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CONTEXT

1. Notation and terminology.
2. Jacobian group of finite graph
3. Moebius ladder
4. Prism Graph
5. Connection between ML and PrG
6. Chebyshev polynomials
7. Theorems



Notation and terminology.

G is finite, connected multigraph
without loops.
Let V (G) and E(G) be the sets of 
vertices and edges of G, respectively.
Denote by Div(G) a free Abelian group 
on V (G).



Notation and terminology.

We think of elements of Div(G) as
formal integer linear combinations of
elements of V (G). Each element 

can be uniquely  presented as
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Notation and terminology.

The degree function

is defined by

Denote by  
the subgroup of Div(G) consisting of 
divisors of degree zero.
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Notation and terminology.

Let f be a Z-valued function on V (G).
We define the divisor of f by the
formula
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Notation and terminology.

The divisor div(f) can be naturally
identified with the graph-theoretic
Laplacian of f. 
Divisors of the form div(f), where f is a 
Z-valued function on V (G), are called
principal divisors.
Denote by Prin(G) the group of 
principal divisors of G.



Jacobian group

The Jacobian group (or Picard group) 
of G is defined to be quotient group
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Moebius ladder



Moebius ladder M(8)



Moebius ladder



Prism graph Pr(6)



Prism graph 



Connection between ML and PrG

Notice, that  
Prism graph  is a double cover of 

Moebius ladder.

It is discrete version of the statement :
The cylinder is a double cover of the

Moebius band. 



Chebyshev polynomials

are Chebyshev
polynomials of the first and second 
kinds, respectively.
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Chebyshev polynomials
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Chebyshev polynomials
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MAIN RESULTS

Theorem 1. The Jacobian of Moebius
ladder M(n) has the following 
presentation

where (l, m, n) = GCD(l, m, n).
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MAIN RESULTS

Theorem 2. The Jacobian of the 
Prism graph Pr(n) has the following 
presentation

where (l, m, n) = GCD(l, m, n).
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REMARK

We note that the structure of the 
Jacobian groups Jac(M(n) ) and 
Jac(Pr(n) ) was independently 
investigated in [2] and [3] by  
completely different methods.
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