‖1 =
∑
α∈∆

+∞∫
−∞
|qα(x)|dx. Potentials

for which ‖q‖1 <∞ form a Banach space L1(ḡ,R). Main facts related to
the spectral properties of the solutions of the (2) with q ∈ L1(ḡ) were CBC
system is considered in some irreducible matrix representation defined on
a space V are obtained in Gerdjikov,Yanovski 1994. Let m(x, λ) =
ψ(x, λ) exp iλJx where ψ satisfies CBC system. Then:

i∂xm+ q(x)m− λJm+ λmJ = 0 lim
x→−∞

m = 1V (6)

Theorem 0.1 Suppose that for fixed λ the bounded fundamental solution
m(x, λ), satisfying the equation (2) exists. Suppose that λ does not belong
to the bunch of straight lines Σ = ∪α∈∆lα where

lα = {λ : Im(λα(J)) = 0} (7)

Then the solution m(x, λ) is unique. (In the above Im denotes the imag-
inary part).



Next, suppose Γ is the system of weights in the representation of g for
which we are considering the CBC system. We then have the following
system of integral equations which as readily checked is equivalent to the
differential equation (6):

〈γ1|m|γ2〉 = 〈γ1|γ2〉+ i

x∫
−∞

〈γ1|q(y)m(y)|γ2〉e−iλ(γ1−γ2)(J)(x−y)dy (8)

for Im(λ(γ1 − γ2)(J)) ≤ 0, γ1, γ2 ∈ Γ

〈γ1|m|γ2〉 = i

x∫
+∞

〈γ1|q(y)m(y)|γ2〉e−iλ(γ1−γ2)(J)(x−y)dy (9)

for Im(λ(γ1 − γ2)(J)) > 0, γ1, γ2 ∈ Γ

For γ1, γ2 ∈ Γ, consider the lines:

lγ1,γ2 = {λ : Imλ(γ1 − γ2)(J) = 0}, (γ1 − γ2)(J) 6= 0 (10)



The set of these lines coincides with the set of lines Σ = ∪α∈∆lα
introduced earlier in (7). The connected components of the
set C \ Σ are open sectors in the λ-plain. In every such sector
either Im[λ(γ1 − γ2)(J)], γ1, γ2 ∈ Γ is identically zero or it has the
same sign. We denote these sectors by Ων and order them anti-
clockwise. Clearly ν takes values from 1 to some even number 2M .
Thus:

C \ Σ =
2M⋃
ν=1

Ων, Ων

⋂
Ωµ = ∅, ν 6= µ (11)

In the ν-th sector we introduce the ordering :

α ≥ν β iff Imλ(α− β)(J) ≥ 0

α >ν β iff Imλ(α− β)(J) > 0
(12)



Then the system of integral equations can be written in every sector Ων :

〈α|m|β〉 = 〈α|β〉+ i

x∫
−∞

〈α|q(y)m(y)|β〉e−iλ(α−β)(J)(x−y)dy

for α− β ≤ν 0, α, β ∈ Γ

〈α|mβ|〉 = i

x∫
+∞

〈α|q(y)m(y)|β〉e−iλ(α−β)(J)(x−y)dy

for α− β >ν 0, α, β ∈ Γ

(13)

Thus there is system of integral equations in every Ων, ν = 1, 2, . . . , 2M .
We count the sectors anticlockwise and then the boundary of the sector
Ων consists of two rays - Lν−1 and Lν (Lν−1 comes before Lν when we
turn anti-clockwise) so that Ω̄ν ∩ Ω̄ν+1 = Lν. Of course, we understand
the number ν modulo 2M .

For small potentials there is no discrete spectrum, more pre-
cisely one has the following Theorem:



Theorem 0.2 If the potential q(x) ∈ L1(ḡ,R) is such that q1 < 1 then for
λ ∈ Ων there exists unique analytical solution m(x, λ) with the following
properties:

1. If q has integrable derivatives up to the n-th order then m(x, λ) = 1V +
n∑
i=1

ai(x)λ−i + o(λ−(n+1)) when |λ| → ∞, uniformly in x ∈ R, where

the coefficients ai(x) are calculated through q and its x-derivatives. In
particular, for absolutely integrable q we have lim

λ→∞
m(x, λ) = 1V

2. The solution m(x, λ) allows continuous extension to the closure Ων of
the sector Ων.

3. The solution m(x, λ) and its inverse obey the estimates m∞ < (1 −
q1)
−1, m−1 < (1− q1)

−1.

For potentials that are not small the typical approach is to
consider potentials on compact support and then to pass to
Lebesgue integrable potentials. The situation is complicated,
there is discrete spectrum etc.



Expansions over adjoint solutions

In order to introduce them we first define in each Ων analytic solutions
χν(x, λ) of (2)

mν(x, λ) = χν(x, λ)eiλJx (14)

and then we set

eνα(x, λ) = π0(χν(x, λ)Eαχ
−1
ν (x, λ)), λ ∈ Ω̄ν (15)

This notation is better to be changed a little because for λ ∈ Lν it
will be good to retain the index ν to refer to the ray Lν. Then it
becomes necessary to distinguish from what sector the solution
is extended. So for λ ∈ Lν we shall write e

(+;ν)
α (x, λ) if the solution is

extended from the sector Ων−1 and e
(−;ν)
α (x, λ) if the solution is extended

from the sector Ων. In other words, for λ ∈ Lν

eν;+
α (x, λ) = π0(χν(x, λ)Eαχ

−1
ν (x, λ)) (16)

eν;−
α (x, λ) = π0(χν−1(x, λ)Eαχ

−1
ν−1(x, λ))

Then the completeness relations (no discrete spectrum) run:



Π0δ(x− y) =

1
2π

M∑
ν=1

∫
Lν

dλ{
∑
α∈∆+

ν

e
(−;ν)
α (x)⊗ e(−;ν)

−α (y)−
∑

α∈∆+
ν−1

e
(+;ν)
α (x)⊗ e(+;ν)

−α (y)}

(17)

where Π0 =
∑

γ∈∆
|γ〉〈γ|
γ(J) . Here we assumed that the rays are oriented from

0 to ∞ and we have omitted the dependence on λ in order to be able to
write nicely the formula.

The formula itself must be understood in the following way. First, it it
assumed that g∗ is identified with g, assuming that the pairing is given by
the Killing form. So for example, for X, Y, Z ∈ g making a contraction of
X⊗Y with Z on the right we obtain X〈Y, Z〉 and making contraction from
the left we get 〈Z,X〉Y . Next, the formula for Π0 implies that making a
contraction with Π0 the right we get Π0X = ad −1

J π0X and similarly from
the left XΠ0 = ad −1

J π0X. (On the space ḡ the operator ad J is invertible).



Suppose that we have a L1-integrable function h : R 7→ ḡ. Making a
contraction of ad Jh = [J, h] with (17) from the right (left) and integrating
over y from −∞ to +∞ we get:

h(x) =

1
2π

M∑
ν=1

∫
Lν

{
∑
α∈∆+

ν

e
(−;ν)
α (x)〈〈e(−;ν)

−α , [J, h]〉〉 −
∑

α∈∆+
ν−1

e
(+;ν)
α (x)〈〈e(+;ν)

−α , [J, h]〉〉}dλ

(18)

= 1
2π

M∑
ν=1

∫
Lν

{
∑
α∈∆+

ν

e
(−;ν)
−α (y)〈〈e(−;ν)

α , [J, h]〉〉 −
∑

α∈∆+
ν−1

e
(+;ν)
−α (y)〈〈e(+;ν)

α , [J, h]〉〉}dλ

(19)
In the above

〈〈e(−;ν)
−α , [J, h]〉〉 =

+∞∫
−∞

〈e(−;ν)
−α (x), [J, h(x)]〉〉dx (20)

〈〈e(+;ν)
−α , [J, h]〉〉 =

+∞∫
−∞

〈e(+;ν)
−α (x), [J, h(x)]〉dx (21)



1. It can be shown that the expansion (18) converges in
the same sense as the Fourier expansions for h(x). These are
the so-called Generalized Fourier Expansions and the functions
e±;ν
α (x, λ) are the Generalized Exponents. When one expands

over the Generalized Exponents the potential q(x) one gets as
coefficients the minimal scattering data.

2. One can prove that

(Λ− − λ)e(−;ν)
α = 0, α ∈ ∆+

ν , (Λ− − λ)e(+;ν)
α = 0, α ∈ ∆+

ν−1 (22)

(Λ+ − λ)e
(−;ν)
−α = 0, α ∈ ∆+

ν , (Λ+ − λ)e
(+;ν)
−α = 0, α ∈ ∆+

ν−1 (23)

and therefore the expansions (18) and (19) are in fact the spec-
tral decompositions for the operators Λ− and Λ+, that is they
play for these expansions the role that i∂x plays for the Fourier
expansion.



Zp reductions in the CBC system defined
by an automorphism

We shall consider now special type of linear problems of the type (2)
in which the potential function q(x) and the element J obey some special
requirements resulting from Mikhailov-type reductions. We shall consider
Mikhailov reduction group G0 is generated by one element, which we de-
note by H.

H(ψ(x, λ)) = K(ψ(x, ω−1λ)) (24)

where ω = exp 2πi
p and K is automorphism of order p of the Lie group cor-

responding to the algebra g. K generates an automorphism of g which we
shall denote by the same letter K. We shall require in the above situation
that the automorphism leave invariant the Cartan subalgebra h ⊂ g to
which the element J in the CBC system belongs.



General remarks

• Suppose K is an automorphism of g and Kp = id , Kh ⊂ h. (In
case of Coxeter automorphisms p is called the Coxeter number). The
Coxeter automorphisms are internal that is each K is internal and
can be represented as K = Ad(K), K belonging to the corresponding
group G with algebra g.

• The automorphisms leave the Killing form invariant, a fact that we
shall use constantly.

• The algebra g splits into a direct sum of eigenspaces of K, that is:

g = ⊕p−1
s=0g

[s] (25)

where for each X ∈ g[s] we have KX = ωsX and the spaces g[s], g[k]

for k 6= s are orthogonal with respect to the Killing form.

• Because K is an automorphism of g leaving h invariant, it leaves
invariant also the orthogonal complement ḡ of h. Thus each g[s] splits
into ḡ[s] ⊕ h[s] and

ḡ = ⊕p−1
s=0ḡ

[s], h = ⊕p−1
s=0h

[s] (26)



For different k and s the spaces g[k] and g[s] are orthogonal with respect
to the Killing form and the spaces ḡ[k] and h[s] are orthogonal for
arbitrary k and s. Further, if we denote the orthogonal projections
on g[k] by 1[k] we shall have that ζ [k] = 1[k](1−π0) are the projections

on h[k] and 1[k]π0 = π
[k]
0 are the orthogonal projector on ḡ[k].

• If as before the orthogonal projector g 7→ ḡ is denoted by π0 we shall
have:

π0 =

p−1∑
k=0

π
[k]
0 , π

[l]
0 π

[s]
0 − π

[s]
0 π

[l]
0 = 0 (27)

1− π0 =

p−1∑
k=0

ζ [k], ζ [l]ζ [s] − ζ [s]ζ [l] = 0 (28)

π
[k]
0 + ζ [k] = 1[k], ζ [l]π

[s]
0 = π

[s]
0 ζ

[l] = 0 (29)

Let us assume that the set of fundamental solutions for the spectral prob-
lem (2) are invariant under G0. Then as it is easy to see that we must
have

K(J) = ωJ, Kq = q (30)



that is, J ∈ g[1], q(x) ∈ g[0]. In fact, suppose we have a Lax representation
[L,A] = 0 where A has the form:

A = i∂t +
n∑
k=0

λkAk, An ∈ h, An = const , An−1 ∈ ḡ

If the common fundamental solutions for Lψ = 0, Aψ = 0 are invariant
under G0 then we also have:

K(As) = ωsAs s = 0, 1, 2, . . . n (31)

The above reductions are compatible with the evolution in the sense that
if at the moment t = 0 we have (30, 31) we have the same relations at
arbitrary moment t.

The invariance of the set of the fundamental solutions can
be additionally specified if we take the fundamental analytic
solutions mν(x, λ) defined in the sectors Ων, ν = 1, 2, . . . h defined
by the straight lines lα = {λ : Im(λα(J)) = 0}, α ∈ ∆. (Of course,
one obtains the same line for α and −α but it can happen that α 6= β
and lα = lβ).



Taking into account the uniqueness of the solutions m(x, λ) we get that
K(m(x, λ)) is equal to m(x, ωλ). Consequently, we obtain that

K(χ(x, λ)) = K(m(x, λ)e−iJxλ) = m(x, ωλ)e−iJxωλ = χ(x, ωλ) (32)

is analytic in ωΩν. If lα, lβ form the boundary of Ων then ωlα, ωlβ
are the straight lines defining the boundary of ωΩν.

Let us define K̂ : h 7→ h by K̂ = (K∗)−1. The map K̂ defines the
coadjoint action of K on h∗. Naturally K̂p = id and

〈K̂ξ,KH〉 = 〈ξ,H〉, ξ ∈ h∗, H ∈ h (33)

It is a general fact from the theory of the automorphisms is that for
all roots we have KEα = q(α)EK̂α, where q(α) = ±1, q(α)q(−α) = 1,
q(α)q(β) = q(α + β) if α + β ∈ ∆. One easily gets that ωlα = lK̂−1α.
Thus we have an action of the automorphism K (the group Zp)
on the bunch of lines {lα}α∈∆ defined by K̂−1 and similarly the
action on the set of sectors Ων, ν = 1, 2, . . . , h. We have



Proposition 0.1 The representatives from the different orbits of the Zp
on the set of sectors Ων, ν = 1, 2 . . . , a can be taken to be adjacent, which
we shall always assume.

Reductions defined by Coxeter automorphisms

Coxeter automorphisms are the automorphisms for which

K̂ = Sα1
Sα2

. . . Sαr

where Sαi are the Weyl reflections corresponding to the simple roots
α1, α2, αr of g. We are able to prove the following:

Theorem 0.3 Assume we have the CBC problem for the classical series
of simple Lie algebras and the Zp reduction is defined as in the above using
the Coxeter automorphism K. Then we have two adjacent fundamental
sectors of analyticity for the fundamental analytic solutions mν(x, λ) and
they can be chosen to be

Ω0 = {λ :
π

2
< arg (λ) <

π

2
+
π

p
}

Ω1 = {λ :
π

2
+
π

p
< arg (λ) <

π

2
+

2π

p
}

(34)



Expansions in presence of reductions
defined by automorphisms

Zp reductions of general type

Consider the general case of automorphism K of order p, let Ω1, Ω2 ...
Ωa be the fundamental sectors (moving anticlockwise when we go from
Ω1 to Ωa) and let us label the rays that form the boundaries of the sec-
tors in such a way that Ων is locked between the rays Lν and Lν+1 that
are oriented from zero to infinity. Since multiplication by ωp is identity
(turning by angle 2π) the number of sectors is M = pa and M is even
number. Multiplying by ω we get from the sector Ων the sector Ωa+ν

and multiplying by ωM we get again Ω1 so we shall understand the labels
modulo M . Naturally, La+ν = ωLν and Ωa+ν = ωΩν. For each α ∈ ∆ we
have K(Eα) = q(α)EK̂α, where q(α) are numbers, such that q(α) = ±1,
q(α)q(−α) = 1 and q(α)q(β) = q(α + β) if α + β ∈ ∆.



It is not hard to obtain that

[K ◦ π0](χν(x, λ)Eαχ
−1
ν (x, λ)) = π0(χν+a(x, ωλ)K(Eα)χ−1

ν+a(x, ωλ)) =

q(α)π0(χν+a(x, ωλ)EK̂αχ
−1
ν+a(x, ωλ))

and as a consequence :

K(eνα(x, λ)) = q(α)eν+a

K̂α (x, ωλ) (35)

Changing variables for the integrals over the rays that do not
belong to the closures of the fundamental sectors and taking
into account (35) we transform expansion (17) into

Π0 δ(x− y) =

1

2π

a∑
ν=1

p∑
k=1

∫
Lν

{
∑
α∈∆+

ν

ωkKk ⊗Kk(e(−;ν)
α (x)⊗ e(−;ν)

−α (y))−∑
α∈∆+

ν−1

ωkKk ⊗Kk(e(+;ν)
α (x)⊗ e(+;ν)

−α (y))}dλ

(36)



where

(K ⊗K)(X ⊗ Y ) = K(X)⊗K(Y ) (37)

Note that the numbers q(α) don’t appear any more, this occurs because
we apply K always on products of the type Eα ⊗ E−α. The rays Lν are
orientated from 0 to ∞.

The expansions of a function h(x) over the adjoint solutions
can be simplified further, if for arbitrary x the value h(x) ∈ g[s],
where g[s] is the eigenspace corresponding to the eigenvalue ωs.

As the Killing form is invariant with respect to the action of the auto-
morphism, we get

〈Kk(eνα(x, λ)), [J, h(x)]〉 = 〈eνα(x, λ,K−k([J, h(x)])〉 =

= ω−k(s+1)〈eνα(x, λ), [J, h(x)]〉



The expansions over the adjoint solutions run as follows:

h(x) =

ε

2π

a∑
ν=1

∫
Lν

{
∑
α∈∆+

ν

p∑
k=1

ω−ksKk(e(−;ν)
εα (x, λ))〈〈e(−;ν)

−εα , [J, h]〉〉−

−
∑

α∈∆+
ν−1

p∑
k=1

ω−ksKk(e(+;ν)
εα (x, λ))〈〈e(+;ν)

−εα , [J, h]〉〉}dλ

(38)

In the above are written two expansions, one for ε = +1 and the other
for ε = −1.

Thus we see that h(x) is actually expanded over the functions:

e(±;ν;s)
α (x, λ) =

p∑
k=1

ω−ksKk(e(±;ν)(x, λ)) ∈ g[s], ν = 1, 2, . . . , a (39)

since for arbitrary X ∈ g we have
∑p

k=1 ω
−ksKk(X) ∈ g[s].



We shall denote by e
(ν;s)
α (x, λ) the expressions:

e
(ν;s)
α (x, λ) =

p∑
k=1

ω−ksKk(eνα(x, λ)), λ ∈ Ων (40)

Clearly, e
(±;ν;s)
α (x, λ) are just the limits of e

(ν−1;s)
α (x, λ) and e

(ν;s)
α (x, λ)

when λ approaches one of the rays Lν from one or the other side.

If as before h(x) ∈ g[s], we get

〈e(ν;s)
α (x, λ), [J, h(x)]〉 = p〈eνα, [J, h(x)]〉

and the expansions (38) can be cast into the form

h(x) =
ε

2πp

a∑
ν=1

∫
Lν

{
∑
α∈∆+

ν

e(−;ν;s)
εα (x, λ)〈〈e(−;ν;s)

−εα , [J, h]〉〉−

−
∑

α∈∆+
ν−1

e(+;ν;s)
εα (x, λ))〈〈e(+;ν;s)

−εα , [J, h]〉〉}dλ
(41)

(We have two expansions, for ε = +1 and for ε = −1).



Coxeter automorphisms reductions

When Zp reduction defined by a Coxeter automorphism of degree p

on some of the simple Lie algebras from the classical series the above
expansion specify further. Note that in this case the number p is equal
to the dimension of the Cartan subalgebra. For the sake of symmetry
we label the fundamental sectors by 0 and 1, that is they are Ω0 and Ω1.
Their boundaries are formed by the rays L−1, L0, L1. Next, if α ∈ ∆+

ν

then

• ν = 2k leads to K̂−kα ∈ ∆+
0 = ∆+

2p

• ν = 2k + 1 leads to K̂−kα ∈ ∆+
1 .



Using the same type of notation as in the general case, the
completeness relation (in case we do not write the discrete sector
terms) can be cast into the form:

Π0 δ(x− y) =

1

2π

+1∑
ν=−1

∫
Lν

dλ{
∑
α∈∆+

ν

p∑
k=1

ωkKk ⊗Kk(e(−;ν)
α (x, λ)⊗ e(−;ν)

−α (y, λ))−

−
∑

α∈∆+
ν−1

p∑
k=1

ωkKk ⊗Kk(e(+;ν)
α (x, λ)⊗ e(+;ν)

−α (y, λ))}

(42)

(The rays L0, L±1 are orientated from 0 to ∞.)
If the function h(x) is such that for arbitrary x the value h(x) ∈

g[s], where g[s] is the eigenspace for the Coxeter automorphism,
we get 〈Kk(eνα(x, λ)), [J, h(x)]〉 = ω−k(s+1)〈eνα(x, λ), [J, h(x)]〉.



The corresponding expansions over the adjoint solutions run
as follows:

h(x) =

ε

2π

+1∑
ν=−1

∫
Lν

dλ{
∑
α∈∆+

ν

p∑
k=1

ω−ksKk(e(−;ν)
εα (x, λ))〈〈e(−;ν)

−εα , [J, h]〉〉−

−
∑

α∈∆+
ν−1

p∑
k=1

ω−ksKk(e(+;ν)
εα (x, λ))〈〈e(+;ν)

−εα , [J, h]〉〉}

(43)

In the above are written two expansions, for ε = +1 and ε = −1.

As before we see that h(x) is actually expanded over the func-
tions:

e(±;ν;s)
α (x, λ) =

p∑
k=1

ω−ksKk(e(±;ν)(x, λ)), ν = 0, 1,−1 (44)

which are the ’stratifications’ of the usual adjoint solutions un-
der the endomorphism K.



In complete analogy with the general case, denoting by e
(ν;s)
α (x, λ)

the expressions:

e
(ν;s)
α (x, λ) =

p∑
k=1

ω−ksKk(eνα(x, λ)), λ ∈ Ων (45)

we see that e
(±;ν;s)
α (x, λ) are the limits of e

(ν;s)
α (x, λ) when λ ap-

proaches one of the rays L0, L±1 from one or the other side.
If h(x) ∈ g[s], we get 〈e(ν;s)

α (x, λ), [J, h(x)]〉 = p〈eνα(x), [J, h(x)]〉 As
a consequence, the expansions (43) can be cast into the form

h(x) =
ε

2πp

+1∑
ν=−1

∫
Lν

{
∑
α∈∆+

ν

e(−;ν;s)
εα (x, λ)〈〈e(−;ν;s)

−εα , [J, h]〉〉−

−
∑

α∈∆+
ν−1

e(+;ν;s)
εα (x, λ))〈〈e(+;ν;s)

−εα , [J, h]〉〉}dλ
(46)

(We have two expansions, for ε = +1 and for ε = −1.)



Recursion Operators in the presence of Zp
reductions defined by automorphism

Algebraic aspects
Let us see now what happens with the Recursion Operator:

Λ±X = ad −1
J

{
i∂xX + π0[q,X] + iad q(1− π0)∂

−1
x [q,X]〉

}
(47)

when Zp reductions are present. Then the algebra splits in a
direct sum, see (25) and q ∈ g[0] while J ∈ h[1]. In particular, this
means that

ad J(ḡ[s]) ⊂ ḡ[s+1], ad −1
J (ḡ[s]) ⊂ ḡ[s−1] (48)

(the superscripts are understood modulo p). Also, if X ∈ ḡ[s]

then ∂xX ∈ ḡ[s], ∂−1
x X ∈ ḡ[s], [q,X] ∈ ḡ[s] and

Λ±X = ad −1
J {i∂xX + π0[q,X] + ad q∂

−1
x (1− π0)[q,X]} ∈ ḡ[s−1] (49)

If we use the notation introduced in (27) the above expression
can also be written as

Λ±X = ad −1
J {i∂x + π0ad q + ad q∂

−1
x (1− π0)ad q}π[s]

0 X (50)



Denote

• By F(ḡ) the space of smooth, rapidly decreasing functions with values
in ḡ

• By F(ḡ[s]) the space of smooth, rapidly decreasing functions with values
in ḡ[s]

• By Λ±;sX the value Λ±X if X ∈ F(ḡ)

As one can see Λ±;sX is an operator Λ±;s acting on the space
F(ḡ) with values in ḡ[s−1]. The spaces ḡ[s] are moved one into an-
other by Λ± and are invariant under the action of Λp

±. Naturally,

Λ±|F(ḡ[s]) = Λ±;s|F(ḡ[s]), Λ±;sF(ḡ[s]) ⊂ F(ḡ[s−1]) (51)

Also,
Λp
±|F(ḡ[s]) = Λ±;s−p+1 . . .Λ±;s−1Λ±;s (52)

(the indexes s− k are understood modulo p). In particular,

Λp
±|F(ḡ[0]) = Λ±;1 . . .Λ±;p−2Λ±;p−1Λ±;p (53)



Recall that the Recursion Operators arise naturally when look-
ing for the NLEEs that have Lax representation [L,A] = 0 with
L being the CBC system operator and A is the form

A = i∂t +
n∑
k=0

λkAk, An ∈ h, An = const , An−1 ∈ ḡ (54)

Then from the condition [L,A] = 0 we first obtain An−1 = ad −1
J [q, A]

and next for 0 < k < n − 1 the recursion relations π0Ak−1 =
Λ±(π0Ak) and the NLEEs (5).

Assume that we have Zp reduction. Then we have q ∈ ḡ[0],
J ∈ h[0] and we must have K(As) = ωsAs. Assume that An ∈
h[n]. Then An−1 ∈ ḡ[n−1] and we see that As ∈ g[s]. Therefore the
reduction requirements will be satisfied automatically when we
choose An ∈ h[n]. Since n is a natural number let us write it
into the form n = kp + m where k, p,m are natural numbers and
0 ≤ m < p. Then

Λn
±ad −1

J [An, q] = Λkp
± Λm

±ad −1
J [An, q] =

(Λ±;0 . . .Λ±;p−2Λ±;p−1)
k Λ±;0 . . .Λ±;m−2Λ±;m−1ad −1

J [An, q]



Starting from the works Fordy, Gibbons 1980;1981 it is fre-
quently said that when reductions are present the Recursion
Operator becomes of higher order in the derivative ∂x and fac-
torizes into a product of first order operators with respect to ∂x.
The above has been used by some authors to justify the claim
that the Recursion Operators R± in the presence of Zp reduction
factorize to become

R± = Λ±;0 . . .Λ±;p−2Λ±;p−1 (55)

To our opinion more accurate would be simply to say that they
are restrictions of the Recursion Operator in general position
on some subspaces:

Λ±;0 Λ±;p−1 Λ±;1

F(ḡ[p]) = F(ḡ[0]) → F(ḡ[p−1]) → . . . → F(ḡ[0]) = F(ḡ[p])
(56)

The above suggests that the role of the Recursion Operators Λ±
in case of Zp reductions is taken now by Λp

±. It is also supported
by the geometric picture, Yanovski 2012.



Expansions over adjoint solutions

Let us see how this operators act on the set of functions (39),
(40) over which the expansions (38) are written. Using the
properties of the automorphism K (the fact that it commutes
with the projection π0 on h) and the facts that Kq = q and
KJ = ωJ we easily get

Lemma 0.1 If K is an automorphism of order p defining the Zp
reduction then

Λ± ◦ K = ωK ◦ Λ± (57)

As a consequence,
Λp
± ◦ K = K ◦ Λp

± (58)

Then for λ ∈ Ων we immediately obtain:

Λ±e
(ν;s)
α (x, λ) = λ

p∑
k=1

ω−k(s−1)KkΛ±(eνα(x, λ)) = λe
(ν;s−1)
α (x, λ), (59)



After some calculations we get that

Λ−e
(−;ν;s)
α = λe

(−;ν,s−1)
α , α ∈ ∆+

ν (60)

Λ−e
(+;ν,s)
α = λe

(+;ν.s−1)
α , α ∈ ∆+

ν−1

Λ+e
(−;ν,s)
−α = λe

(−;ν,s−1)
−α , α ∈ ∆+

ν (61)

Λ−e
(+;ν,s)
−α = λe

(+;ν,s−1)
−α , α ∈ ∆+

ν−1

As a corollary

Λp
−e

(−;ν;s)
α = λpe

(−;ν,s)
α , α ∈ ∆+

ν (62)

Λp
−e

(+;ν,s)
α = λpe

(+;ν.s)
α , α ∈ ∆+

ν−1

Λp
+e

(−;ν,s)
−α = λpe

(−;ν,s)
−α , α ∈ ∆+

ν (63)

Λp
+e

(+;ν,s)
−α = λpe

(+;ν,s)
−α , α ∈ ∆+

ν−1

and we have:

Theorem 0.4 For the expansions (38) the role of the Recursion
Operators are played by the p-th powers of the operators Λ±.



Conclusions

The above considerations show that both from recursion rela-
tions viewpoint and expansion over adjoint solutions viewpoint
the role of the Recursion Operators in case of Zp reductions
are played by the operators Λp

±. Since the same conclusion is
drawn from the geometric considerations, Yanovski 2012, the
theory now is complete in all aspects - algebraic, spectral and
geometric.
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