Symmetries and Solutions of the Membrane Shape Equation

Vladimir Pulov1
Mariana Hadjilazova,2 Ivailo Mladenov2

1Department of Physics, Technical University of Varna
2Institute of Biophysics, Bulgarian Academy of Science

Geometry, Integrability and Quantization, June 8-13, 2012
1. Closed Biomembranes – Vesicles
 Molecule Bilayers
 Equilibrium Shapes
 Membrane Shape Equation

2. Membrane Shape Equation
 Exact Analytic Solutions
 Mongé Representation
 Conformal Metric Representation

3. Group Analysis of the Membrane Shape Equation
 Symmetries
 Symmetry Reduction
 Group-Invariant Solutions
Closed Biomembranes – Vesicles
Molecule Bilayers

Lipid Vesicles Formation

• In aqueous solution, amphiphilic molecules (e.g., phospholipids) may form bilayers, the hydrophilic heads of these molecules being located in both outer sides of the bilayer, which are in contact with the liquid, while their hydrophobic tails remain at the interior.

• A bilayer may form a closed membrane – vesicle. Vesicles constitute a well-defined and sufficiently simple model system for studying basic physical properties of the more complex cell biomembranes.
bilayer
aqueous solution
hydrophilic heads
hydrophobic tails

bilayer
aqueous solution
hydrophilic heads
hydrophobic tails
Spontaneous Curvature Model (Helfrich, 1973)

The equilibrium shapes of lipid vesicles are determined by the extremals of the Helfrich's functional

\[\mathcal{F} = \mathcal{F}_c + \lambda \int_S dS + p \int dV \]

\[\mathcal{F}_c = \frac{k_c}{2} \int_S (2H - \mathbb{I} h)^2 dS + k_G \int_S KdS \quad – \text{curvature free energy} \]

\(k_c, k_G \) – bending and Gaussian rigidities
\(\lambda \) – tensile stress
\(p \) – osmotic pressure
\(H, K \) – mean and Gaussian curvatures
\(\mathbb{I} h \) – Helfrich’s spontaneous curvature
Closed Biomembranes – Vesicles
Equilibrium Shapes

Membrane Shape Equation

\[\Delta H + (2H - \mathbb{I}_h)(H^2 + \frac{\mathbb{I}_h}{2}H - K) - \frac{\lambda}{k_c}H + \frac{p}{2k_c} = 0 \]

- is Euler-Lagrange equation of the Helfrich’s functional \(\mathcal{F} \)
- derived by Ou-Yang and Helfrich (1989)
- describes the equilibrium shapes of lipid vesicles
- \(\lambda, p \) (stress and pressure) – Lagrangian multipliers

\(\Delta \) – Laplace-Beltrami operator
\(H, K, \mathbb{I}_h \) – mean, Gaussian and spontaneous curvatures
\(k_c \) – curvature bending rigidity
Equilibrium Vesicle Shapes I

- **Spheres and Circular Cylinders**
 Ou-Yang and Helfrich, 1989

- **Clifford tori**
 Ou-Yang, 1990, 1993; Hu and Ou-Yang, 1993

- **Delaunay Surfaces**
 Naito, Okuda and Ou-Yang, 1995; Mladenov, 2002

- **Circular Biconcave Discoids**
 Naito, Okuda and Ou-Yang, 1993, 1996
Membrane Shape Equation
Exact Analytic Solutions

Equilibrium Vesicle Shapes II

- Nodoidlike and Unduloidlike Shapes
 Naito, Okuda and Ou-Yang, 1995

- Willmore and Constant Squared Mean Curvature Surfaces
 Willmore, 1993; Konopelchenko, 1997;
 Vassilev and Mladenov, 2004

- Generalized Cylindrical Surfaces
 Ou-Yang, Liu and Xie, 1999;
 Vassilev, Djondjorov and Mladenov, 2008
Membrane Shape Equation

Mongé Representation

- $S : x^3 = w(x^1, x^2)$ – Mongé representation of S
- (x^1, x^2, x^3) – Cartesian coordinates of \mathbb{R}^3
- $w(x^1, x^2)$ – Mongé gauge of S immersed in \mathbb{R}^3
- $w_{\alpha_1\alpha_2...\alpha_k} = \frac{\partial^k w}{\partial x^{\alpha_1}...\partial x^{\alpha_k}}, \quad k = 1, 2, ...$
- $(g^{\alpha\beta})$ – first fundamental tensor (contravariant components)
- $g = \det(g^{\alpha\beta})$

Fourth-Order PDE

$$\frac{1}{2}g^{-1/2}g^{\alpha\beta}g^{\mu\nu}w_{\alpha\beta\mu\nu} + \Phi(x^1, x^2, w, w_1, \ldots, w_{222}) = 0$$

$\Phi(x_1, x_2, w, w_1, \ldots, w_{222})$ – third-order differential equation
Membrane Shape Equation
Conformal Metric Representation

Conformal Metric (Konopelchenko, 1997)

- $ds^2 = 4q^2\varphi^2(dx^2 + dy^2)$ – conformal metric
- $(b_{\alpha\beta}) = \begin{pmatrix} \vartheta & \omega \\ \omega & 8q^2\varphi(1 + \varpi\varphi) - \vartheta \end{pmatrix}$ – second fundamental tensor
- $q(x, y), \varphi(x, y), \vartheta(x, y), \omega(x, y)$ – unknown functions

Gauss-Codazzi-Mainardi Equations

$$(\Gamma^2_{12})_x - (\Gamma^2_{11})_y + \Gamma^1_{12}\Gamma^2_{11} + \Gamma^2_{12}\Gamma^2_{12} - \Gamma^2_{11}\Gamma^2_{22} - \Gamma^1_{11}\Gamma^2_{12} = -g_{11}K$$

$$(b_{11})_y - (b_{12})_x - b_{11}\Gamma^1_{12} - b_{12}(\Gamma^1_{12} - \Gamma^1_{11}) + b_{22}\Gamma^2_{11} = 0$$

$$(b_{12})_y - (b_{22})_x - b_{11}\Gamma^1_{22} - b_{12}(\Gamma^2_{22} - \Gamma^1_{12}) + b_{22}\Gamma^2_{12} = 0$$

- $\Gamma^\sigma_{\alpha\beta}$ – Christoffel symbols (depend on $q, q_x, q_y, \varphi, \varphi_x, \varphi_y$)
Membrane Shape Equation
Conformal Metric Representation

System of Second-Order PDEs (De Matteis, 2002)

\[q^2(\varphi_{xx} + \varphi_{yy}) + 2q\varphi(q_{xx} + q_{yy}) - 2\varphi(q_x^2 + q_y^2) + \\
+ q^4(8\varphi + \alpha_2\varphi^2 + \alpha_3\varphi^3 + \alpha_4\varphi^4) = 0 \]

\[\vartheta_y - \omega_x - (8 + \frac{\alpha^2}{3}\varphi)(\varphi q_y + q\varphi_y) = 0 \]

\[\omega_y + \vartheta_x - \frac{\alpha^2}{3} q\varphi(q_{x} + q\varphi_y) + 8q\varphi q_x = 0 \]

\[4q\varphi^2(q_{xx} + q_{yy}) + 4\varphi q^2(\varphi_{xx} + \varphi_{yy}) - 4\varphi^2(q_x^2 + q_y^2) - 4q^2(\varphi_x^2 + \varphi_y^2) - \\
- \omega^2 - \vartheta^2 + (8 + \frac{\alpha^2}{3}\varphi)q^2\varphi\theta = 0 \]

- four equations
- four unknown functions: \(q(x, y), \varphi(x, y), \vartheta(x, y), \omega(x, y) \)
- conformal coordinates: \((x, y) \)
Group Analysis
Symmetries of the Membrane Shape Equation

Symmetry Algebra
(De Matteis, 2002)

- Case I: \((\alpha_2, \alpha_3, \alpha_4) \neq (0, 0, 0)\)

Special Conformal Transformations \((\hat{L}_I = \hat{L}_c)\)

\[V_c(\xi) = \xi \partial_z + \xi_z \left[-(\vartheta - i\omega)\partial_{\vartheta} - (\omega + i\vartheta - 4iq^2\varphi - i\frac{\alpha_2}{6} q^2\varphi^2)\partial_{\omega} - \frac{q}{2}\partial_q \right] + \text{c.c.} \]

\[z = x + iy, \quad \xi = \xi^1 + i\xi^2 \quad \text{complex notation} \]

\[\xi^1, \xi^2 \quad \text{arbitrary real harmonic functions of } z \]

\[\xi_y^1 = -\xi_x^2, \quad \xi_x^1 = \xi_y^2 \quad \text{Cauchy-Riemann conditions} \]
Group Analysis
Symmetries of the Membrane Shape Equation

Symmetry Algebra
(De Matteis, 2002)

• Case II: \((\alpha_2, \alpha_3, \alpha_4) = (0, 0, 0)\)

Conformal Transformations and Dilatations \((\hat{L}_{II} = \hat{L}_c \oplus \hat{L}_d)\)

\[
V_c(\xi) = \xi \partial_z + \xi_z \left[-(\vartheta - i\omega)\partial_\vartheta - \right. \\
\left. (\omega + i\vartheta - 4iq^2\varphi)\partial_\omega - \frac{q}{2}\partial_q \right] + \text{c.c.} \\
V_d = \vartheta \partial_\vartheta + \omega \partial_\omega + \varphi \partial_\varphi
\]

\(z = x + iy, \quad \xi = \xi^1 + i\xi^2 \quad \text{– complex notation} \)

\(\xi^1, \xi^2 \quad \text{– arbitrary real harmonic functions of } z \)

\(\xi^1_y = -\xi^2_x, \quad \xi^1_x = \xi^2_y \quad \text{– Cauchy-Riemann conditions} \)
Group Analysis
Symmetry Reduction of the Membrane Shape Equation

Reduced System of Second-Order ODEs
for Solutions Invariant under the Subgroup Generated by
\(V_c(1/2) = \partial_x \)

\[
q^2 \frac{d^2 \varphi}{dy^2} + 2q \varphi \frac{d^2 q}{dy^2} - 2 \varphi \left(\frac{dq}{dy} \right)^2 + q^4 \left(8 \varphi + \alpha_2 \varphi^2 + \alpha_3 \varphi^3 + \alpha_4 \varphi^4 \right) = 0
\]

\[
\frac{d\vartheta}{dy} - (8 + \frac{\alpha_2}{3} \varphi) q \left(\varphi \frac{dq}{dy} + q \frac{d\varphi}{dy} \right) = 0
\]

\[
4q \varphi^2 \frac{d^2 q}{dy^2} + 4 \varphi q^2 \frac{d^2 \varphi}{dy^2} - 4 \varphi^2 \left(\frac{dq}{dy} \right)^2 - 4q^2 \left(\frac{d\varphi}{dy} \right)^2 - \alpha_5 - \vartheta^2 + (8 + \frac{\alpha_2}{3} \varphi) q^2 \varphi \vartheta = 0
\]

- three equations
- three unknown functions: \(q(y), \varphi(y), \vartheta(y) \); \(\omega(y) \equiv \text{const} \)
- three phenomenological constants: \(\alpha_2, \alpha_3, \alpha_4; \alpha_5 = \omega \)
Classification of the Group-Invariant Solutions of the Membrane Shape Equation
(De Matteis, 2002)

• All one-parameter subgroups of the general symmetry group of the membrane shape equation (in the above conformal metric presentation) are equivalent through the adjoint representation of the symmetry group on its Lie algebra.

• Any solution invariant under one-parameter subgroup of the general symmetry group of the membrane shape equation can be obtained by applying a symmetry group transformation to some solution invariant under the one-parameter symmetry subgroup generated by $V_c(1/2) = \partial_x$.
Vesicle Shapes Derived from Solutions
Invariant Under the Translation Symmetry Subgroup
\((x, y, q, \varphi, \vartheta, \omega) \mapsto (x + \varepsilon, y, q, \varphi, \vartheta, \omega), \quad \varepsilon \in \mathbb{R}\)

(De Matteis, 2002)

- Sphere (for \(H = \text{const}\))
- Delaunay’s Surfaces (for \(H = \mathbb{I}h\))
- Toroidal Surfaces (for \(q = \text{const}\))
- Circular Biconcave Discoid (for \(q = \frac{\rho(\varphi)}{2\varphi}, \quad \rho \varphi \rho = -c\varphi^2\))
Figure: The open parts of the Delaunay surfaces - cylinder, sphere, catenoid, unduloid and nodoid.
Group Analysis
Group-Invariant Solutions

Sphere

Obtained from Group-Invariant Solution for \(H = H_0 = \text{const} \neq \mathbb{I} \)

Cartesian Coordinates
\[
\begin{align*}
 x^1 &= -\frac{R}{\cosh y'} \sin x', \\
 x^2 &= -\frac{R}{\cosh y'} \cos x', \\
 x^3 &= -R \tanh y'
\end{align*}
\]

Metric
\[
ds^2 = \frac{1}{H_0^2 \cosh^2 y'} (dx'^2 + dy'^2)
\]

Second Fundamental Form
\[
\Omega = \frac{1}{H_0 \cosh^2 y'} (dx'^2 + dy'^2)
\]

\((x', y') = \delta_0(x, y) – \text{coordinate scaling}\)
\(R = 1/H_0 – \text{radius of the sphere}\)
\(\delta_0 = \text{const}; \quad \mathbb{I} – \text{spontaneous curvature}\)
Group Analysis

Group-Invariant Solutions

Delaunay Surfaces

Obtained from Group-Invariant Solution for $H = \mathbb{H}$

Nodoids obtained for $\mathbb{H}^3\vartheta_0 < 0$

Unduloids obtained for $0 < \mathbb{H}^3\vartheta_0 < 1$

Metric

$$ds^2 = p^2 d\Phi^2 - \frac{4p^2}{4\mathbb{H}^2 p^4 + 2\vartheta_0 \mathbb{H}^3 - \mathbb{H}^2 - 4} dp^2$$

Second Fundamental Form

$$\Omega = (\mathbb{H} p^2 + \frac{1}{4} \vartheta_0 \mathbb{H}^2) d\Phi^2 - \frac{4\mathbb{H} p^2 - \vartheta_0 \mathbb{H}^2}{4\mathbb{H}^2 p^4 + 2\vartheta_0 \mathbb{H}^3 + \mathbb{H}^2 - 4} dp^2$$

$$p = \sqrt{r \left(1 - \sigma^2 sn(2\sqrt{2} y, \sigma)\right)}, \quad \Phi = 2x/\mathbb{H}$$

$$r = \frac{C(\mathbb{H})}{4}, \quad \sigma = \sqrt{2C(\mathbb{H})/r}$$

$$C(\mathbb{H}) = \sqrt{\mathbb{H}^6 - \mathbb{H}^4/4 - 4\mathbb{H}^3 + 4}$$

\mathbb{H} – spontaneous curvature
Group Analysis

Group-Invariant Solutions

Clifford Torus

Obtained from Group-Invariant Solution for \(q = q_0 = \text{const} \)

Detected Experimentally by Mutz and Bensimon (1991)

Cartesian Coordinates

\[
\left[(x^1)^2 + (x^2)^2 + (x^3)^2 + \frac{1}{\hbar^2} \right]^2 = \frac{8}{\hbar^2} \left[(x^1)^2 + (x^2)^2 \right]
\]

Metric

\[
ds^2 = \rho^2 d\theta^2 - \frac{d\rho^2}{1 + 2\sqrt{2}\hbar\rho + \hbar^2\rho^2}
\]

Second Fundamental Form

\[
\Omega = (\hbar\rho^2 + \sqrt{2}\rho) d\theta^2 - \frac{\hbar d\rho^2}{1 + 2\sqrt{2}\hbar\rho + \hbar^2\rho^2}
\]

\(\theta \) – rotation angle through the \(x^3 \) axis

\(\rho \) – radius; \(\hbar \) – spontaneous curvature
Group Analysis
Group-Invariant Solutions

Circular Biconcave Discoid

Obtained from Group-Invariant Solution for $q = q(\varphi) = \rho(\varphi)/2\varphi$

Shape of the Red Blood Cells

Cartesian Coordinates
$x^1 = \cos x$, $x^2 = \sin x$, $x^3 = \int \tan \psi(\rho) d\rho + z_0$

Metric
$ds^2 = \rho^2 dx^2 + \frac{\rho^2}{f(\rho)} d\rho^2$

Second Fundamental Form
$\Omega = 2\ln \rho^2 \ln \left(\frac{\rho}{\rho_0}\right) dx^2 + 2\ln \rho^2 \left(\ln \left(\frac{\rho}{\rho_0}\right) + 1\right) \frac{1}{f(\rho)} d\rho^2$

x – angular variable; ρ – radius; $\rho_0, f_0, z_0 = \text{const}$
$(1/\varphi^2)(d\varphi/d\rho) = -2\ln/\rho$ – definition of $\rho(\varphi)$
ψ – angle between the tangent to the contour and the radius
$f(\rho) = \rho^2 \left(f_0 - 4\ln^2 \rho^2 \ln \left(\frac{\rho}{\rho_0}\right)\right)$; \(\sec^2 \psi(\rho) = \rho^2 / f(\rho) \)
References

