A relation between fluid membranes and motions of planar curves

Petko I. Marinov

June 09th 2012

XIVth International Conference "Geometry, Integrability and Quantization", Varna, Bulgaria The purpose of this talk it to observe a relation between the mKdV equation and the cylindrical equilibrium shapes of fluid membranes. In our setup mKdV arises from the study of the evolution of planar curves.

4 3 5 4

Overview

The purpose of this talk it to observe a relation between the mKdV equation and the cylindrical equilibrium shapes of fluid membranes. In our setup mKdV arises from the study of the evolution of planar curves.

• Cylindrical equilibrium shapes of fluid membranes Vassilev, Djondjorov, Mladenov '08 Overview

The purpose of this talk it to observe a relation between the mKdV equation and the cylindrical equilibrium shapes of fluid membranes. In our setup mKdV arises from the study of the evolution of planar curves.

- Cylindrical equilibrium shapes of fluid membranes Vassilev, Djondjorov, Mladenov '08
- Evolution of planar curves Nakayama, Wadati '93

Overview

The purpose of this talk it to observe a relation between the mKdV equation and the cylindrical equilibrium shapes of fluid membranes. In our setup mKdV arises from the study of the evolution of planar curves.

- Cylindrical equilibrium shapes of fluid membranes Vassilev, Djondjorov, Mladenov '08
- Evolution of planar curves Nakayama, Wadati '93

This is joint work with I.M. Mladenov (Institute of biophysics, BAS).

We use a model proposed by Helfrich (spontaneous-curvature model). The shapes of the membranes are determined as extremals of the Willmore - type functional

3.1

We use a model proposed by Helfrich (spontaneous-curvature model). The shapes of the membranes are determined as extremals of the Willmore - type functional

$$\mathcal{F} = \frac{k_c}{2} \int_{\mathcal{S}} (2H + \mathbf{h})^2 \mathrm{d}A + k_G \int_{\mathcal{S}} K \mathrm{d}A + \lambda \int_{\mathcal{S}} \mathrm{d}A + p \int \mathrm{d}V \cdot$$

3.1

We use a model proposed by Helfrich (spontaneous-curvature model). The shapes of the membranes are determined as extremals of the Willmore - type functional

$$\mathcal{F} = \frac{k_c}{2} \int_{\mathcal{S}} (2H + \mathbf{h})^2 \mathrm{d}A + k_G \int_{\mathcal{S}} \mathcal{K} \mathrm{d}A + \lambda \int_{\mathcal{S}} \mathrm{d}A + p \int \mathrm{d}V \cdot$$

$$2k_c\Delta_S H + k_c(2H + \mathbf{h})(2H^2 - \mathbf{h}H - 2K) - 2\lambda H + p = 0$$

The E-L equation corresponding to ${\mathcal F}$ is

 $2k_c\Delta_S H + k_c(2H + \mathbf{h})(2H^2 - \mathbf{h}H - 2K) - 2\lambda H + p = 0$

3 N

The E-L equation corresponding to ${\mathcal F}$ is

 $2k_c\Delta_S H + k_c(2H + \mathbf{h})(2H^2 - \mathbf{h}H - 2K) - 2\lambda H + p = 0$

• H and K - mean and Gauss curvatures

$$2k_c\Delta_S H + k_c(2H + \mathbf{h})(2H^2 - \mathbf{h}H - 2K) - 2\lambda H + p = 0$$

- *H* and *K* mean and Gauss curvatures
- k_c and k_G bending and Gaussian rigidity of the membrane

$$2k_c\Delta_S H + k_c(2H + \mathbf{h})(2H^2 - \mathbf{h}H - 2K) - 2\lambda H + p = 0$$

- H and K mean and Gauss curvatures
- k_c and k_G bending and Gaussian rigidity of the membrane
- h spontaneous curvature constant

$$2k_c\Delta_S H + k_c(2H + \mathbf{h})(2H^2 - \mathbf{h}H - 2K) - 2\lambda H + p = 0$$

- H and K mean and Gauss curvatures
- k_c and k_G bending and Gaussian rigidity of the membrane
- h spontaneous curvature constant
- p and λ Lagrange multipliers

$$2k_c\Delta_S H + k_c(2H + \mathbf{h})(2H^2 - \mathbf{h}H - 2K) - 2\lambda H + p = 0$$

- H and K mean and Gauss curvatures
- k_c and k_G bending and Gaussian rigidity of the membrane
- h spontaneous curvature constant
- p and λ Lagrange multipliers
- Δ_S Surface Laplacian

If one puts certain symmetry to the equation and focuses on cylindrical membranes it becomes the ordinary differential equation

$$2\frac{\mathrm{d}^{2}\kappa(s)}{\mathrm{d}s^{2}}+\kappa^{3}(s)-\mu\kappa(s)-\sigma=0.$$

If one puts certain symmetry to the equation and focuses on cylindrical membranes it becomes the ordinary differential equation

$$2\frac{\mathrm{d}^{2}\kappa(s)}{\mathrm{d}s^{2}}+\kappa^{3}(s)-\mu\kappa(s)-\sigma=0.$$

 κ(s) is a curvature of the directrix of the cylindrical fluid membrane.

If one puts certain symmetry to the equation and focuses on cylindrical membranes it becomes the ordinary differential equation

$$2\frac{\mathrm{d}^{2}\kappa(s)}{\mathrm{d}s^{2}}+\kappa^{3}(s)-\mu\kappa(s)-\sigma=0.$$

- κ(s) is a curvature of the directrix of the cylindrical fluid membrane.
- σ and μ are physical parameters, more precisely

$$\mu = \mathbf{h}^2 + \frac{2\lambda}{k_c}, \qquad \sigma = -\frac{2p}{k_c}$$

The equation

$$2\frac{\mathrm{d}^{2}\kappa(s)}{\mathrm{d}s^{2}} + \kappa^{3}(s) - \mu\kappa(s) - \sigma = 0$$

can be integrated once and we get

The equation

$$2\frac{\mathrm{d}^{2}\kappa(s)}{\mathrm{d}s^{2}} + \kappa^{3}(s) - \mu\kappa(s) - \sigma = 0$$

can be integrated once and we get

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

The equation

$$2\frac{\mathrm{d}^2\kappa(s)}{\mathrm{d}s^2} + \kappa^3(s) - \mu\kappa(s) - \sigma = 0$$

can be integrated once and we get

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

where $P(\kappa)$ is a fourth degree polynomial in κ with zero cubic term. Obviously, the roots add up to zero.

This equation was solved for all cases of interest depending on the roots of $P(\kappa)$.

Motions of planar curves

The general evolution of a curve in the plane is given by

$$\frac{\mathrm{d}\bar{r}(s,t)}{\mathrm{d}s} = U\bar{t} + W\bar{n}$$

Motions of planar curves

The general evolution of a curve in the plane is given by

$$\frac{\mathrm{d}\bar{r}(s,t)}{\mathrm{d}s} = U\bar{t} + W\bar{n}$$

where \overline{r} is the position vector in the plane, $\overline{n}, \overline{t}$ are the unit normal and the unit tangent to the curve at given time t and U, W are certain velocities that are determined by the curvature of the curve.

The evolution of the curvature is given by

$$\frac{\partial \kappa}{\partial t} = \frac{\partial^2 W}{\partial s^2} + \kappa^2 W + \frac{\partial \kappa}{\partial s} \int k W \mathrm{d}s \equiv R W$$

The evolution of the curvature is given by

$$\frac{\partial \kappa}{\partial t} = \frac{\partial^2 W}{\partial s^2} + \kappa^2 W + \frac{\partial \kappa}{\partial s} \int k W \mathrm{d}s \equiv R W$$

Pick $W = \frac{\partial \kappa}{\partial s}$ to get the modified KdV equation

The evolution of the curvature is given by

$$\frac{\partial \kappa}{\partial t} = \frac{\partial^2 W}{\partial s^2} + \kappa^2 W + \frac{\partial \kappa}{\partial s} \int k W \mathrm{d}s \equiv R W$$

Pick $W = \frac{\partial \kappa}{\partial s}$ to get the modified KdV equation

$$\frac{\partial \kappa}{\partial t} - \frac{\partial^3 \kappa}{\partial s^3} - \frac{3}{2}\kappa^2 \frac{\partial \kappa}{\partial s} = 0$$

э

∃ ► < ∃ ►</p>

The evolution of the curvature

mKdV equation:

$$\frac{\partial \kappa}{\partial t} = \frac{\partial^3 \kappa}{\partial s^3} + \frac{3}{2} \kappa^2 \frac{\partial \kappa}{\partial s}$$

mKdV equation:

$$\frac{\partial \kappa}{\partial t} = \frac{\partial^3 \kappa}{\partial s^3} + \frac{3}{2} \kappa^2 \frac{\partial \kappa}{\partial s}$$

Setting

$$\kappa = \kappa (s - \lambda t)$$

one gets an ODE which after one integration becomes

mKdV equation:

$$\frac{\partial \kappa}{\partial t} = \frac{\partial^3 \kappa}{\partial s^3} + \frac{3}{2} \kappa^2 \frac{\partial \kappa}{\partial s}$$

Setting

$$\kappa = \kappa (s - \lambda t)$$

one gets an ODE which after one integration becomes

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

which is the same equation derived in the membranes study.

mKdV equation:

$$\frac{\partial \kappa}{\partial t} = \frac{\partial^3 \kappa}{\partial s^3} + \frac{3}{2} \kappa^2 \frac{\partial \kappa}{\partial s}$$

Setting

$$\kappa = \kappa (s - \lambda t)$$

one gets an ODE which after one integration becomes

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

which is the same equation derived in the membranes study. Therefore one can apply results from elastic membrane theory to the current topic.

Intro	Main	Thanks
0000000	●000000000	0
Overview		

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

depending on the roots of $P(\kappa)$. There are three relevant cases.

Intro	Main	Thanks
00000000	●000000000	O
a		

Verview

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

depending on the roots of $P(\kappa)$. There are three relevant cases.

• Case 1 Two real roots $\alpha < \beta$, pair of complex roots $\gamma, \overline{\gamma}$ with $(3\alpha + \beta)(\alpha + 3\beta) \neq 0$

Intro	Main	Thanks
0000000	●0000000000	0

Verview

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

depending on the roots of $P(\kappa)$. There are three relevant cases.

- Case 1 Two real roots $\alpha < \beta$, pair of complex roots $\gamma, \overline{\gamma}$ with $(3\alpha + \beta)(\alpha + 3\beta) \neq 0$
- Case 2 Two real roots $\alpha < \beta$, pair of complex roots $\gamma, \overline{\gamma}$ with $(3\alpha + \beta)(\alpha + 3\beta) = 0$

Main	Thanks
000000000	

verview

$$\left(\frac{\mathrm{d}\kappa(s)}{\mathrm{d}s}\right)^2 = P(\kappa)$$

depending on the roots of $P(\kappa)$. There are three relevant cases.

- Case 1 Two real roots $\alpha < \beta$, pair of complex roots $\gamma, \overline{\gamma}$ with $(3\alpha + \beta)(\alpha + 3\beta) \neq 0$
- Case 2 Two real roots $\alpha < \beta$, pair of complex roots $\gamma, \overline{\gamma}$ with $(3\alpha + \beta)(\alpha + 3\beta) = 0$
- Case 3 Four distinct real roots

	Main	Thanks
0000000	000000000	

Case 1

$$\kappa_1(s) = \frac{A\beta + B\alpha - (A\beta - B\alpha)\operatorname{cn}(us, k)}{A + B - (A - B)\operatorname{cn}(us, k)}$$

æ

	Main	Thanks
0000000	000000000	0

$$\kappa_{1}(s) = \frac{A\beta + B\alpha - (A\beta - B\alpha)\operatorname{cn}(us, k)}{A + B - (A - B)\operatorname{cn}(us, k)}$$
$$\theta_{1}(s) = \frac{(A\beta - B\alpha)s}{A - B} + \frac{(A + B)(-\beta + \alpha)}{2u(A - B)}\Pi\left(\operatorname{sn}(us, k), -\frac{(A - B)^{2}}{4BA}, k\right)$$
$$+ \frac{\alpha - \beta}{u\sqrt{4k^{2} + \frac{(A - B)^{2}}{BA}}} \arctan\left(\sqrt{k^{2} + \frac{(A - B)^{2}}{4BA}}\frac{\operatorname{sn}(us, k)}{\operatorname{dn}(us, k)}\right)$$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

• cn(x, k), dn(x, k), sn(x, k) and $\Pi(sn(x, k), n, k)$ are Jacobi elliptic functions with elliptic modulus k

3.1

Intro	Main	Thanks
0000000	oo●oooooooo	0
Case 1		

- cn(x, k), dn(x, k), sn(x, k) and $\Pi(sn(x, k), n, k)$ are Jacobi elliptic functions with elliptic modulus k
- $A = \sqrt{4\eta^2 + (3\alpha + \beta)^2}$ and $B = \sqrt{4\eta^2 + (\alpha + 3\beta)^2}$ with η being the imaginary part of γ

Intro	Main	Thanks
0000000	oo●oooooooo	0
Case 1		

- cn(x, k), dn(x, k), sn(x, k) and $\Pi(sn(x, k), n, k)$ are Jacobi elliptic functions with elliptic modulus k
- $A = \sqrt{4\eta^2 + (3\alpha + \beta)^2}$ and $B = \sqrt{4\eta^2 + (\alpha + 3\beta)^2}$ with η being the imaginary part of γ

•
$$u = 1/4\sqrt{AB}$$

4 E 6 4 E 6

- cn(x, k), dn(x, k), sn(x, k) and $\Pi(sn(x, k), n, k)$ are Jacobi elliptic functions with elliptic modulus k
- $A = \sqrt{4\eta^2 + (3\alpha + \beta)^2}$ and $B = \sqrt{4\eta^2 + (\alpha + 3\beta)^2}$ with η being the imaginary part of γ

•
$$u = 1/4\sqrt{AB}$$

• $k = \frac{1}{\sqrt{2}}\sqrt{1 - \frac{4\eta^2 + (3\alpha + \beta)(\alpha + 3\beta)}{(4\eta^2 + (3\alpha + \beta)(\alpha + 3\beta))^2 + 16\eta^2(\beta - \alpha)^2}}$

.

- cn(x, k), dn(x, k), sn(x, k) and $\Pi(sn(x, k), n, k)$ are Jacobi elliptic functions with elliptic modulus k
- $A = \sqrt{4\eta^2 + (3\alpha + \beta)^2}$ and $B = \sqrt{4\eta^2 + (\alpha + 3\beta)^2}$ with η being the imaginary part of γ

•
$$u = 1/4\sqrt{AB}$$

• $k = \frac{1}{\sqrt{2}}\sqrt{1 - \frac{4\eta^2 + (3\alpha + \beta)(\alpha + 3\beta)}{(4\eta^2 + (3\alpha + \beta)(\alpha + 3\beta))^2 + 16\eta^2(\beta - \alpha)^2}}$

Now one can write the formulae for the solution curve. Let us set

- cn(x, k), dn(x, k), sn(x, k) and $\Pi(sn(x, k), n, k)$ are Jacobi elliptic functions with elliptic modulus k
- $A = \sqrt{4\eta^2 + (3\alpha + \beta)^2}$ and $B = \sqrt{4\eta^2 + (\alpha + 3\beta)^2}$ with η being the imaginary part of γ

•
$$u = 1/4\sqrt{AB}$$

• $k = \frac{1}{\sqrt{2}}\sqrt{1 - \frac{4\eta^2 + (3\alpha + \beta)(\alpha + 3\beta)}{(4\eta^2 + (3\alpha + \beta)(\alpha + 3\beta))^2 + 16\eta^2(\beta - \alpha)^2}}$

Now one can write the formulae for the solution curve. Let us set

The solution curve is given if we plug the quantities from the previous page in

$$x(s) = \frac{2}{\sigma} \frac{\mathrm{d}\kappa(s)}{\mathrm{d}s} \cos\theta(s) + \frac{1}{\sigma} (\kappa^2(s) - \mu) \sin\theta(s)$$
$$z(s) = \frac{2}{\sigma} \frac{\mathrm{d}\kappa(s)}{\mathrm{d}s} \sin\theta(s) - \frac{1}{\sigma} (\kappa^2(s) - \mu) \cos\theta(s)$$

A B > A B >

The solution curve is given if we plug the quantities from the previous page in

- - / >

$$x(s) = \frac{2}{\sigma} \frac{\mathrm{d}\kappa(s)}{\mathrm{d}s} \cos\theta(s) + \frac{1}{\sigma} (\kappa^2(s) - \mu) \sin\theta(s)$$
$$z(s) = \frac{2}{\sigma} \frac{\mathrm{d}\kappa(s)}{\mathrm{d}s} \sin\theta(s) - \frac{1}{\sigma} (\kappa^2(s) - \mu) \cos\theta(s)$$

That is for the case $\sigma \neq 0$. One can get the solution curves in the zero case too.

- * E > * E >

Figure: Solution curve (left) and phase portrait (right) for $\alpha =$ 0, $\beta =$ 2, $\gamma = -1 - i$.

Intro	Main	Thanks
00000000	0000000000	O
Case 2		

Here the polynomial $P(\kappa)$ has two real roots $\alpha < \beta$ and a pair of complex roots $\gamma, \overline{\gamma}$ with $(3\alpha + \beta)(\alpha + 3\beta) = 0$. Let $\xi = \alpha$ if $3\alpha + \beta = 0$ and $\xi = \beta$ otherwise. Again we need the roots to sum up to zero. These two conditions actually imply that $\sigma \neq 0$.

Here the polynomial $P(\kappa)$ has two real roots $\alpha < \beta$ and a pair of complex roots $\gamma, \overline{\gamma}$ with $(3\alpha + \beta)(\alpha + 3\beta) = 0$. Let $\xi = \alpha$ if $3\alpha + \beta = 0$ and $\xi = \beta$ otherwise. Again we need the roots to sum up to zero. These two conditions actually imply that $\sigma \neq 0$.

$$\kappa_2(s) = \xi - 4 \frac{\xi}{1 + \xi^2 s^2}$$

$$\theta_2(s) = \xi s - 4 \arctan(\xi s)$$

Intro	Main	Thanks
0000000	0000000000	0
Case 2		

Equations for the solution curve:

∃ ▶ ∢

э

Intro	Main	Thanks
0000000	000000●0000	0
Case 2		

Equations for the solution curve:

$$\begin{aligned} x_2(s) &= 16 \, \frac{\xi^3 s \cos\left(\xi \, s - 4 \, \arctan\left(\xi \, s\right)\right)}{\sigma \, \left(1 + \xi^2 s^2\right)^2} \\ &+ \frac{1}{\sigma} \left(\left(\xi - 4 \, \frac{\xi}{1 + \xi^2 s^2}\right)^2 - \mu \right) \sin\left(\xi \, s - 4 \, \arctan\left(\xi \, s\right)\right) \\ z_2(s) &= 16 \, \frac{\xi^3 s \sin\left(\xi \, s - 4 \, \arctan\left(\xi \, s\right)\right)}{\sigma \, \left(1 + \xi^2 s^2\right)^2} \\ &- \frac{1}{\sigma} \left(\left(\xi - 4 \, \frac{\xi}{1 + \xi^2 s^2}\right)^2 - \mu \right) \cos\left(\xi \, s - 4 \, \arctan\left(\xi \, s\right)\right) \end{aligned}$$

э

Image: Image:

Figure: Solution curve (left) and phase portrait (right) for $\alpha = \beta = \gamma = -1, \delta = 3$

In the last case we will consider the polynomial $P(\kappa)$ with four real roots $\alpha < \beta < \gamma < \delta$. One possible solution (i.e. the curvature, etc.) is given below. Let

4 3 b

Intro	Main	Thanks
0000000	000000000000	0
Case 3		

In the last case we will consider the polynomial $P(\kappa)$ with four real roots $\alpha < \beta < \gamma < \delta$. One possible solution (i.e. the curvature, etc.) is given below. Let $p = \frac{(\gamma - \alpha)(\delta - \beta)}{4}, \ q = \sqrt{\frac{(\beta - \alpha)(\delta - \gamma)}{(\gamma - \alpha)(\delta - \beta)}}, \ \hat{sn}(s) = sn(ps, q)$

Intro	Main	Thanks
0000000	00000000000	0
Case 3		

In the last case we will consider the polynomial $P(\kappa)$ with four real roots $\alpha < \beta < \gamma < \delta$. One possible solution (i.e. the curvature, etc.) is given below. Let $p = \frac{(\gamma - \alpha)(\delta - \beta)}{4}, \ q = \sqrt{\frac{(\beta - \alpha)(\delta - \gamma)}{(\gamma - \alpha)(\delta - \beta)}}, \ \hat{sn}(s) = sn(ps, q)$

$$\kappa_{3}(\boldsymbol{s}) = \delta - (\delta - \alpha) \left(\delta - \beta\right) \left(\delta - \beta + (\beta - \alpha) \operatorname{sn}^{2}(\boldsymbol{s})\right)^{-1}$$

Intro	Main	Thanks
0000000	00000000000	0
Case 3		

In the last case we will consider the polynomial $P(\kappa)$ with four real roots $\alpha < \beta < \gamma < \delta$. One possible solution (i.e. the curvature, etc.) is given below. Let $p = \frac{(\gamma - \alpha)(\delta - \beta)}{4}, \ q = \sqrt{\frac{(\beta - \alpha)(\delta - \gamma)}{(\gamma - \alpha)(\delta - \beta)}}, \ \hat{\mathrm{sn}}(s) = \mathrm{sn}(ps, q)$ $\kappa_3(s) = \delta - (\delta - \alpha)(\delta - \beta)(\delta - \beta + (\beta - \alpha)\hat{\mathrm{sn}}^2(s))^{-1}$ $\theta_3(s) = \delta s - 4\Pi\left(\hat{\mathrm{sn}}(s), \frac{\beta - \alpha}{\beta - \delta}, q\right)(\delta - \alpha)(\gamma - \alpha)^{-1/2}(\delta - \beta)^{-1/2}$

Figure: Solution curve (left) and phase portrait (right) for $\alpha=-4,\beta=-2,\gamma=0,\delta=6$

-1 -

-10-

We use results from the theory of fluid membranes to solve the $\rm mKdV$ equation which arises from the evolution of planar curves.

æ

伺 ト イヨト イヨト

Thank you for your patience!