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Uses of Conservation Laws
e Constants of motion; hold for any set of data

¢ For global convergence, important that CLs are preserved for
approximation procedures

¢ Determine whether a given nonlinear PDE system can be invertibly
mapped into a linear PDE system as well as find such a mapping when
one exists

¢ To find equivalent nonlocally related systems of a given PDE system
o Invariant solutions resulting from point symmetries of nonlocally
related system could yield further solutions of given PDE system
o Computation of CLs of nonlocally related system could yield
nonlocal CLs of given PDE system and to non-invertible
linearizations, etc



Direct Method for Construction of Conservation Laws

Given system R{x;u} of N PDEs of order £ with n indep. var.
x=(x',..,x") and m dep. var. u(x)=(u'(x),...,u" (x)):

R°[ul= R(x,t,u,ou,...,0"u) =0, o=1..N, (1)
a local conservation law (CL) 1s an expression
D.®'[u]=D,®'[u]+...+D ®"[u]=0
holding for any solutions of (1); D,,i=1,...,n, are total deriv.operators

Definition. A PDE system R{x;u} (1) is totally non-degenerate
if (1) and its differential consequences have maximal rank and are locally
solvable.



Theorem. Let R{x;u} (1) be a totally non-degenerate PDE
system. Then for every nontrivial local conservation law

D.®'[u]=D,®' (x,u,0u,...,0 u) =0
of (1), there exists a set of multipliers
A UlI=A,(x,U,0U,..,0'U), o=1,..,N,
such that

D.®'[U]=A_[U]R°[U]
holds for arbitrary U(x).



Definition. The Euler operator with respect to U is the operator

;= a.—Di a.+...+(—1)sDi...Di a,
vtoooU’ oU’ ! QU !
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Theorem. For any divergence expression D,®'[U],
one has

E, D,®[UN=0, j=l..m.



Theorem. Let F[U]=F(x,U,dU,...,0°U). Then
E FIU]=0, j=1..m,
holds for arbitrary U(x) 1if and only 1f

F[U1=D,¥'(x,U,dU,...,0*"'U)

for some set of functions{¥'(x,U,dU.,...,0° 'U)}.

Theorem. A set of local multipliers {A_(x,U,dU....,0'U)} yields a
divergence expression for PDE system R{x;u} (1) if and only if

E, (A, (x,U,0U,...,0'U)R’ (x,U,0U,..,0"'U)) =0, j=1..m (2)

holds for arbitrary U(x).



Summary of direct method to find local CLs

. Seek multipliers of the form
A [U1=A_(x,U,0U.,....0'U)
with derivatives 0'U to some specified order .

. Obtain and solve the determining equations (2) to find the multipliers of
local conservation laws

. Find the corresponding fluxes ®'[U]=®'(x,U,dU.,...,0"U)
satisfying the identity

AL[UIR’[U]1=D,®'[U], (3)
=> CL
D.®'[u]=D.,®' (x,u,du,...,0'u) =0

with fluxes ®'[u] holding for all solutions of PDE system (1).



The fluxes are found by either

¢ directly matching each side of
AIUIR[UI=D,@'[U] (4)
[Here {A_[U]} and {R°[U]} are known with {®'[U]} tobedetermined.]

¢ through an integral (homotopy) formula



Example 1-Nonlinear telegraph system

R/[u,v]=v

R,[u,vl=u,—v_=0.

—(u* +Du, —u=0,

t

)

Seek CL multipliers of the form

A, =EU.V]=ExLUV), A, =g[U.V]=4(x.1,U.V) (6)

for (5). In terms of Euler operators

E = — , _ Y p Y _
“ou You, 'ou,” " av Tav. oV

the multipliers (6) yield a local CL of (5) if and only if



EU (é:[Uav]Rl [U,V] + ¢[U7V]R2 [U,V]) = 07

(7)
E, SIU.VIRIU,V]1+9lU,VIR,[U,V]) =0,

holds for arbitrary differentiable functions U(x,r), V(x,f). Equations
(7) hold if and only if

oy _(:ZU =0,

¢, —(U*+1E&, =0,

¢, — ¢ —Ug, =0,
U*+D&, -9, -U&, -&=0.

(8)

The solutions of (8) are:

(51’¢1) = (O,l), (é:z’%) = (t,x—%tz), (§3a¢3) — (L_t),
(54,%) _ (ex+§U2+v,Uex+;U2+v)’ (§5’¢5) _ (ex+§U2—V,_Uex+éU2—V).
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The corresponding five local conservation laws are obtained

straightforwardly :

Du+D [-v]=0,
D [(x—1Hu+tv]+D [(Lt* —x)v—t(u’ +u)] =0,

4

v—tul+D [tv—(u’ +u]=0,

D,

DI x+lu? 4 D x+lu?+ ~0
le |+D [—ue 1=0,

D,

- xHlut—v x+lu?—y
e ]+D [ue > ]1=0.
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Example 2-Korteweg-de Vries equation
Rlul=u, +uu_+u__ =0. (9)

It is convenient to also write (9) as u, = glu]=—(uu_+u

XXX )

Hence all CL multipliers are of the form
AlU=A(t,x,U,0 U,..,0'U),[=1.2,....
Then
E,(AIUIU,+UU _+U_ ))=0
if and only 1f

~-D,A-UD A-DA+
U, +UU,+U )N, =D (U, +UU,+U, A, )
+...+(=D'DL((U,+UU,+U HA, =0. (10)

XXX
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Note that the linear determining equation (10) is of the form
o +a,U +a0 U, +.+a,,0U =0 (11)

where each &; depends at moston , x, U and x-derivatives of
U. Since U(x,t) is an arbitrary function in equation (11),

it follows that each of U,,d U,,...,0 U, can be treated as

X

independent variables, and hence ¢, =0,i=1,...,[ +2

Thus equation (11) splits into an overdetermined linear system of
[ + 2 determining equations for the local multipliers

A(t,x,U,0 U,...,0'U),

given by
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DA+UD A+D’A=0, (12)

l
k
;(—D» Ayy =0,

! k!
—(=1¢ — k=q = = —
1= (=1) )A33U+k_§q+:lq!(k—q)!( D)YA,, =0, g=1..1-1,

(1=(-1))A,, =0,

where the “restricted” total derivative operator

D, =2+ g[Ul+(glUD), 50-+--

in terms of
glU]=—-(UU_+U_).

XXX
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Now suppose A =A(t,x,U). Then equations (12) are satisfied and
the determining equation (11) becomes

(A, +UA +A_)+3A U, +3A ,,U:+A,,, U’
+3A U, +3A,,UU._ =0.

X XX

(13)

Equation (13) must hold for arbitrary values of x,7,U,U ,U .. .Hence (13)
splits into six equations. Their solution yields the three local multipliers

A =1 A, =U, A;=tU-nx
These yield the divergence expressions

U +UU_+U_ =DU+D ((U*+U.),
UU,+UU_ +U_)=D,AU*+D (AU’ +UU_—-1U?),
(tU - .X)(Ut + UUx + Uxxx)

EDt(%tUz —xU)-I-Dx(_%xUz +tUU —%th -xU_+U)). s



There 1s only one additional multiplier of the form
AlU]=A(xt,UUU,,)

given by
A,=U_+1U>

Moreover, one can show that in terms of the recursion operator
R*[U]=D}+iU+1DoUoD,,

the KdV equation has an infinite sequence of local multipliers given by

A,, =R*[UD'U, n=12,...
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General expression relating local multipliers and solutions of adjoint
equations

Consider a system of N PDEs R{x;u} given by
R°[u]l=R°(x,u,ou,...,0"u)=0, o=1,..,N,

with n independent variables x = (xl,...,x”) and m dependent variables
1 m
u=u,..u ). Let

R°[U]=R°(x,U,dU,..,0"U), o=1,..,N,

where
U((x)=U"(x),..,.U™(x))

1s an arbitrary function and U(x) = u(x) solves the system of PDEs

Rix;u}.
17



In terms of an arbitrary function V(x) = (V' (x),...,V"(x)), the

linearizing operator L[U] associated with the PDE system R{x;u} is

given by

OR [U]+8R [U]Dz +.”+8R (U]
oU” oU’ oU’

i Iy

LUV = D, ..D, :IV”,

oc=1,..,N.

and, in terms of an arbitrary function W (x) = (W,(x),...,W, (x)), the

adjoint operator L*[U] associated with the PDE system R{x;u} 1is
given by

o _OR°[U] OR°[U]
L*p [U]WG= U7 WO'_Di[ aUlp W6j+
+(-1)*D, ..D, oR [U]WG ,
1 k anf)..ik
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In particular, WGL(;[U V?-VPL *g [UW_ is a divergence
expression.

Let
W_=A_[U]=A_(x,U,0U,..,0'U),0=1,..,N.

By direct calculation, in terms of Euler operators:

E , (AJUIRIUD=L* [UIA U]+ F,(RIUD (1)
with

A [U] oA [U]
Fp(R[U])— NIT. R°[U]- D[ U p R [U]j
=1,....m
oA U] o
lD D —92—-R
(2)
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From (1), it follows that {A’ (x,U,dU,...,0'U)}"_, is a set of
CL multipliers of PDE system R{x;u} if and only if the right
hand side of (1) vanishes for arbitrary U (x). Moreover, since
(2) vanishes for any solution U (x) =u(x) of R{x;u}, it
follows that every set of CL multipliers

{A° ()C,U,BU,...,B’U)}Z:1 of R{x;u} is itself a solution of its
adjoint system of PDEs (which is the adjoint of its linearizing

system of PDEs) when U(x) = u(x) is a solution of R{x;u},
1.€.,

L*0 [ulA,[u]l=0, p=L1..,m.
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Theorem. Consider a given PDE system R{x;u}. A set of local
multipliers {A_ (x,U,0U,...,0'U)}Y_, yields a local conservation law
of R{x;u} if and only if the identity

IA U]

UP

IA,IU]
QU ?

L* [U1A,[U] + R“[U]—Di( R"[U]]

IN,IU]
oU’.,

holds for arbitrary U(x)=(U"(x),...,U"(x))in terms of the
components {L*Z [U]}of the adjoint operator of the linearizing

+“'+(_1)€Dil'“Di€[ RG[U]JEO, p=1...,m,

operator (Fréchet derivative) for R{x;u}.
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Theorem. Consider a given PDE system R{x;u}. Suppose
{A,(x,U,0U ..., 0'U )}Y_, is a set of local multipliers that yields a local
conservation law of the PDE system R{x;u}. Let {L *g [U]} be the

components of the adjoint operator of the linearizing operator (Fréchet
derivative) for the PDE system R{x;u} and let

U(x)=u(x)='(x),...,u"(x)) be any solution of the PDE system
R{x;u}. Then

L* [u]A,[u]=0.
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The situation when the linearizing operator is self-adjoint

Definition. Let L[U], with its components L(;[U ], be the

linearizing operator associated with a PDE system R{x;u}.
The adjoint operator of L[U] is L*[U], with components
L*g [U]. L[U] 1s a self-adjoint operator if and only if
LIUI=L*[U], ie., L [U]=L*][U], 0, p=1,....,m

23



It 1s straightforward to see that if a PDE system, as written, has a
self-adjoint linearizing operator, then

¢ the number of dependent variables appearing in the system must
equal the number of equations appearing in the system, 1.e., N =
m;

¢ the highest-order partial derivative appearing in the system must
be of even order (assuming the adjoint system 1s not included in
the given PDE system)

The converse of the last statement 1s false. For example, consider
the linear heat equation

u. —u, =0.
Its linearizing operator is L=D’-D
L¥=D>+D, £ L.

., with adjoint operator

24



One can show that a given PDE system, as written, has a
variational formulation if and only if its associated linearizing
operator is self-adjoint [Volterra (1913), Vainberg (1964), Olver
(1986)].

If the linearizing operator associated with a given PDE system
1s self-adjoint, then each set of local CL multipliers yields a local
symmetry of the given PDE system. In particular, one has the
following theorem.

25



Theorem. Consider a given PDE system R{x;u} with N =
m. Suppose its associated linearizing operator L[ U] 1s self-
adjoint. Let {A_(x,U,dU.,...,0'U)}"_, be a set of local CL

multipliers for R{x;u}. Let
n° (x,u,ou,...,0'u) = A (x,u,ou,...,0'u), c =1,...,m,

where U = u 1s any solution of the PDE system R{x;u}.
Then

n°(x,u,ou,...,0'u) 86
ou

1s a local symmetry of R{x;u}.

26



Proof. Since the hypothesis of the previous theorem is satisfied
with L[ U] = L*[U], from the equations of this theorem, it follows
that in terms of the components of the associated linearizing
operator L[ U], one has

Lf)[u]AG(x,u,au,...,alu) =0, p=1,..,m, (2)

where u = ©(x) 1s any solution of the given PDE system R{x;u}.
But the set of equations (2) is the set of determining equations for a
local symmetry A_(x,u,0u,...,0') aj(, of PDE system R{x;u}.
Hence, (1) is a local symmetry of PDE system R{x;u}.

27



The converse of this theorem is false. In particular, suppose
ﬂ“(x,u,au,...,alu)au% is a local symmetry of a PDE system R{x;u}

with a self-adjoint linearizing operator L[U]. Let
A (x,U,0U,...,0'U) =n°(x,U,dU.,...,0'U), o =1,...,m, where
U(x)=U"(x),..,U"(x)) is an arbitrary function. Then it does not

necessarily follow that {A_(x,U,dU.,...,0'U)}"_, is a set of local CL

multipliers of R{x;u}. This can be seen as follows: In the self-
adjoint case, the set of local symmetry determining equations is a
subset of the set of local multiplier determining equations. Here
each local symmetry yields a set of local CL. multipliers if and only
each solution of the set of local symmetry determining equations
also solves the remaining set of local multiplier determining
equations.

28



To 1llustrate the situation, consider an example of a nonlinear PDE
whose linearizing operator is self-adjoint but the PDE has a point
symmetry that does not yield a multiplier for a local CL:

u, —u(uu ) =0. (1)

It is easy to see that PDE (1) has the scaling point symmetry
X — ox, u — au, corresponding to the infinitesimal generator

X=(u —xux)i. (2)
ou

The self-adjoint linearizing operator associated with PDE (1) 1s
given by

L[U]=D’-U’D:-2U0U D -2UU_ -U:.

29



The determining equation for CL multipliers A(z,x,U,U,,U ,)is an
identity holding for all values of ¢t,x,U,U,,U ,U. U, ., U U, ,U,_,
U...U_., and splits into a system of two equations consisting of

D’A-U’D’A-2UU D A—QUU_+U)A=0, (3)
and
2A, +D,A, -D A, =0, (4)

in terms of the “restricted” total derivative operator

D, =2+U, 5 +U, 55+ glUl35 + U, 55— +D,(g[UD) 3

U,

where g[U]=UUU,)..

30



The first equation (3) 1s the determining equation for
A(t, x,u,ut,ux)g’—u to be a contact symmetry of the given PDE (1).

If the contact symmetry satisfies the second determining equation
then it yields a local multiplier A(¢,x,U,U,,U ) of PDE (1).

It 1s easy to check that the scaling symmetry (2) obviously
satisfies the contact symmetry determining equation (3) but does
not satisfy the second determining equation (4) when u(x,t) 1s
replaced by an arbitrary function U(x,t).

Hence the scaling symmetry (2) does not yield a local
conservation law of PDE (1).
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Noether’s Theorem

In 1918, Emmy Noether presented her celebrated procedure (Noether’s
theorem) to find local CLs for systems of DEs that admit a variational
principle.

When a given DE system admits a variational principle, then the
extremals of the associated action functional yield the given DE
system (the Euler-Lagrange equations). In this case, Noether showed
that if a one-parameter local transformation leaves invariant the action
functional (action integral), then one obtains the fluxes of a local CL
through an explicit formula that involves the infinitesimals of the local
transformation and the Lagrangian (Lagrangian density) of the action
functional.
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Euler-Lagrange equations

Consider a functional J[U ] in terms of n independent variables
x=(x",..,x") and m arbitrary functions U = U (x),....,U™(x))
and their partial derivatives to order k, defined on a domain £,

J[U]= jQL[U]dx - jQL(x,U,aU,...,akU)dx.

The function L[U]= L(x,U,dU,...,0"U) is called a Lagrangian
and the functional J[U] is called an action integral.
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Consider an infinitesimal change of U: U (x) = U (x)+ &v(x)
where v(x) 1s any function such that v(x) and its derivatives to
order k — 1 vanish on the boundary 0dQ of the domain Q.

The corresponding change (variation) in the Lagrangian L[U] 1s
given by

OL=L(x,U+&,0U +&,...,0"U + @*v)— L(x,U,dU,...,0"U)
OL[U] . 9JL[U] , oL[U]
=e{ YT + U vj+"'+8U"

J Jre-Ji

Vi J +0(&%).

34



Let

OL[U] ‘el JdL[U]
WU v]=v' | -D*'D...D .
[U,v] v[ o (=D Dy aUlljl...jli
v aL[(i]] +(-1D'’D,..D, af[U] J
aU.]lg anll.jZ"'jk—l
+Vi i a{‘J[U]

JiJz-Jial
After repeatedly using integration by parts, one can show that

AL=e(v'E, (LUD+DW'[U,v)+0(€),

where E . is the Euler operator with respect to U "
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The corresponding variation in the action integral J[U] is given
by

& = JU +ev]-J[U] = | SLx
=&| (VE,.(LUD+D,W'U,v)dx+0(e)

=&(| VE, (LIUDdx+[ W'[U,vIn'do)+0(e)

Hence if U =u(x) extremizes the action integral J[U], then the
O(¢) term of oJ must vanish and thus

| VE, (Luldx=0

for an arbitrary v(x) defined on the domain €.
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Hence, if U =u(x) extremizes the action integral J[U] then u(x)
must satisfy the PDE system

oL oL
E, (Lu) = "4 +(-1)'D,..D, S =

=0, j=I1,..,m.
il (D

Equations (1) are called the Euler-Lagrange equations satisfied by
an extremum U = u(x) of the action integral J[U]. Thus

Theorem. If a smooth function U(x) = u(x) is an extremum of an
action integral J[U]= Lz L[Udx with L[U]= L(x,U,dU,...,0"U),

then u(x) satisfies the Euler-Lagrange equations (1).
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Noether’s formulation of Noether’s theorem

Here the action integral J[U] is invariant under the one-parameter
Lie group of point transformations

(x*) =x' +&&' (x,U)+0(€%), i=1,...n,
U =U* +en” (x,U)+0(€>), u=1,..,m,

0

ox'

with infinitesimal generator X = fi (x,U)

if and only 1f

[ LUldes= | LU dx

where Q%* is the image of €2 under the Lie group of point
transformations
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J =det(D, (x*)") =1+&D,E (x,U)+O(€”) is Jacobian of transf.
Then dx* = Jdx. Moreover, LIU*]= e L[U] in terms of the

infinitesimal generator X. Consequently, in Noether’s formulation, X
1s a point symmetry of J[U] if and only if

0= (Je* -DLUldx =g (LIUIDE (x,U)+X LU dx+O0(e)
(2)

holds for arbitrary U(x) where X% is the k-th extended infinitesimal
generator. Hence, if X is a point symmetry of J[U], then the O(¢)
term in (2) must vanish. Thus

LIUID.E (x,U)+X“L[U]=0

39



The one-parameter Lie group of point transformations with inf. gen.

X 1s equivalent to the one—parameter family of transformations

(x*) =x', i=1,.,n, 3)
UH* =U* + eln*(x,U)=-U E (x,U)]+0(€>), pu=1,..,m,

with k-th extended infinitesimal generator X = n“u ]# +...

Under transformation (3), U(x) = U(x)+ &(x) has components
Vi) =" [U]=n"(x,U)-UE (x,U)

Hence oL =eXP LU+ 0(£?). Thus

Igéldx = EJQ)A((k)L[U]dx +0(£%).
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Consequently, comparing expressions, after setting
V() =R [U]=n"(x,U)-U}'$ (x,0),
it follows that

X®PLUI=A*UIE,,.(LIUD)+DW'UAUT (*)

Lemma. Let F[U]= F(x,U,dU.,...,0U) be an arbitrary function of

its arguments. Then, in terms of X and X* the following
identity holds:

XOF[U+FIUID.E (x,U)=XYF[U]+D,(FIUIE (x,U)).
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Theorem. Noether’s formulation of Noether’s Theorem. Suppose a
given PDE system R{x;u} is derivable from a variational principle, i.e.,

the given PDE system is a set of Euler-Lagrange equations whose
solutions u(x) are extrema U(x) = u(x) of an action integral J{U] with
Lagrangian L[U]. Suppose the one-parameter Lie group of point
transformations X leaves invariant J[U]. Then

(1) A*[UIE,. (LU = =D, (&' (x,U)LIUI+W'[U,AIUI]) (4)

holds for arbitrary functions U(x), i.e.,{R”[U] }Zzl 1s a set of local CL
multipliers of the Euler-Lagrange system;

(2) The conservation law
D, (&' (x,uw) L[u)+W'[u,Alul]) =0 (5)

holds for any solution u = ®(x) of the Euler-Lagrange system.
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Proof. Let F[U]= L[U] in the identity in the lemma. Then
XPLUT+D(LUIE (x,U))=0 (6)

holds for arbitrary functions U(x). Substitution for X®LIUT in (6)
through (*) yields (4). If U(x) = u(x) solves the Euler-Lagrange system,
then the left-hand-side of equation (4) vanishes. This yields the
conservation law (5).
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Boyer’s formulation of Noether’s theorem

Boyer (1967) generalized Noether’s theorem to find conservation laws
arising from invariance under higher-order transformations through a
generalization of Noether’s definition of invariance of an action integral
JIU]. Here action integral J[U] is invariant under a one-parameter
higher-order transformation if its integrand L[U] 1s invariant to within a
divergence.

Definition. Let X =7*(x,U,dU,...,0'U )anﬂ be the infinitesimal

generator of a one-parameter local transformation with extension X°.
Let A*[U]=A"(x,U,dU....,0'U). X is a local symmetry of J[U] if and
only if

X=L[U1=D.A'[U] (8)
for some set of functions

A'lU1=A'(x,U,0U,...,.0'U),i=1,....n.
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Theorem. Boyer’s generalization of Noether’s theorem. Suppose a
given PDE system R{x;u} is derivable from a variational principle, i.e.,
the given PDE system is a set of Euler-Lagrange equations whose
solutions u(x) are extrema U(x) = u(x) of an action integral J[U] with

Lagranegian L[U]. Suppose X =A“[U
grangian L[U]. Supp nl ]aUﬂ

Then

() A*WWIE,, (LIUD) =D, (A'UI-W'U,AIUID (9)

holds for arbitrary functions U(x), i.e.,{#*[U] }Z’:l 1s a set of local CL
multipliers of the Euler-Lagrange system;

(2) The conservation law
D, (W'[u,flu]]- A'[u]) =0 (10)

holds for any solution u = ®(x) of the Euler-Lagrange system

1s a local symmetry of J[U].
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Proof. For the one-parameter local transformation with infinitesimal
generator X = A*[U ]%, it follows that the corresponding
infinitesimal change U (x) — U (x) + &v(x) has components
v (x)=1*[U]. Consequently,
I =eX"LU]+0(?).

But

oL =eM"[UIE,, (LIUD+D,(W'U,AIUN) +O(e™).
Hence it immediately follows that

X*LU] =n*[UIE,.(LIUD+D,(W'[U,AU]) (11)
holds for arbitrary functions U(x). Since X =A*“[U ]ﬁ 1s a local

symmetry of J[U], it follows that equation (8) holds. Substitution for
XZL[U]in (11) through (8) yields equation (9). If U(x) = u(x) solves
the Euler-Lagrange system, then the left-hand-side of equation (9)
vanishes. This yields the conservation law (10).



The following theorem shows that any conservation law obtained
through Noether’s formulation can be obtained through Boyer’s
formulation.

Theorem. If a conservation law 1s obtained through Noether’s
formulation, then the conservation law can be obtained through Boyer’s
formulation.

Proof. Suppose the one-parameter Lie group of point transformations
with inf. gen. X yields a CL. Then equation (6) holds. Consequently,

XPLUI=X"LIU]=D,A U] (12)
where A'[U]= -D. (LIU ]é:i (x,U). But equation (12) 1s just the condition

for X to be a local symmetry of J[U]. Consequently, one obtains the
same conservation law from Boyer’s formulation.
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Limitations of Noether's theorem

1 The difficulty of finding variational symmetries. To find variational
symmetries of a given DE system arising from a variational principle,

first one determines local symmetries X = 77"[u]auicr of the Euler-

Lagrange equations. Then for each such local symmetry, one checks if
X leaves invariant the Lagrangian L[U] to within a divergence. [Since
all CLs, obtainable by Noether’s theorem, arise from multipliers, one
can simply use the direct method to find the variational symmetries. ]

2 A given system of DEs is not variational as written. A given system
of differential equations, as written, is variational if and only if its
linearized system (Fréchet derivative) is self-adjoint. Consequently, it
is necessary that a given system of DEs, as written, must be of even
order, have the same number of equations in the system as its number
of dependent variables and be non-dissipative to directly admit a
variational principle.
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3 Artifices may make a given system of DEs variational. Such
artifices include:

® The use of multipliers. As an example, the PDE
u,+H (u)u_+Hw,)=0,

as written, does not admit a variational principle since its linearized

equation ¢, + H' (u )¢ +(H (u )+ H'(u,))s. =0 is not self-adjoint.

However, the equivalent PDE
e'lu, + H (u ) u +Hu,)] =0,

as written, is self-adjoint!
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® The use of a contact transformation of the variables. As an example, the
ODE

Y +2y'+y=0, (**)

as written, obviously does not admit a variational principle. But the point
transformation x > X =x,y —> Y = ye’, maps ODE (*) into the variational
ODE Y” =0.

It is well-known that every second order ODE, written in solved form, can
be mapped into Y” =0 by some contact transformation but there is no
finite algorithm to find such a transformation.
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e The use of a differential substitution. As an example, the Korteweg-de
Vries (KdV) equation

u, . tuu, +u =0,

as written, obviously does not admit a variational principle since it is of
odd order. But the well-known differential substitution

U=v,
yields the related transformed KdV equation

+vv +v, =0

VXXXX X XX
which 1s the Euler-Lagrange equation for an extremum V = v of the action
integral with Lagrangian

L[V = %(‘/xx)2 _%(Vx)3 _%Vx‘/t'
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4 Noether's theorem is coordinate-dependent. The use of Noether's
theorem to obtain a conservation law 1s coordinate-dependent since
the action of a contact transformation can transform a DE having a
variational principle to one that does not have one.

On the other hand it is well-known that conservation laws are
coordinate-independent in the sense that a contact transformation
maps a conservation law into a conservation law.

5 Artifice of a Lagrangian. One should be able to directly find the
conservation laws of a given system of DEs directly without the need to
find a related action integral whether or not the given system is
variational.
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Advantages/comments re: the direct method to find CLs

. Works for any system of DEs no matter how it is written.
Finds all local CLs. [Noether’s thm only finds local CLs.]

. The number of dependent variables does not have to equal
the number of equations in the system.

. No functional is required unlike for Noether’s thm. CLs are
constructed directly.

. Multipliers correspond to symmetries if and only if the
linearization operator is self-adjoint (N.A.S.C. for action
integral to exist, i.e., given system is variational).
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Example: Consider the Klein-Gordon eqn
u, —u"=0,n#0,1. (1)

Eqn (1) has the point symmetry x* = o' ™" x, * = t,u* = au
> X=(u-— (l—n)xux)i
ou

Eqgn (1) 1s variational with action functional

JW1=[LUddx; LU]==30U, +. 50"

n+l

(1) Noether’s formulation of Noether’s theorem

Let x*=a' "x,t*=t,U*=aU. Then
J[U*] = J[aU]= j LIU*|dt* dx* = a'™" j L{aU \dtdx.
But LjaU]=a™"L[U]= J[U¥|=a*J[U]# J[U]
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Hence X 1s not a point symmetry of the action functional J[U] and
hence there 1s no resulting CL from Noether’s formulation of N’s thm

(2) Boyer’s formulation of Noether’s theorem

X*LU]=U"(U —-xU _(1-n))
— (U (U, —xU _(1-n)+U,[U,—xU_(1-n))) (2)

The r.h.s. of (2) does not correspond to a divergence. Best way to show
this:

E,X"LIU)=2(U_,+U")#0.
Hence no CL.

(3) Direct method

E, [(U—-xU_(1-n))U, —U)]#0 for an arbitrary function U (¢, x)

Hence no CL.
55



Determination of fluxes of local CLs from multipliers

Let {A_[U]=A_(x,U,0U,...,0'U)}Y_ be a set of CL multipliers for
PDE system R{x;u}. Then for arbitrary functions
U(x)=(U"(x),....,U"(x)), one has

ALUIR’[U]=D,®'[U] (*)
for some set of functions {®'(x,U,dU.,...,0"U)}", to be found.

Two methods:
¢ Direct method through equating both sides of (*) to find fluxes
¢ Homotopy operator method
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Example of using direct method:

Consider nonlinear wave equation
u, —(c*(wu,), =0 (1)
A[U] =xt 1s a multiplier of a local CL of (1). Then
x(D,(U,)~D,(*(U)U,) =D,(TIU)~D(X[U]) (2)
forsome T[U]=T(x,t,U,U_U,),X[U]=X(x,t,U,U_U,)
Then (2) becomes

xt(U, —2c(U)U)U )’ -c*U)U )
=T +T,U, +TUtUn +TUxUtx) (3)
+(X, +X,U +X, U, +X,U,)

Equate to zero the coefficientsof U U, ,U, ,(U,)>,U,,U ,rest

x?
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This yields straightforwardly

TWU]=xtU, —xU, X[Ul==xtc*(U)U, +t[c*(U)dU
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Use of Symmetries to Find New Conservation Laws from Known
Conservation Laws

Any symmetry (discrete or continuous) admitted by a given PDE
system R{x;u} maps a conservation law of R{x;u} into another
conservation law of R{x;u}. Usually, the same conservation law of
R{x;u} 1s obtained.

An admitted symmetry of PDE system R{x;u} induces a symmetry
that leaves invariant the linear determining system for its multipliers.

Hence, it follows that if we determine the action of a symmetry on a
set of multipliers {A_[U]} for a known conservation law of R{x;u}

to obtain another set of multipliers {A°[U]}, then a priori we see
whether or not a new conservation is obtained for R{x;u}.
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Suppose the invertible point transformation
x=x(x,0), U=U%0), (1)
with inverse
¥=%(xU), U=U(xU),

1s a symmetry of PDE system R{x;u}. Then for each PDE in R{x;u},
one has

RUI=AZIUIRPIU] (2)

holding for some {AZ[U 1}.
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Theorem. Under the point transformation (1), there exist functions

{¥'[U]} such that
JIUID,®'[U]=D,¥'[U] (3)

where the Jacobian determinant

B o Dyt
1 n
)= 2E ) |
DX ,....xX") ; S :
D x' .« D x"
and
d'[U] @[U] - @"[U]
o~ D, x' ... D, x"
wigl=x T )
B, B
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Theorem. Suppose the point transformation (1) is a symmetry of
R{x;u} and {A [U]}1s a set of multipliers for a CL of R{x;u} with

fluxes{®'[U]}. Then
ALUIRPIUI=D,¥' U] (1)

where

A U1=N01AZ[UIA,U), B=1,...,N, (8)
with the components of the derivatives in {A [U ]} expressed in terms
of the prolongation of point transformation (1). In (7), W'[U] is given
by determinant (4); in (8): Ag[ﬁ ] is obtained from (2), J[U] is obtained
from (3).

After replacing

¥ by x', U” by U?, etc.in (7), one obtains the following corollary
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Corollary. If {A_[U]} is a set of multipliers yielding a CL of PDE
system R{x;u} that has the symmetry (1), then {A sU1} yields a set
of multipliers for a CL of R{x;u} where (A sU1} 1s given by (8) after
replacing %' by x',U°by U?,U? by U7, etc. The set of multipliers
(A slU1} yields a new CL of PDE system Rf{x;u} if and only if this
set 1s nontrivial on all solutions U = u(x) of PDE system R{x;u}, i.e.

/A\ﬁ[u]aécAﬁ[u],,le,...,N, for some constant c.
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Now suppose the symmetry (1) is a one-parameter Lie group of point
transformations

x=x(x,U;e)=e%, U=UEU;e)=e*U (9)
in terms of its infinitesimal generator (and extensions)

J
C1Ad

X=&/x0)2+n°(x0)

If (6) holds, then from (3) and the Lie group properties of (9), it follows
that

JIU;ele™ (A [UIR’[U)=D,¥'[U;e] (10)

in terms of the (extended) infinitesimal generator

X=&(xU)5+1°(xU)?

U’ *
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Then, after expanding both sides of Eq. (10) in terms of power
series in &, one obtains an expression of the form

> e’AU; pIR° U= e D, (LW [Usel) . (12)

plde?
Corresponding to the sequence of sets of multipliers
(A Uspl}, p=12,...,
arising in expression (12), one obtains a sequence of CLs
D, (LW e =0, p=12,...
for system R{x;u} from its known CL

D.®'[u]=0.
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EXAMPLE 1

v, +(1—2e"")u, —e" =0,
v, —u, =0
has CL multipliers
A, =E=e U Gin(L(V + (x+26Y)/4/2),
A, =¢=—e V"D 2V sin(L(V + (x+2¢Y)//2))
+cos(L(V +(x+2e")/~2)))

and corresponding fluxes

T — _26—%(u+t/\/§)

COS(% v+ (x+2€“)/~2),
X =2 20HV2) (~/2¢" cos(% v+ (x+2¢")//2))

—sin(L (v + (x +2¢")/~/2)))
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The given PDE system obviously has the symmetries

~

(t,x,u,v)=(—t,x,il,—v) (reflection)
and
(t,x,u,v)=(f,X,i,v +&) (translations)

One can show that these symmetries yield three new
CLs through

(I)  Reflection symmetry applied to above CL

(I)  Translation symmetry applied to above CL

(III) Reflection symmetry applied again to CL
found in (II)
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EXAMPLE 2

v, —(sech’u)u, + tanhu =0,

v, —u, =0,
has CL multipliers

A =&=e"(2x+1> —V? —2log(coshl)),
A, =¢=2¢" (VtanhU —1t),

and corresponding fluxes

T =e*(2tu—1v’ +v(t> + 2x — 2log(coshu))),

X =e"((v’ —1° = 2x+ 2(1+log(coshu))) tanh u — 2(vt + u)).
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This PDE system has the point symmetries

XI:g X2:v2+tanhu 0 + 0 +1 L
ot ox Jdu Oov

These symmetries yield three new CLs:

I. The O(€), O(g”) terms that result from applying the translation
symmetry to the above CL yield two new CLs.

II. The action of the second symmetry X, on the new O(¢) CL
yields a third new CL.
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