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Intro Main Thanks

Overview

The purpose of this talk it to observe a relation between the
mKdV equation and the cylindrical equilibrium shapes of fluid
membranes. In our setup mKdV arises from the study of the
evolution of planar curves.

Cylindrical equilibrium shapes of fluid membranes
Vassilev, Djondjorov, Mladenov ’08

Evolution of planar curves
Nakayama, Wadati ’93

This is joint work with I.M. Mladenov (Institute of biophysics,
BAS).

Petko I. Marinov Fluid membranes and planar curves evolutions



Intro Main Thanks

Overview

The purpose of this talk it to observe a relation between the
mKdV equation and the cylindrical equilibrium shapes of fluid
membranes. In our setup mKdV arises from the study of the
evolution of planar curves.

Cylindrical equilibrium shapes of fluid membranes
Vassilev, Djondjorov, Mladenov ’08

Evolution of planar curves
Nakayama, Wadati ’93

This is joint work with I.M. Mladenov (Institute of biophysics,
BAS).

Petko I. Marinov Fluid membranes and planar curves evolutions



Intro Main Thanks

Overview

The purpose of this talk it to observe a relation between the
mKdV equation and the cylindrical equilibrium shapes of fluid
membranes. In our setup mKdV arises from the study of the
evolution of planar curves.

Cylindrical equilibrium shapes of fluid membranes
Vassilev, Djondjorov, Mladenov ’08

Evolution of planar curves
Nakayama, Wadati ’93

This is joint work with I.M. Mladenov (Institute of biophysics,
BAS).

Petko I. Marinov Fluid membranes and planar curves evolutions



Intro Main Thanks

Overview

The purpose of this talk it to observe a relation between the
mKdV equation and the cylindrical equilibrium shapes of fluid
membranes. In our setup mKdV arises from the study of the
evolution of planar curves.

Cylindrical equilibrium shapes of fluid membranes
Vassilev, Djondjorov, Mladenov ’08

Evolution of planar curves
Nakayama, Wadati ’93

This is joint work with I.M. Mladenov (Institute of biophysics,
BAS).

Petko I. Marinov Fluid membranes and planar curves evolutions



Intro Main Thanks

Equilibrium shapes of fluid membranes

We use a model proposed by Helfrich (spontaneous-curvature
model). The shapes of the membranes are determined as extremals
of the Willmore - type functional

F =
kc
2

∫
S

(2H + h)2dA + kG

∫
S
KdA + λ

∫
S
dA + p

∫
dV ·

The E-L equation corresponding to F is

2kc∆SH + kc(2H + h)(2H2 − hH − 2K )− 2λH + p = 0·
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Equilibrium shapes of fluid membranes

The E-L equation corresponding to F is

2kc∆SH + kc(2H + h)(2H2 − hH − 2K )− 2λH + p = 0·

H and K - mean and Gauss curvatures

kc and kG - bending and Gaussian rigidity of the membrane

h - spontaneous curvature constant

p and λ - Lagrange multipliers

∆S - Surface Laplacian
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Cylindrical equilibrium shapes of fluid membranes

If one puts certain symmetry to the equation and focuses on
cylindrical membranes it becomes the ordinary differential equation

2
d2κ(s)

ds2
+ κ3(s)− µκ(s)− σ = 0.

κ(s) is a curvature of the directrix of the cylindrical fluid
membrane.

σ and µ are physical parameters, more precisely

µ = h2 +
2λ

kc
, σ = −2p

kc
·
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Cylindrical equilibrium shapes of fluid membranes

The equation

2
d2κ(s)

ds2
+ κ3(s)− µκ(s)− σ = 0

can be integrated once and we get

(
dκ(s)

ds

)2

= P(κ)

where P(κ) is a fourth degree polynomial in κ with zero cubic
term. Obviously, the roots add up to zero.
This equation was solved for all cases of interest depending on the
roots of P(κ).
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Motions of planar curves

The general evolution of a curve in the plane is given by

dr̄(s, t)

ds
= Ut̄ + Wn̄

where r̄ is the position vector in the plane, n̄, t̄ are the unit normal
and the unit tangent to the curve at given time t and U,W are
certain velocities that are determined by the curvature of the curve.
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The evolution of the curvature

The evolution of the curvature is given by

∂κ

∂t
=
∂2W

∂s2
+ κ2W +

∂κ

∂s

∫
kWds ≡ RW

Pick W = ∂κ
∂s to get the modified KdV equation

∂κ

∂t
− ∂3κ

∂s3
− 3

2
κ2
∂κ

∂s
= 0
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The evolution of the curvature

mKdV equation:
∂κ

∂t
=
∂3κ

∂s3
+

3

2
κ2
∂κ

∂s

Setting
κ = κ(s − λt)

one gets an ODE which after one integration becomes(
dκ(s)

ds

)2

= P(κ)

which is the same equation derived in the membranes study.
Therefore one can apply results from elastic membrane theory to
the current topic.
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Overview

We solve the equation (
dκ(s)

ds

)2

= P(κ)

depending on the roots of P(κ). There are three relevant cases.

Case 1 Two real roots α < β, pair of complex roots γ, γ̄ with
(3α + β)(α + 3β) 6= 0

Case 2 Two real roots α < β, pair of complex roots γ, γ̄ with
(3α + β)(α + 3β) = 0

Case 3 Four distinct real roots
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Case 1

κ1(s) =
Aβ + Bα− (Aβ − Bα) cn (us, k)

A + B − (A− B) cn (us, k)

θ1(s) =
(Aβ − Bα) s

A− B
+

(A + B) (−β + α)

2u (A− B)
Π

(
sn (us, k) ,− (A− B)2

4BA
, k

)

+
α− β

u

√
4 k2 + (A−B)2

BA

arctan

√k2 +
(A− B)2

4BA

sn (us, k)

dn (us, k)
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Case 1

cn(x , k), dn(x , k), sn(x , k) and Π(sn(x , k), n, k) are Jacobi
elliptic functions with elliptic modulus k

A =
√

4η2 + (3α + β)2 and B =
√

4η2 + (α + 3β)2 with η
being the imaginary part of γ

u = 1/4
√
AB

k = 1√
2

√
1− 4 η2+(3α+β)(α+3β)

(4 η2+(3α+β)(α+3β))2+16 η2(β−α)2

Now one can write the formulae for the solution curve. Let us set
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Case 1

The solution curve is given if we plug the quantities from the
previous page in

x(s) =
2

σ

dκ(s)

ds
cos θ(s) +

1

σ
(κ2(s)− µ) sin θ(s)

z(s) =
2

σ

dκ(s)

ds
sin θ(s)− 1

σ
(κ2(s)− µ) cos θ(s)

That is for the case σ 6= 0. One can get the solution curves in the
zero case too.
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Case 1

Figure: Solution curve (left) and phase portrait (right) for α = 0, β = 2,
γ = −1− i.
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Case 2

Here the polynomial P(κ) has two real roots α < β and a pair of
complex roots γ, γ̄ with (3α + β)(α + 3β) = 0. Let ξ = α if
3α + β = 0 and ξ = β otherwise. Again we need the roots to sum
up to zero. These two conditions actually imply that σ 6= 0.

κ2(s) = ξ − 4
ξ

1 + ξ2s2

θ2(s) = ξ s − 4 arctan (ξ s)
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Case 2

Equations for the solution curve:

x2(s) = 16
ξ3s cos (ξ s − 4 arctan (ξ s))

σ (1 + ξ2s2)2

+
1

σ

((
ξ − 4

ξ

1 + ξ2s2

)2

− µ

)
sin (ξ s − 4 arctan (ξ s))

z2(s) = 16
ξ3s sin (ξ s − 4 arctan (ξ s))

σ (1 + ξ2s2)2

− 1

σ

((
ξ − 4

ξ

1 + ξ2s2

)2

− µ

)
cos (ξ s − 4 arctan (ξ s)) ·
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Case 2

Figure: Solution curve (left) and phase portrait (right) for
α = β = γ = −1, δ = 3
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Case 3

In the last case we will consider the polynomial P(κ) with four real
roots α < β < γ < δ. One possible solution (i.e. the curvature,
etc.) is given below. Let

p = (γ−α)(δ−β)
4 , q =

√
(β−α)(δ−γ)
(γ−α)(δ−β) , sn̂(s) = sn (ps, q)

κ3(s) = δ − (δ − α) (δ − β)
(
δ − β + (β − α) sn̂2(s)

)−1
θ3(s) = δs − 4Π

(
sn̂(s),

β − α
β − δ

, q

)
(δ − α)(γ − α)−1/2(δ − β)−1/2
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In the last case we will consider the polynomial P(κ) with four real
roots α < β < γ < δ. One possible solution (i.e. the curvature,
etc.) is given below. Let

p = (γ−α)(δ−β)
4 , q =

√
(β−α)(δ−γ)
(γ−α)(δ−β) , sn̂(s) = sn (ps, q)

κ3(s) = δ − (δ − α) (δ − β)
(
δ − β + (β − α) sn̂2(s)

)−1

θ3(s) = δs − 4Π

(
sn̂(s),

β − α
β − δ

, q

)
(δ − α)(γ − α)−1/2(δ − β)−1/2
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Case 3

Figure: Solution curve (left) and phase portrait (right) for
α = −4, β = −2, γ = 0, δ = 6
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Summary

We use results from the theory of fluid membranes to solve the
mKdV equation which arises from the evolution of planar curves.

Petko I. Marinov Fluid membranes and planar curves evolutions



Intro Main Thanks

Thank you for your patience!
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