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Uses of Conservation Laws 
 

 

• Constants of motion; hold for any set of data 

 

• For global convergence, important that CLs are preserved for 

approximation procedures  

 

• Determine whether a given nonlinear PDE system can be invertibly 

mapped into a linear PDE system as well as find such a mapping when 

one exists 

 

• To find equivalent nonlocally related systems of a given PDE system   

o Invariant solutions resulting from point symmetries of nonlocally 

related system could yield further solutions of given PDE system 

o Computation of CLs of nonlocally related system could yield 

nonlocal CLs of given PDE system and to non-invertible 

linearizations, etc 
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Direct Method for Construction of Conservation Laws

Given system R{x;u} of  N  PDEs of order  k  with  n  indep. var.

),...,( 1 n
xxx =  and  m  dep. var. :))(),...,(()( 1

xuxuxu
m=

NuuutxRuR
k ,...,1,0),...,,,,(][ ==∂∂= σσ

,     (1)

a local conservation law (CL) is an expression

0][D...][D][D 1

1 =Φ++Φ=Φ uuu
n

n

i

i

operators deriv.  totalare  ,,...,1,D(1); of solutionsany for  holding nii =

Definition.  A PDE system R{x;u} (1) is totally non-degenerate

if (1) and its differential consequences have maximal rank and are locally

solvable.



4

Theorem.  Let R{x;u} (1) be a totally non-degenerate PDE

system. Then for every nontrivial local conservation law

0),...,,,(D][D =∂∂Φ=Φ uuuxu
ri

i

i

i

 of (1),  there exists a set of multipliers

,,...,1),,...,,,(][ NUUUxU
l =∂∂Λ=Λ σσσ

such that

≡Φ ][D Ui

i ][][ URU σ
σΛ

holds for arbitrary U(x).
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Definition. The Euler operator with respect to   
j

U is the operator

......DD)1(...DE
...1

1
+

∂

∂
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∂
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∂

∂
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UUU

Theorem.  For any divergence expression   ][D U
i

iΦ ,

one has

.,...,1,0])[(DE mjU
i

iU
j =≡Φ
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Theorem.  Let ),...,,,(][ UUUxFUF
s∂∂= . Then 

 

,,...,1,0][E mjUFj
U

=≡  

 

holds for arbitrary U(x)  if and only if 

 

),...,,,(D][ 1UUUxUF si

i

−∂∂Ψ≡
 

for some set of functions )}.,...,,,({ 1
UUUx

si −∂∂Ψ  

 

Theorem. A set of local multipliers )},...,,,({ UUUx
l∂∂Λσ  yields a 

divergence expression for PDE system R{x;u} (1) if and only if 

 

mjUUUxRUUUx
kl

U
j ,...,1,0)),...,,,(),...,,,((E =≡∂∂∂∂Λ σ

σ     (2) 

 

holds for arbitrary U(x). 
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Summary of direct method to find local CLs 

 
• Seek multipliers of the form 

),...,,,(][ UUUxU
l∂∂Λ=Λ σσ  

with derivatives U
l∂  to some specified order l. 

 

• Obtain and solve the determining equations (2) to find the multipliers of 

local conservation laws 

 

• ),...,,,(][  fluxes ingcorrespond  theFind UUUxU
rii ∂∂Φ=Φ   

satisfying the identity 

 

(3)    ],[D][][ UURU
i

iΦ≡Λ σ
σ       

=> CL 

0),...,,,(D][D =∂∂Φ=Φ uuuxu
ri

i

i

i  

 

(1). system PDE of solutions allfor  holding  ][  fluxeswith u
iΦ  
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The fluxes are found by either

• directly matching each side of

(4)    ][D][][ UURU
i

iΦ≡Λ σ
σ

 .]determined be   to]}[{ known with are ]}[{ and ]}[{ Here[ UURU
iΦΛ σ

σ

• through an integral (homotopy) formula
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Example 1-Nonlinear telegraph system

.0],[

,0)1(],[

2

2
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=−+−=

xt

xt

vuvuR

uuuvvuR
  (5)

Seek CL multipliers of the form

),,,(],[),,,,(],[ 21 VUtxVUVUtxVU φφξξ ==Λ==Λ   (6)

for (5).  In terms of Euler operators
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∂
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∂
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the multipliers (6) yield a local CL of (5) if and only if
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,0]),[],[],[],[(E

,0]),[],[],[],[(E

21

21

=+

=+

VURVUVURVU

VURVUVURVU

V

U

φξ

φξ
 (7) 

 

holds for arbitrary differentiable functions U(x,t), V(x,t).  Equations 

(7) hold if and only if 
 

.0)1(

,0

,0)1(
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2

2

=−−−+

=−−

=+−

=−
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U

U
  (8) 

 

The solutions of (8) are: 
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Example 2-Korteweg-de Vries equation

)9(.0][ =++= xxxxt uuuuuR

It is convenient to also write (9) as   ).(][ xxxxt uuuugu +−==

Hence all CL multipliers are of the form

,...2,1),,...,,,,(][ =∂∂Λ=Λ lUUUxtU
l

xx .

Then
0))]([(E ≡++Λ xxxxtU UUUUU  

if and only if

+Λ−Λ−Λ− 3DDD xxt U

))((D)( UxxxxtxUxxxxt x
UUUUUUUU ∂Λ++−Λ++

.0)((D)1(... ≡Λ++−++
∂ Uxxxxt

l

x

l
l
x

UUUU     (10)
• 
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Note that the linear determining equation (10) is of the form  

 

0... 2321 ≡∂++∂++ + t

l

xltxt UUU αααα    (11) 

 

where each  αi   depends at most on  t, x, U  and  x-derivatives of  

U.  Since U(x,t) is an arbitrary function in equation (11), 

 
2,...,1,0  hence and s,t variableindependen

 as  treatedbecan   ,,, ofeach  that followsit 

+==

∂∂

li

UUU

i

t

l

xtxt

α

K
  

 

Thus equation (11) splits into an overdetermined linear system of    

l + 2  determining equations for the local multipliers   

 

),,...,,,,( UUUxt
l

xx ∂∂Λ  

 

given by 
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,0DDD
~ 3 =Λ+Λ+Λ xxt U  (12)

,0)D(
1

=Λ−∑
=

∂

l

k
U

k

x k
x

  ,1,...,1,0)D(
)!(!

!
))1(1(

1

−==Λ−
−

+Λ−− ∑
+=

∂

−

∂
lq

qkq
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qk
U

qk

xU

q
k
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q
x

,0))1(1( =Λ−−
∂ U

l
l
x

where the “restricted” total derivative operator

L+++= ∂
∂

∂
∂

∂
∂

xUxUtt UgUg ])[(][D
~

in terms of
).(][ xxxx UUUUg +−=
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 Now suppose ).,,( UxtΛ=Λ  Then equations (12) are satisfied and 

the determining equation (11) becomes 

 

.033

33)( 32

=Λ+Λ+

Λ+Λ+Λ+Λ+Λ+Λ

xxxUUxxxU

xUUUxxUUxxxUxxxxt

UUU

UUUU
 (13) 

 

Equation (13) must hold for arbitrary values of .,,,, xxx UUUtx Hence (13) 

splits into six equations. Their solution yields the three local multipliers 

 

.,,1 321 xtUU −=Λ=Λ=Λ  

These yield the divergence expressions  

 

),(DD 2

2
1

xxxtxxxxt UUUUUUU ++≡++  

),(D)(D)( 2

2
13

3
12

2
1

xxxxtxxxxt UUUUUUUUUU −++≡++  

).(D)(D

))((

2

2
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2
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xxxxxxxt
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UUUUxtU
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There is only one additional multiplier of the form 

 

),,,,(][ xxx UUUtxU Λ=Λ  

  

given by 

.2

2
1

4 UU xx +=Λ  

 

Moreover, one can show that in terms of the recursion operator 

 

,DDD][*R 1

3
1

3
12

xxx UUU oo
−++=  

 

the KdV equation has an infinite sequence of local multipliers given by 

 

,...2,1,])[*R(2 ==Λ nUU
n

n  ,  
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General expression relating local multipliers and solutions of adjoint 

equations 

 

Consider a system of  N  PDEs  };{ uxR  given by  

 

,,...,1,0),...,,,(][ NuuuxRuR
k ==∂∂= σσσ  

 

with  n  independent variables ),...,( 1 n
xxx =  and  m  dependent variables 

).,...,(
1 m

uuu =   Let  

 

,,...,1),,...,,,(][ NUUUxRUR
k =∂∂= σσσ  

 

where  

))(),...,(()( 1
xUxUxU

m=  

 

is an arbitrary function and  U(x) = u(x) solves the system of PDEs  

R{x;u}.  
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In terms of an arbitrary function )),(),...,(()( 1
xVxVxV

m=  the 

linearizing operator  ][L U  associated with the PDE system   };{ uxR  is 

given by 

.,...,1

,D...D
][

...D
][][

][L
1

1 ...

N

V
U
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U
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U
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VU

k
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
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

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∂

∂
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∂

∂
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∂

∂
≡

σ

ρ

ρ

σ

ρ

σ

ρ

σ
ρσ

ρ
 

 

and, in terms of an arbitrary function )),(),...,(()( 1 xWxWxW N=  the 

adjoint operator  L*[U] associated with the PDE system R{x;u}  is 

given by 

,
][

D...D)1(

...
][

D
][

][*L

...1

1 













∂

∂
−+

+








∂

∂
−

∂

∂
≡

σρ

σ

σρ

σ

σρ

σ

σ
σ
ρ

W
U

UR

W
U

UR
W

U
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WU

k

k

ii

ii

k

i

i

 

.,...,1 m=ρ  
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In particular, σ
σ
ρ

ρρσ
ρσ WUVVUW ][*L][L −  is a divergence

expression.

Let

.,...,1),,...,,,(][ NUUUxUW l =∂∂Λ=Λ= σσσσ

By direct calculation, in terms of Euler operators:

])[(][][*L])[][(E URFUUURU
U ρσ

σ
ρ

σ
σρ +Λ≡Λ   (1)

with

,][
][

D...D)1(

...][
][

D][
][

])[(

...1

1 













∂

Λ∂
−+

+








∂

Λ∂
−

∂

Λ∂
=

UR
U

U

UR
U

U
UR

U

U
URF

l

l

ii

ii

l

i

i

σ
ρ

σ

σ
ρ

σσ
ρ

σ
ρ

.,...,1 m=ρ

(2)
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From (1), it follows that Nl
UUUx 1)},...,,,({ =∂∂Λ σ

σ  is a set of 

CL multipliers of PDE system };{ uxR  if and only if the right 

hand side of (1) vanishes for arbitrary ).(xU  Moreover, since 

(2) vanishes for any solution )()( xuxU =  of };{ uxR , it 

follows that every set of CL multipliers 
Nl

UUUx 1)},...,,,({ =∂∂Λ σ
σ  of R{x;u} is itself a solution of its 

adjoint system of PDEs (which is the adjoint of its linearizing 

system of PDEs)  when U(x) = u(x) is a solution of R{x;u}, 

i.e.,  

 

.,...,1,0][][*L muu ==Λ ρσ
σ
ρ  



21

Theorem.  Consider a given PDE system   };{ uxR .  A set of local

multipliers N
UUUx 1)},,,,({ =∂∂Λ σσ
l

K  yields a local conservation law

of };{ uxR  if and only if the identity

][][*L UU σ
σ
ρ Λ  + 









∂

Λ∂
−

∂

Λ∂
][

][
D][

][
UR

U

U
UR

U

U

i

i

σ
ρ

σσ
ρ

σ

,,,1,0][
][

DD)1(

1

1
mUR

U

U

ii

ii KLL

l

l

L

l =≡













∂

Λ∂
−++ ρσ

ρ
σ

holds for arbitrary ))(,),(()( 1
xUxUxU

m
K= in terms of the

components ]}[*L{ U
σ
ρ of the adjoint operator of the linearizing

operator (Fréchet derivative) for   R{x;u}.
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Theorem.  Consider a given PDE system };{ uxR .  Suppose 
Nl

UUUx 1)},...,,,({ =∂∂Λ σσ  is a set of local multipliers that yields a local 

conservation law of the PDE system };{ uxR .  Let ]}[*L{ U
σ
ρ  be the 

components of the adjoint operator of the linearizing operator (Fréchet 

derivative) for the PDE system };{ uxR  and let 

))(),...,(()()( 1
xuxuxuxU

m==  be any solution of the PDE system 

R{x;u}.  Then  

 

.0][][*L =Λ uu σ
σ
ρ   
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The situation when the linearizing operator is self-adjoint 

 

Definition.   Let L[U], with its components ],[L U
σ
ρ  be the 

linearizing operator associated with a PDE system };{ uxR .  

The adjoint operator of L[U]  is L*[U], with components 

][*L U
σ
ρ .   L[U] is a self-adjoint operator if and only if 

],[*L]L[ UU ≡  i.e., mUU ,...,1,],[*L][L =≡ ρσσ
ρ

σ
ρ   
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It is straightforward to see that if a PDE system, as written, has a

self-adjoint linearizing operator, then

• the number of dependent variables appearing in the system must

equal the number of equations appearing in the system, i.e., N =

m;

• the highest-order partial derivative appearing in the system must

be of even order (assuming the adjoint system is not included in

the given PDE system)

The converse of the last statement is false. For example, consider

the linear heat equation

.0=− txx uu

Its linearizing operator is ,DDL 2

tx −=  with adjoint operator

L.DDL* 2 ≡/+= tx
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One can show that a given PDE system, as written, has a

variational formulation if and only if its associated linearizing

operator is self-adjoint [Volterra (1913), Vainberg (1964), Olver

(1986)].

If the linearizing operator associated with a given PDE system

is self-adjoint, then each set of local CL multipliers yields a local

symmetry of the given PDE system.  In particular, one has the

following theorem.
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Theorem.  Consider a given PDE system  };{ uxR  with N = 

m.  Suppose its associated linearizing operator L[U] is self-

adjoint.  Let ml
UUUx 1)},...,,,({ =∂∂Λ σσ  be a set of local CL 

multipliers for };{ uxR .  Let  

 

=∂∂ ),...,,,( uuux
lση ,,...,1),,...,,,( muuux

l =∂∂Λ σσ  

 

where U = u is any solution of the PDE system   R{x;u}.  

Then  

σ
ση

u
uuux l

∂

∂
∂∂ ),...,,,(  

 

is a local symmetry of R{x;u}. 
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Proof.  Since the hypothesis of the previous theorem is satisfied 

with L[U] = L*[U], from the equations of this theorem, it follows 

that in terms of the components of the associated linearizing 

operator L[U], one has 

 

,,...,1,0),...,,,(][L muuuxu
l ==∂∂Λ ρσ

σ
ρ  (2) 

 

where )(xu Θ=  is any solution of the given PDE system   R{x;u}.  

But the set of equations (2) is the set of determining equations for a 

local symmetry σσ u

l
uuux

∂
∂∂∂Λ ),...,,,( of PDE system R{x;u}.  

Hence, (1) is a local symmetry of PDE system   R{x;u}.   
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The converse of this theorem is false.  In particular, suppose 

σ

ση
u

l
uuux

∂
∂∂∂ ),...,,,(  is a local symmetry of a PDE system };{ uxR  

with a self-adjoint linearizing operator L[U].  Let 

),...,,,( UUUx
l∂∂Λσ  ),...,,,( UUUx

l∂∂= ση , ,,...,1 m=σ  where 

))(),...,(()( 1
xUxUxU

m=  is an arbitrary function.  Then it does not 

necessarily follow that 
ml

UUUx 1)},...,,,({ =∂∂Λ σσ  is a set of local CL 

multipliers of R{x;u}. This can be seen as follows: In the self-

adjoint case, the set of local symmetry determining equations is a 

subset of the set of local multiplier determining equations.  Here 

each local symmetry yields a set of local CL multipliers if and only 

each  solution of the set of local symmetry determining equations 

also solves the remaining set of local multiplier determining 

equations.   
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To illustrate the situation, consider an example of a nonlinear PDE 

whose linearizing operator is self-adjoint but the PDE has a point 

symmetry that does not yield a multiplier for a local CL:  

 

.0)( =− xxtt uuuu   (1) 

 

It is easy to see that PDE (1) has the scaling point symmetry 
,, uuxx αα →→  corresponding to the infinitesimal generator 

.)(X
u

xuu x
∂

∂
−=  (2) 

The self-adjoint linearizing operator associated with PDE (1) is 

given by 

 

.2D2DD][L 2222

xxxxxxt UUUUUUU −−−−=  
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The determining equation for CL multipliers ),,,,( xt UUUxtΛ is an

identity holding for all values of ,,,,,,,,,, ttxtttxxtxttxt UUUUUUUUxt

,, xxxtxx UU  and splits into a system of two equations  consisting of

)3(,0)2(D2DD
~ 2222 =Λ+−Λ−Λ−Λ xxxxxxt UUUUUU

and

)4(,0DD
~

2 =Λ−Λ+Λ
tt UxUtU

in terms of the “restricted” total derivative operator

 
ttxxtx UtUtxxUUtxUttt UgUUgUU ∂

∂
∂

∂
∂

∂
∂

∂
∂
∂

∂
∂ +++++= ])[(D][D

~

.)(][   where xxUUUUg =
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The first equation (3) is the determining equation for

uxt uuuxt ∂
∂Λ ),,,,(  to be a contact symmetry of the given PDE (1).

 If the contact symmetry satisfies the second determining equation

then it yields a local multiplier ),,,,( xt UUUxtΛ  of PDE (1).

It is easy to check that the scaling symmetry (2) obviously

satisfies the contact symmetry determining equation (3) but does

not satisfy the second determining equation (4) when  u(x,t)  is

replaced by an arbitrary function  U(x,t).

Hence the scaling symmetry (2) does not yield a local

conservation law of PDE (1).
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Noether’s Theorem

In 1918, Emmy Noether presented her celebrated procedure (Noether’s

theorem) to find local CLs for systems of DEs that admit a variational

principle.

When a given DE system admits a variational principle, then the

extremals of the associated action functional yield the given DE

system (the Euler-Lagrange equations). In this case, Noether showed

that if a one-parameter local transformation leaves invariant the action

functional (action integral), then one obtains the fluxes of a local CL

through an explicit formula that involves the infinitesimals of the local

transformation and the Lagrangian (Lagrangian density) of the action

functional.
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Euler-Lagrange equations 

 

Consider a functional ][UJ  in terms of  n  independent variables 

),...,( 1 n
xxx =  and  m  arbitrary functions ))(),...,(( 1

xUxUU
m=  

and their partial derivatives to order  k, defined on a domain   ,Ω  

 

.),...,,,(][][ ∫∫ ΩΩ
∂∂== dxUUUxLdxULUJ

k
 

 

The function ),...,,,(][ UUUxLUL
k∂∂=  is called a Lagrangian 

and the functional ][UJ  is called an action integral.  
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Consider an infinitesimal change of  U:  )()()( xvxUxU ε+→  

where )(xv  is any function such that )(xv  and its derivatives to 

order k – 1  vanish on the boundary   Ω∂   of the domain   .Ω  

  

The corresponding change (variation) in the Lagrangian   ][UL   is 

given by 
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2
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Let
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∂
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∂
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∂
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∂

∂
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−

l

After repeatedly using integration by parts, one can show that

),(]),[D])[(E( 2εεδ OvUWULvL i
U

i ++= l

l

respect toith operator wEuler   theis E  where i
U

  i
U .
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The corresponding variation in the action integral  ][UJ   is given 

by 

 

)()],[])[(E(

)(]),[D])[(E(

][][

2

2

εσε

εε

δεδ

OdnvUWdxULv

OdxvUWULv

LdxUJvUJJ

i

i

U

i

U

i

++=

++=

=−+=

∫∫

∫

∫

Ω∂Ω

Ω

Ω

ll

l

l
 

 

Hence if )(xuU =  extremizes the action integral ],[UJ  then the 

)(εO  term of  δJ  must vanish and thus 

 

0])[(E =∫Ω dxuLv iu

i
 

 

for an arbitrary v(x) defined on the domain Ω. 
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Hence, if )(xuU =  extremizes the action integral  ][UJ  then  )(xu

must satisfy the PDE system

.,...,1,0
][

D...D)1(...
][

])[(E
...1

1
mj

u

uL

u

uL
uL

i

jj

jj

k

iu

k

k
i ==

∂

∂
−++

∂

∂
=

(1)

Equations (1) are called the Euler-Lagrange equations satisfied by

an extremum U = u(x) of the action integral J[U]. Thus

Theorem.  If a smooth function  U(x) = u(x)  is an extremum of an

action integral ∫Ω= dxULUJ ][][  with ),,...,,,(][ UUUxLUL
k∂∂=

then  u(x)  satisfies the Euler-Lagrange equations (1).
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Noether’s formulation of Noether’s theorem

Here the action integral J[U] is invariant under the one-parameter

Lie group of point transformations

,,...,1),(),(*)(

,,...,1),(),(*)(

2

2

mOUxUU

niOUxxx
iii

=++=

=++=

µεεη

εεξ
µµµ

with infinitesimal generator  ,),(),(X
ν

νηξ
U

Ux
x

Ux
i

i

∂

∂
+

∂

∂
=

if and only if

∫ ∫Ω Ω
=

*
][**][ dxULdxUL

where   Ω* is the image of Ω under the Lie group of point

transformations
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 transf.ofJacobian  is  )(),(D1)*)(Ddet(J
2εξε OUxx

i

i

j

i ++==  

Then .J* dxdx =  Moreover, ][*][ X
ULeUL

ε=  in terms of the 

infinitesimal generator X.  Consequently, in Noether’s formulation, X 

is a point symmetry of J[U] if and only if 

 

(2)                                                    

  )(])[X),(D][(][)1J(0 2)(X εξεε
OdxULUxULdxULe

ki

i ++=−= ∫∫ ΩΩ  

 

holds for arbitrary U(x) where  X(k) is the k-th extended infinitesimal 

generator. Hence, if  X is a point symmetry of J[U], then  the  O(ε)  

term in (2) must vanish.  Thus  

 

0][X),(D][ )( ≡+ ULUxUL
ki

iξ  
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The one-parameter Lie group of point transformations with inf. gen. 

X is equivalent to the one–parameter family of transformations 

 

,,...,1),()],(),([*)(

,,...,1,*)(

2
mOUxUUxUU

nixx

i

i

ii

=+−+=

==

µεξηε µµµµ
 (3) 

 

with k-th extended infinitesimal generator ...][ˆX̂ )( +=
∂

∂
µ

µη
U

k
U   

 

Under transformation (3),  )()()( xvxUxU ε+→  has components 

 

),(),(][ˆ)( UxUUxUxv
i

i ξηη µµµµ −==  

 

).(][X̂  Hence 2)( εεδ OULL
k +=  Thus  

 

).(][X̂ 2)( εεδ OdxULdxL
k += ∫∫ ΩΩ
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Consequently, comparing expressions, after setting 

 

),,(),(][ˆ)( UxUUxUxv
i

i ξηη µµµµ −==  

 

it follows that 

 

]][ˆ,[D])[(E][ˆ][X̂ )(
UUWULUUL

l

lU

k ηη µ

µ +≡    (*) 

 

Lemma. Let ),...,,,(][ UUUxFUF
k∂∂=   be an arbitrary function of 

its arguments.  Then, in terms of  )(X k  and  )(X̂ k   the following 

identity holds: 

 

)).,(][(D][X̂),(D][][X )()(
UxUFUFUxUFUF

i

i

ki

i

k ξξ +≡+  
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Theorem.  Noether’s formulation of Noether’s Theorem.  Suppose a 

given PDE system };{ uxR  is derivable from a variational principle, i.e., 

the given PDE system is a set of Euler-Lagrange equations whose 

solutions  u(x) are extrema U(x) = u(x) of an action integral J[U] with 

Lagrangian L[U].  Suppose the one-parameter Lie group of point 

transformations X leaves invariant J[U]. Then 

 

(1) ]])[ˆ,[][),((D])[(E][ˆ UUWULUxULU
ii

iU
ηξη µ

µ +−=   (4) 

 

holds for arbitrary functions U(x), i.e., m
U 1]}[ˆ{ =µ

µη  is a set of local CL 

multipliers of the Euler-Lagrange system; 

 

(2) The conservation law 

 

(5)   0]])[ˆ,[][),((D =+ uuWuLux
ii

i ηξ  

 

holds for any solution )(xu Θ=  of the Euler-Lagrange system. 
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Proof.  Let ][][ ULUF =  in the identity in the lemma. Then 

 

(6)   0)),(][(D][X̂ )( ≡+ UxULUL
i

i

k ξ  

 

holds for arbitrary functions U(x).  Substitution for ][X̂ )(
UL

k  in (6) 

through (*) yields (4).  If  U(x) = u(x) solves the Euler-Lagrange system, 

then the left-hand-side of equation (4) vanishes. This yields the 

conservation law (5). 
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Boyer’s formulation of Noether’s theorem 

 

Boyer (1967) generalized Noether’s theorem to find conservation laws 

arising from invariance under higher-order transformations through a 

generalization of Noether’s definition of invariance of an action integral  

J[U]. Here action integral  J[U] is invariant under a one-parameter 

higher-order transformation if its integrand L[U] is invariant to within a 

divergence. 

 

Definition. Let   
µ

µη
U

UUUx
s

∂

∂
∂∂= ),...,,,(ˆX̂    be the infinitesimal 

generator of a one-parameter local transformation with extension   ∞X̂ .  

Let ).,...,,,(ˆ][ˆ UUUxU
s∂∂= µµ ηη   X̂  is a local symmetry of J[U]  if and 

only if    

(8)   ][D][X̂ UAUL
i

i≡∞    

for some set of functions 

  

.,...,1),,...,,,(][ niUUUxAUA
rii =∂∂=  
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Theorem.  Boyer’s generalization of Noether’s theorem.  Suppose a 

given PDE system };{ uxR  is derivable from a variational principle, i.e., 

the given PDE system is a set of Euler-Lagrange equations whose 

solutions u(x) are extrema U(x) = u(x) of an action integral J[U]  with 

Lagrangian L[U].  Suppose 
µ

µη
U

U
∂

∂
= ][ˆX̂ is a local symmetry of J[U].  

Then 

 

(1) (9)   ]])[ˆ,[][(D])[(E][ˆ UUWUAULU
ii

iU
ηη µ

µ −≡  

 

holds for arbitrary functions U(x), i.e.,
m

U 1]}[ˆ{ =µ
µη  is a set of local CL 

multipliers of the Euler-Lagrange system; 

 

(2)  The conservation law 

 

(10)   0])[]][ˆ,[(D =− uAuuW
ii

i η  

 

holds for any solution )(xu Θ=  of the Euler-Lagrange system 
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Proof.  For the one-parameter local transformation with infinitesimal 

generator µ

µη
U

U ∂= ][ˆX̂ , it follows that the corresponding 

infinitesimal change )()()( xvxUxU ε+→  has components 

].[ˆ)( Uxv
µµ η=   Consequently,  

)(][X̂
2εεδ OULL += ∞ . 

But 

).(]]))[ˆ,[(D])[(E][ˆ( 2εηηεδ µ

µ
OUUWULUL

i

iU
++=  

Hence it immediately follows that 

 

][X̂ UL
∞  (11)   ]])[ˆ,[(D])[(E][ˆ UUWULU

i

iU
ηη µ

µ +≡  

holds for arbitrary functions U(x).  Since µ

µη
U

U ∂= ][ˆX̂  is a local 

symmetry of J[U], it follows that equation (8) holds. Substitution for 

][X̂ UL
∞  in (11) through (8) yields equation (9).  If  U(x) = u(x) solves 

the Euler-Lagrange system, then the left-hand-side of equation (9) 

vanishes. This yields the conservation law (10). 
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The following theorem shows that any conservation law obtained 

through Noether’s formulation can be obtained through Boyer’s 

formulation. 

 

Theorem.  If a conservation law is obtained through Noether’s 

formulation, then the conservation law can be obtained through Boyer’s 

formulation. 

 

Proof.  Suppose the one-parameter Lie group of point transformations 

with inf. gen. X  yields a CL.  Then equation (6) holds.  Consequently,  

 

(12)   ][D][X̂][X̂ )( UAULUL i

i

k == ∞  

 

where ).,(][(D][ UxULUA i

i

i ξ−=   But equation (12) is just the condition 

for X  to be a local symmetry of J[U]. Consequently, one obtains the 

same conservation law from Boyer’s formulation. 
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Limitations of Noether's theorem 

 
1 The difficulty of finding variational symmetries.  To find variational 

 symmetries of a given DE system arising from a variational principle, 

first one determines local symmetries σ

ση
u

u
∂

∂= ][X  of the Euler-

Lagrange equations.  Then for each such local symmetry, one checks if  

X leaves invariant the Lagrangian L[U] to within a divergence. [Since 

all CLs, obtainable by Noether’s theorem, arise from multipliers, one 

can simply use the direct method to find the variational symmetries.] 

 

2 A given system of DEs is not variational as written.  A given system 

of differential equations, as written, is variational if and only if its 

linearized system (Fréchet derivative) is self-adjoint.  Consequently, it 

is necessary that a given system of DEs, as written, must be of even 

order, have the same number of equations in the system as its number 

of dependent variables and be non-dissipative to directly admit a 

variational principle.             
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3  Artifices may make a given system of DEs variational.  Such 

artifices include: 

 

• The use of multipliers.  As an example, the PDE 

 

,0)()( =+′+ xxxxtt uHuuHu  

 

as written, does not admit a variational principle since its linearized 

equation 0))()(()( =′+′′+′+ xxxxxxtt uHuHuH ςςς  is not self-adjoint.  

However, the equivalent PDE   

 

,0)]()([ =+′+ xxxxtt

x
uHuuHue  

 

as written, is self-adjoint!             
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• The use of a contact transformation of the variables. As an example, the 

ODE 

 

,02 =+′+′′ yyy               (*) 

 

as written, obviously does not admit a variational principle.  But the point 

transformation ,, x
yeYyxXx =→=→  maps ODE (*) into the variational 

ODE .0=′′Y   

 

It is well-known that every second order ODE, written in solved form, can 

be mapped into 0=′′Y  by some contact transformation but there is no 

finite algorithm to find such a transformation. 
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• The use of a differential substitution.  As an example, the Korteweg-de

Vries (KdV)  equation

,0=++ txxxx uuuu

as written, obviously does not admit a variational principle since it is of

odd  order.  But the well-known differential substitution

xvu =

 yields the related transformed KdV equation

0=++ xtxxxxxxx vvvv

 which is the Euler-Lagrange equation for an extremum V = v of the action

integral with Lagrangian

.)()(][
2
13

6
12

2
1

txxxx VVVVVL −−=
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4 Noether's theorem is coordinate-dependent.  The use of Noether's 

theorem to obtain a conservation law is coordinate-dependent since 

the action of a contact transformation can transform a DE having a 

variational principle to one that does not have one.  

 

On the other hand it is well-known that conservation laws are 

coordinate-independent in the sense that a contact transformation 

maps a conservation law into a conservation law. 

 

 
5 Artifice of a Lagrangian.  One should be able to directly find the 

conservation laws of a given system of DEs directly without the need to 

find a related action integral whether or not the given system is 

variational. 
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Advantages/comments re: the direct method to find CLs

1. Works for any system of DEs no matter how it is written.

Finds all local CLs.  [Noether’s thm only finds local CLs.]

2. The number of dependent variables does not have to equal

the number of equations in the system.

3. No functional is required unlike for Noether’s thm.  CLs are

constructed directly.

4. Multipliers correspond to symmetries if and only if the

linearization operator is self-adjoint (N.A.S.C. for action

integral to exist, i.e., given system is variational).
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Example:  Consider the Klein-Gordon eqn 

 

.1,0,0 ≠=− nuu
n

tx     (1) 

 

uuttxx
n αα === − *,*,*symmetry point   thehas (1)Eqn 1

 

u
xunu x

∂

∂
−−=↔ ))1((X  

Eqn (1) is variational with action functional 

 
1

1
1

2
1][;][][ +

++−== ∫
n

nxt UUUULdtdxULUJ  

 

(1) Noether’s formulation of Noether’s theorem 

 

 

 

][][*][][][But  

.][***][][*][

Then   .*,*,*Let 

21

1

1

UJUJUJULUL

dtdxULdxdtULUJUJ

UUttxx

n

n

n

≠=⇒=

===

===

+

−

−

∫ ∫
ααα

ααα

αα
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Hence X is not a point symmetry of the action functional J[U] and  

hence there is no resulting CL from Noether’s formulation of N’s thm 

 

(2) Boyer’s formulation of Noether’s theorem 

 

(2)  )))1(()1(((                 

))1((][X

2
1 nxUUUnxUUU

nxUUUUL

xxxtxttx

x

n

−−+−−−

−−=∞

 

 

The r.h.s. of (2) does not correspond to a divergence.  Best way to show 

this: 

 

.0)(2])[X(E ≠+=∞ n

xtU UUUL  

Hence no CL. 

 

(3) Direct method 

 

CL. no Hence

),(function arbitrary an for   0)]))(1([(E xtUUUnxUU txxU ≠−−−
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Determination of fluxes of local CLs  from multipliers

Let Nl
UUUxU 1)},...,,,(][{ =∂∂Λ=Λ σσσ be a set of CL multipliers for

PDE system R{x;u}.  Then for arbitrary functions

))(),...,(()( 1
xUxUxU

m= , one has

(*)    ][D][][ UURU
i

iΦ=Λ σ
σ

found. be  to)},...,,,({ functions ofset  somefor 1

n

i

ri
UUUx =∂∂Φ

Two methods:

• Direct method through equating both sides of (*) to find fluxes

• Homotopy operator method
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Example of using direct method:

Consider nonlinear wave equation

(1)    0))(( 2 =− xxtt uucu

Λ[U] = xt   is a multiplier of a local CL of (1).  Then

(2)  ])[(D])[(D)))((D)(D( 2
UXUTUUcUxt xtxxtt −=−

  ),,,,(][),,,,,(][somefor txtx UUUtxXUXUUUtxTUT ==

Then (2) becomes

)(   

)(

))())(()(2( 22

xxUtxUxUx

txUttUtUt

xxxtt

UXUXUXX

UTUTUTT

UUcUUcUcUxt

xt

xt

++++

+++=

−′−

(3)

rest,,,)(,,, of tscoefficien   thezero  toEquate 2

xtxtxttxx UUUUUU
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This yields straightforwardly

∫+−=−= dUUctUUxtcUXxUxtUUT xt )()(][,][ 22
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Use of Symmetries to Find New Conservation Laws from Known

Conservation Laws

Any symmetry (discrete or continuous) admitted by a given PDE

system R{x;u} maps a conservation law of R{x;u} into another

conservation law of R{x;u}. Usually, the same conservation law of

R{x;u} is obtained.

An admitted symmetry of PDE system R{x;u} induces a symmetry

that leaves invariant the linear determining system for its multipliers.

Hence, it follows that if we determine the action of a symmetry on a

set of multipliers ]}[{ UσΛ  for a known conservation law of R{x;u}

to obtain another set of multipliers ]}[ˆ{ U
σΛ , then a priori we see

whether or not a new conservation is obtained for R{x;u}.
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Suppose the invertible point transformation

),
~

,~(),
~

,~( UxUUUxxx ==    (1)

with inverse

),,(
~~

),,(~~ UxUUUxxx ==

is a symmetry of PDE system  };{ uxR . Then for each PDE in  };{ uxR ,

one has

(2)    ]
~

[]
~

[][ URUAUR
βα

β
α =

holding for some ]}.
~

[{ UA
α
β
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Theorem.  Under the point transformation (1), there exist functions

]}
~

[{ U
iΨ  such that

(3)    ]
~

[D
~

][D]
~

[J UUU
i

i

i

i Ψ=Φ

where the Jacobian determinant

(4)   

D
~

D
~

D
~

D
~

)~,,~(

),,(
]

~
[J

1

1

1

1

1

1

n

nn

n

n

n

xx

xx

xxD

xxD
U

L

MMMM

L

L

K

K
==

and

(5)    

D
~

D
~

D
~

D
~

][][][

]
~

[

1

1

21

221

n

ii

n

ii

n

i

xx

xx

UUU

U

nn
L

MMMM

L

L ΦΦΦ

±=Ψ
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Theorem.  Suppose the point transformation (1) is a symmetry of 

};{ uxR  and ]}[{ UσΛ is a set of multipliers for a CL of R{x;u} with 

fluxes ]}.[{ U
iΦ  Then 

(7)    ]
~

[D
~

]
~

[]
~

[ˆ UURU
i

iΨ=Λ β
β  

where  

(8)   ,,,1],[]
~

[]
~

[J]
~

[ˆ NUUAUU K=Λ=Λ βα
α
ββ  

with the components of the derivatives in ]}[{ UαΛ  expressed in terms 

of the prolongation of point transformation (1).  In (7), ]
~

[UiΨ  is given 

by determinant (4); in (8): ]
~

[UA
α
β  is obtained from (2), ]

~
[J U  is obtained 

from (3). 

 

After replacing 

 

 corollary  following  theobtains one  (7),in  etc.  ,by    
~

,by    ~ αα
UUxx

ii  
 

 



63

 

 

 

Corollary.  If ]}[{ UαΛ  is a set of multipliers yielding a CL of PDE 

system  R{x;u}  that has the symmetry (1), then ]}[ˆ{ UβΛ  yields a set 

of multipliers for a CL of R{x;u}  where ]}[ˆ{ UβΛ  is given by (8) after 

replacing   i
x~  by  σ

Ux
i ~
, by σσ

iUU
~

,  by ,σ
iU  etc.  The set of multipliers  

]}[ˆ{ UβΛ  yields a new CL of PDE system  R{x;u} if and only if this 

set is nontrivial on all solutions  U = u(x)  of PDE system  R{x;u}, i.e. 

 

,,,1],[][ˆ Nucu K=Λ≡/Λ βββ   for some constant  c. 
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Now suppose the symmetry (1) is a one-parameter Lie group of point

transformations

(9)    
~

);
~

,~(,~);
~

,~(
~~

UeUxUUxeUxxx
XX εε εε ====

in terms of its infinitesimal generator (and extensions)

σ

σηξ
Ux

j
UxUx j ~~ )
~

,~()
~

,~(X
~

∂
∂

∂
∂ += .

If (6) holds, then from (3) and the Lie group properties of (9), it follows

that

(10)    ];[D])[][(];[J εε σ
σ

ε
UURUeU

i

i

X Ψ=Λ

in terms of the (extended) infinitesimal generator

σ

σηξ
Ux

j
UxUx j ∂

∂
∂
∂ += ),(),(X .
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Then, after expanding both sides of Eq. (10) in terms of power

series in ε, one obtains an expression of the form

(12)   .]);[(][];[ˆ
0!

1

=
Ψ=Λ∑ ∑ εε

σ
σ εεε UDURpU

i

d

d
pi

pp
p

p

Corresponding to the sequence of sets of multipliers

,,2,1]},;[ˆ{ K=Λ ppUσ

arising in expression (12), one obtains a sequence of CLs

K,2,1,0]);[(D
0

==Ψ
=

pu
i

d

d
i p

p

εε
ε

for system R{x;u} from its known CL

.0][D =Φ u
i

i
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EXAMPLE 1

0

,0)21( 2

=−

=−−+

tx

u

x

u

t

uv

euev

has CL multipliers

)))2/)2((cos(

))2/)2((sin(2(

),2/)2((sin(

2
1

2
1)2/(

2

2
1)2/(

1

2
1

2
1

U

UUtU

UtU

exV

exVee

exVe

+++

++−==Λ

++==Λ

+−

+−

φ

ξ

and corresponding fluxes

)))2/)2((sin(       

))2/)2((cos(2(2

),2/)2((cos(2

2
1

2
1)2/(

2
1)2/(

2
1

2
1

u

uutu

utu

exv

exveeX

exveT

++−

++=

++−=

+−

+−
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The given PDE system obviously has the symmetries

)~,~,~,~(),,,( vuxtvuxt −−=   (reflection)

and

)~,~,~,~(),,,( ε+= vuxtvuxt   (translations)

One can show that these symmetries yield three new

CLs through

(I) Reflection symmetry applied to above CL

(II) Translation symmetry applied to above CL

(III) Reflection symmetry applied again to CL

found in (II)
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EXAMPLE 2

,0

,0tanh)sech( 2

=−

=+−

tx

xt

uv

uuuv

has CL multipliers

),tanh(2

)),log(cosh22(

2

22

1

tUVe

UVtxe

x

x

−==Λ

−−+==Λ

φ

ξ

and corresponding fluxes

)).(2tanh)))log(cosh1(22((

))),log(cosh22(2(

22

23

3
1

uvtuuxtveX

uxtvvtueT

x

x

+−++−−=

−++−=
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This PDE system has the point symmetries 

 

v
t

ux
u

t
v

t ∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂
= tanhX,X 21  

 

These symmetries yield three new CLs: 

 

I. The )(),(
2εε OO  terms that result from applying the translation 

symmetry to the above CL yield two new CLs. 

 

II. The action of the second symmetry  2X  on the new  )(εO   CL 

yields a third new CL. 
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