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Finding closed-form solutions in compressible hyperelasticity quite challenging: very few such 

solutions in the literature.  

 

Particular classes of exact solutions obtained for several models using Lie groups. 

 

Lie symmetries widely used in the analysis of contemporary elasticity models.  

In particular,  classification of Lie point symmetries for 1D and 2D nonlocal elastodynamics in 

[Bluman, Anco, Cheviakov, Springer, 2010; Bower. Applied Mechanics of Solids, 2009].  

 

Invariant solutions for radial motions of compressible hyperelastic spheres & cylinders  

[Capriz & Mariano, 2007].  

 

Similarity solutions for the motion of hyperelastic solids in [Cheviakov, GEM package, Computer 

Physics Communications, 2007].  

 

From a more formal viewpoint, Lie symmetries constitute a guide in the Lagrangian and 

Hamiltonian formalisms in continuum mechanics, especially for complex materials endowed with 

a microstructure [England & Spencer, 2005].  

 

For models admitting a variational formulation, one-to-one correspondence between variational 

Lie symmetries and local conservation laws through Noether's theorem.  

For non-variational models, this relation generally does not hold [Ericksen, 2000]. 

Motivations 



Outline of the presentation 

• Nonlinear dynamic equations for isotropic homogeneous hyperelastic materials 

considered in the Lagrangian formulation.   

 

• Derive explicit criterion of existence of a natural state of a given constitutive law. 

Used to derive natural state conditions for some common constitutive relations. 

 

• Equivalence transformations computed for 2D planar motions of Ciarlet-Mooney-Rivlin 

solids; yields reduction of the number of parameters in the constitutive law. 

 

• Find special value of traveling wave speed for which nonlinear Ciarlet-Mooney-Rivlin 

equations admit an additional infinite set of point symmetries. 

 

• Classification of point symmetries in dynamical case & for traveling wave coordinates. 

  

• Perspectives. 

 



Finite strain kinematics 

  X, t   x X F x Transformation gradient (tangent mapping) 
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Use cartesian coordinates with flat space:  
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Orientation preserving condition:  J : det 0 F

0 / J  Continuity equation: 



Boundary value problem in hyperelasticity 
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 traction vector,   Cauchy stress  first Piola-Kirchhoff stress

  nominal traction (force on reference surface element)
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Material (Lagrangian) format: 

Physical (Eulerian) format: 



For zero forcing, strong form obeys extremum principle:   
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Boundary value problem in hyperelasticity 



Hyperelastic constitutive models 

 T

0 Fp W , p p( , t)    P F F X    hydrostatic pressureFor incompressible materials: 
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isolate volume changes

   for isotropic materials      

Ciarlet Mooney-Rivlin materials:     1 2 3 3

1
W a I 3 b I 3 cI dlogI , a 0,b,c,d 0
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General form of const. law for isotropic materials: 



Constitutive relations and natural states 

Natural state    F I σ 0 vanishing self-equilibrated stress (no external load) 

1 0 0W aI 2 2      P F σ I

Natural state requires external forces  Stress tensors cannot be linear in F.  

Theorem: a hyperelastic material with const. law given by 

 

has zero residual stress iff  
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F I  when  

Mooney-Rivlin materials (c=0=d) do not have natural states.  

Alternative: for   1 2 3 k 1 2 3

k

W , , t 0 1:


            


  when  Biot stress vanishes

Neo-Hookean material fails to have natural states: 



Point symmetries and equivalence transformations 

Consider PDE system   
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One-parameter Lie group of transformations of variables (z,u): one-to-one transformation 

acting in the m+n dimensional space (z,u) of the form: 
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components define infinitesimal generator +  

   





       

        

 
  

 
Y

(z,u) transform -> transform of partial derivatives of u(z) given by prolongation formulas. 

 

One-parameter Lie group of point transformations = group of point symmetries of a PDE 

system iff its prolongation leaves invariant the solution manifold of the PDE in the space 

including u, z and all required partial derivatives of u(z).  

If u(z) is a solution, then u*(z*) is also solution of the same system.  

Symmetry components found in algorithmic way from the determining equations:  
   k kY R x,u,..., u 0, 1...N  on solutions    



Notion of equivalence transformations closely related to local symmetries.  

 

Equivalence transformations preserve differential structure of equations / modify constitutive 

and/or parameters of a DE model.  

 

Equivalence transformations used to reduce number of parameters of a given const. model.  

 

Interest: analyses involving classifications; construct exact solutions for new sets of constitutive 

functions/parameters, from known exact solutions for given constitutive functions/parameters. 

Point symmetries and equivalence transformations (2) 

 1 LK K ,...,K

Consider family of PDE systems   kR x,u, u,..., u 0, k 1..N     

with n independent variables   1 nz z ,...,z m dependent variables      1 mu(z) u z ,...,u z

One-parameter Lie group of equivalence transformations = Lie group of transformations  

involving set of constitutive functions and/or parameters 
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maps a given PDE syst. Into a new one with new constitutive functions.  



Point symmetries and equivalence transformations (3) 

Equivalence transformations computed through sol. of determining equ.  

   kY k R x,u, u,... u 0, 1...N      

Prolongation of inifnitesimal generator for the one-parameter Lie group of point transformations  

   

   

   

i

i

i i i 2

i 2

z* f (z,u; ), u* g(z,u; )

Y z,u z,u
x u

z* z x,u O , i 1..n

u * u x,u O , 1..m

     global form

local form    

                          





 

   

 
   

 

      

      

Need to specify variables on which the const. Functions / Parameters depend.  

 

Ex.1: if K1=a, K2=b are 2 constant parameters of Mooney-Rivlin model,  

 

Corresponding equivalence transformations will be of the form     1 2a G a,b; , b G a,b;     

Ex.2: for K1=Q(x), x independent var., equivalence transf. for Q(x) will be      1Q x G x,Q(x); 



Equivalence transformations for 2D Ciarlet-Mooney-Rivlin model 

   1 2 3 3

1
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2
         

Theorem: 2D Ciarlet-Mooney-Rivlin model admits following equivalence transformations 

Strain energy density 

Includes scalings, translations and rotations of material coordinates (parameters                  )  3 4 5 7, , ,   

Galilean transformations, transformations of eulerian coord. and time (parameters         ,  

arbitrary functions f1(t), f2(t))  
1 2, 

Scaling of body density in ref. configuration (    ),  

transformations of parameters a,b,c,d of const. model (parameters         ) 
6

2 3, 



Equivalence transformations for 2D Ciarlet-Mooney-Rivlin model 

Th.: Ciarlet-Mooney-Rivlin model in 2D depends only on 3 constitutive parameters 

2D first Piola-Kirchhoff stress tensor takes the form 
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Previous Theorems can be used for direct analysis of 2D models.  

2D motions: 
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Equivalence transformations for 2D Ciarlet-Mooney-Rivlin model 

1 2 3 4 5 6, , , , ,      arbitrary constants.  

f1(t),f2(t)  arbitrary functions.  

Action of equivalence transformations on essential parameters A, B, d is pure scalings.  

Used to present equivalence and symmetry classification in a more compact form: 

 

Set of equivalence transformations of 2D Ciarlet-Mooney-Rivlin model given by 

   



Symmetry classification for time-dependent 2D Ciarlet-Mooney-Rivlin models 

Classify symmetries w.r. to constants A, B>0, d and types of density functions 

Restrict to zero external body forces. Given modulo the previous equivalence transformations 
 1 2

0 X ,X Cte 



Symmetry classification of 2D Ciarlet-Mooney-Rivlin model  

in traveling wave coordinates 

Assume that medium moves w.r. to observer at constant speed s>0 in direction X1. 

 

With this ansatz, one has      i 1 2 i 2 1x t,X ,X w z,X , z X st, i 1,2       

Consider body density in ref. configuration of the form   2

0 0 X  

Assume no-forcing.  

   2 i 1 2 2 i 2

2

0 2 2

x X st,X w z,X
s

t z

  
  

 
Transformation of partial derivatives in PDE’s: 



Full symmetry classification of PDE system in travelling wave coordinates  

modulo previous equivalence transformations 



General non-linear Ciarlet-Mooney-Rivlin model has special wave speed for which equations  

 

admit additional symmetries including infinite set of point symmetries, with generators   

Full symmetry classification of PDE system in travelling wave coordinates  

modulo previous equivalence transformations 

     
1 2 3Y ,Y ,Y
  

Special wave speed equal to the constant wave speed  

 

of linear neo-Hookean version of dynamic equations 
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Conclusion - Perspectives 

• Existence of natural states for hyperelastic materials analyzed: question of high importance 

for consistency formulation of BVPs for numerical computations.  

 

• Classical neo-Hookean and Mooney-Rivlin models do not have a natural state / Hadamard 

materials may admit a natural state according to range of parameters. 

 

• Point symmetries of the 2D Ciarlet-Mooney-Rivlin model in full dynamical setting classified 

with symbolic software. Such symmetries important to construct exact solutions and 

conservation laws.  

 

• Computation of symmetry structure of elasticity models in non-planar 2D reductions      

(axial symmetry) & in 3D.  

 

• Extension to anisotropic constitutive behavior: case of one and two families of fibers.  


