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1. Introduction

We consider the class of nonlinear equation
ur + (1) (U™)x + g()(U ) =0, gn #0, (1)

which is of interest in Mathematical Physics. Special cases of
this class have been used to model successfully physical
situations in a wide range of fields. For example, we have the
generalization of the KdV equation

1

- (Un)xxx =0.

u um
t"’( )x+n

Equations of the above type with values of the parameters m
and n are denoted by K(m, n).
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2. Equivalence Transformations

We call an equivalence transformation of a class of partial
differential equations (PDEs), E(t, x, u) = 0, an invertible
transformation of the variables t, x and u of the form

t=Q(t x,u), X=P(tx,u), i=R(tx,u)

that maps every equation of the class into an equation of the
same form, E(f, X, 1) = 0. The set of all equivalence
transformations of a given family of differential equations forms
a group which is called the equivalence group. Here we use the
direct method to derive the desired equivalence
transformations, which was used first by Lie.
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We present the equivalence transformations of equation (1) in
the next theorems.

The usual equivalence group G~ of class (1) is formed by the
transformations

where §;, j = 1,2,3, are arbitrary constants with 6163 # 0, T(t)
is an arbitrary smooth function with T; # 0.
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Ifm =0 orm =1 then there exist additional equivalence
transformations. If m = 1, they have the form

t=T(t), X=20d(x— [f(t)dt+3), U=dsu,

where o;, j = 1,2, 3, are arbitrary constants with 5103 # 0, T(t)
is an arbitrary smooth function with T; # 0.
If m = 0, they are written as

= T(t), ;(:(51X+5(t), U = dsu,

I T - B . 5
= = = = 1
J T 7 f A

where 0;, j = 1,2, 3, are arbitrary constants with 5103 # 0, T(t) | g
and ((t) are arbitrary smooth functions with ;T # 0. I
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A special case of the first Theorem that we have presented is

that maps equation (1) into

&+ (U™)5 + 3(1)(0")zz% = 0, where gn+0and § =

—-|Q

. (2)J
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Theorem

The usual equivalence group G™ of class (2) is formed by the
transformations

t =616, Mt + do,

g=10626""g, h=

s X
Il
&=
<
+
(%)
>
<
Il
(@9
w
=

where §;, j = 0,1,2, 3, are arbitrary constants with 613 # 0.
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3. Lie Symmetries for Equation (2)

We have seen that if we use the equivalence transformations equation
(1) can be mapped into (2). For this reason we are looking only for the
Lie symmetries of equation (2).

From the definition, a PDE, E(t, x, u, ut, Uy, ...) = 0, possesses a Lie
point symmetry,

r = T(t7 X7 U)at + f(t7 X? u)ax + n(t7X7 u)au7
if and only if

r(se)p =0
E=0

where I(5¢) means that I must be suitably extended. Equation (2)
admits Lie point symmetries if and only if

F®[ur + (U™)x + g(t)(U")xx] = 0 3)

for up = —(U™)x — g(t)(U™) xxx-
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After we have used the above expression we can eliminate u;
and equation (3) becomes an identity in the

variables Uy, Uxx, Uy, Uxxx and Uxy. From coefficients of
different powers of these variables, which must be equal to
zero, we derive the determining equations on the coefficients 7,
& and n. We use the general results on point transformations
between evolution equations [Kingston and Sophocleous 1998]
and the forms of the coefficients can be simplified, that is,

T=7(t) and & = £(t, x).
From the coefficient of uyy we have that
[9i7 + g7t — 3¢x)]u+ (n—1)gn = 0.
We deduce that the analysis needs to be split in two cases:

@ n#1and
e n=1. ) &
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In this case the form of 5 is

_ _lgrm £+ 9(m = 3¢
(n—1)g

and the coefficients of uyy, uf, uy and the term independent of
derivatives in (3) produce the following determining equations,
respectively,

n(2n+1)gé&x = 0,
(The coefficient of uyy is the same as the coefficient of u§),

[m(m — n)grs — m(3m — n— 2)g&x + m(m — 1)ger] u™
—8n(n+ 1)92&xxt" + (n — 1)g&u = 0,

3mngxxum + 3ngafxxxxun
— (%7t + 9917t + gguT — 97T — 3¢ g?] U = 0.

After we have solved the above determining system , we take

the forms of 7(t), £(t, x) and the function g(t). The Lie Y
symmetries according the form of g(t) are tabulated in the )
Table 1.
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Table 1 : Classification of equation (2) (n # 1)

Cases ‘ n ‘ m ‘ a(t) ‘ Conditions ‘ Basis of A™*
n#1
1 v ‘ v v Ox
2 3m-n-2=0 v Dy XOx + 2404
3 v 0 v 100, 0, X0y + 2404, 31840, + x0,
4 | -4 0 v 101, 0x, x0x — 200y, 3124, + X0,
x20y — 4xudy
5 v v constant O, Ox, (B3m—n—2)tdr + (M — n)xdx — 2udy
6 -3 -3 constant O, Ox, 30y + 2udy,
g>0 \fsm( )dx 2ucos(7)d
\Fcos( )0X+2usm (Lf )0
9<0 \/Eeﬁ 0y — 2ue Vi),
Vigle™ T, + 2ue” VT2,
7 v v t k#2 Ox, (3m — n—2)td; + (km — k + m — n)xdx
+(k — 2)udy
8 3m—n-2=0 t k=2 | O, X0x + ;2% 0u, 10 + X0y
9 v v et Ox, (83m — n—2)0 + k(m — 1)x0x + kudy ey
For the Cases 3 and 4, for which m = 0, we can introduce a new time T = [ gdt. ) @
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In this case, from the coefficient of uyuyx we have that n,, = 0, so
n = ai(t, x)u + ao(t, x).

We use the fact that = = 7 (1), £ = £(t, x) and the form for n and from
(3) we obtain the following determining equations

a7 + g(Tt — 35)() =0,
aix — fxx = 07

mlr — &+ (m—1)a] u™
+m(m — 1)axu™ + (391 — & — Gl ) U2 = 0,

ma1xum+1 + maqum + (a1t + gay xxx)u2 + (321‘ + ga2xxx)u =0.

We solve the system and in Table 2 we present the different
forms for the Lie algebra according to the possible forms of the &%ﬁk
function g(t). K
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Table 2 : Classification of equation (2) (n=1)

Cases ‘ aq(t) ‘ Conditions Basis of A™
n=1
m#2
1 v Ox
2 constant O, Ox, 3(M —1)tdr + (m — 1)x0x — 2udy
3 t Ox, 3(m — 1)td + (m — 1)(k + 1)x0x + (k — 2)udy
4 et By, 3(m — 1) + k(m — 1)x8x + kudy
m=2
5 v Ox, 2t0x + Ou
6 constant O, Ox, 2t0x + Ou, 3O + XOx — 2Udy
7 t k #1 Ox, 2t0x + Du, 3t0r + (K + 1)x0x + (k — 2)udy
8 t k= Ox, 2tdx + du, 3t + 2x0x — Udu,
2620; 4 2tx 0y + (X — 2tu)dy
9 et Ox, 2t0x + du, 30y + kxdy + kudy
10 gi1(t) P2 —4q—4r2 £0 | dx, 2tdx + By, 6(1% + pt + q)d; + (6t + 2r + 3p)xdx
—(6tu — 2ru + 3pu — 3x)dy
In Case 10, gi(t) = /2 + pt + gexp ([ %) and p, g and r are arbitrary ey
constants such that p?> — 4q — 4r? # 0 because then we revert to Case 8. ]E

neeva NIVERSITY OF CYPRUS



4. Boundary Value Problem for a Generalized K(m, n)

Equation

We consider the following initial and boundary value problem
U+ (U™)x + (UM xxx = 0, t>0,x>0, (4)
u(x,0)=0, x>0,

u(0,t)=q(t), t>0,

ux(0,t) =0, t>0,
uxx(0,t)=0, t>0.

(%)
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Equation (4) admits for arbitrary n, m and k two-dimensional
Lie symmetry algebra with basis operators

My =0x, [l2=(B8m—n-2)toi+(km—k+m—n)xdx+(k—2)udy.
To determine the symmetry we take the linear combination
N=ail1 + asls.
In this case we have
= a10x+ag [(B3m — n—2)t0; + (km — k + m — n)x0x + (kK — 2)ud,] .
Application of T to the first boundary condition
x =0, u(0,t) =q(t)

gives
a1 =0 and q(t) =~ tsm-—n-2. %J%g
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Using the second extension of T,

r® = (3m—n—-2)td;+ (km—k+m— n)xdy + (k — 2)udy
+(2k — mk — m+ n — 2)ux0y,
+(3k —2mk — 2m + 2n — 2)Uxx Oy, »

where the unused terms have been ignored, it can be shown

that it leaves invariant the initial condition and the remaining
two boundary conditions of (5).
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Finally, symmetry I produces the transformation

km—k+m—n

k—2
u=tim-n2¢p(w), w=xt sm-n-z
which reduces the problem (4)—(5) into

km—k+m—-n k-2
ny!m my/ __ !
(@) +(¢7) 3am—-—n-2 w¢+3m—n—2

p(0)=v,  ¢'(0)=0, ¢"(0)=0.

¢ =0,
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