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1. Introduction

This talk is about the nonlinear evolution equations (NLEEs)
of soliton type that is, equations admitting Lax representation
[L,A] = 0, where L,A are linear operators on ∂x, ∂t depending also on
some set of functions q = (qα(x, t)), 1 ≤ α ≤ s ( called ‘potentials’) and
a spectral parameter λ. The equation [L,A] = 0 is then equivalent to a
system of the type (qα)t = fα(q, qx, . . .) .
Hierarchy of NLEEs related to Lψ = 0 (auxiliary linear problem) –
the evolution equations obtain changing A.
Integration. Most of the schemes share the property: the Lax represen-
tation permits to pass from the original evolution defined by [L,A] = 0 to
the evolution of some spectral data related to the problem Lψ = 0: (Fad-
deev, Takhtadjian 1987; Gerdjikov, Vilasi, Yanovski 2008). The following
auxiliary problem and its generalizations are perhaps the best known aux-
iliary problems:

Lψ = (i∂x + q(x)− λJ)ψ = 0 (1)

When q is 2×2 off-diagonal matrix and J = diag (1,−1) this is the classi-



cal Zakharov-Shabat problem. Generalizations followed immediately:
a) Considering the system on some other Lie algebra with higher rank than
sl (2) but J remains to be real. In this case we speak about General-
ized Zakharov-Shabat system (GZS system).(Zakharov, Manakov,
Novikov, Pitaevski 1981, Gerdjikov, Kulish 1981; Gerdjikov 1986).
b) Considering the system on the algebra sl (n) with J complex. ( Cau-
drey 1982, Beals and Coifman 1984, 1985; Beals, Sattinger 1991; Zhou
1989).
c) The final generalization is obtained when q(x) and J belong to a fixed
simple Lie algebra g in some finite dimensional irreducible representa-
tion, (Gerdjikov, Yanovski, 1994). The element J should be regular, that
is ker ad J (ad J(X) ≡ [J,X], X ∈ g) is a Cartan subalgebra h ⊂ g. q(x)
belongs to the orthogonal complement h⊥ = ḡ of h with respect to the
Killing form: 〈X, Y 〉 = tr (adXad Y ); X, Y ∈ g. Thus q(x) =

∑
α∈∆ qαEα

where Eα are the root vectors; ∆ is the root system of g. The scalar
functions qα(x) are defined on R, are complex valued, smooth and tend to
zero as x → ±∞. We shall call the above auxiliary problem Caudrey-
Beals-Coifman system (CBC system).



Complex J case becomes necessary to study also because because if one
has Mikhailov type reductions ( Mikhailov 1979,1981; Lombardo and
Mikhailov 2002) we just cannot limit ourselves with real J , both in the
case of caanonical and pole gauge, for example (Grahhovski 2002, Gra-
hovski 2002,2003) (canonical gauge); (Gerdjikov, Mikhailov and Valchev
2010; Valchev 2011, Gerdjikov, Grahovski, Mikhailov and Valchev, 2011;
Yanovski 2011 JMP) (pole gauge).

The present talk is about the integrals of motion of the NLEEs related
to the CBC system. The fact that for the CBC system there are r local
series (r is the rank of g) of conservation laws is well known. (Drinfeld,
and Sokolov, 1984). In the Λ-operator approach to the NLEEs related to
the Zakharov-Shabat system this result is reproduced, though the ques-
tion of locality remained neglected. Let us note, that the derivation of
these formulae depends both on the so-called Generalized Fourier Expan-
sions and on the analyticity properties of some other expressions. Then
since all these change significantly for the CBC system one must see how
to change the proof. We intend to address these issues in the present note.



2. Fundamental analytical solutions for the
CBC system (FAS)

2.1 General properties
The fundamental solutions to the CBC system and their analytic prop-
erties play crucial role in the theory of the NLEEs related to it. It turns
out that it is better to study not the CBC system, but the system

i∂xm+ q(x)m− λJm+ λmJ = 0 lim
x→−∞

m = 1V (2)

If ψ is a solution to the CBC problem, m(x, λ) = ψ(x, λ) exp iλJx satisfies
(2) so the two problems are equivalent. We have

Theorem 0.1 Suppose that for fixed λ the bounded fundamental solution
m(x, λ), satisfying the equation (1) exists. Suppose that λ does not belong
to the bunch of straight lines Σ = ∪α∈∆lα where

lα = {λ : Im(λα(J)) = 0} (3)

Then the solution m(x, λ) is unique. (In the above Im denotes the imag-
inary part).



Consider now the set of lines Σ = ∪α∈∆lα. The connected components
of C \ Σ are open sectors in the λ-plain. In every such sector either
Im[λ(γ1 − γ2)(J)], γ1, γ2 ∈ Γ – the set of weights, is identically zero or
it has the same sign. We denote these sectors by Ων and order them
anti-clockwise. Clearly ν takes values from 1 to some even number 2M
and

C \ Σ =
2M⋃
ν=1

Ων, Ων

⋂
Ωµ = ∅, ν 6= µ (4)

The boundary of the sector Ων consists of two rays – Lν and
Lν+1 (Lν comes before Lν+1 when we turn anti-clockwise) so that
Ω̄ν ∩ Ω̄ν−1 = Lν. Of course, we understand the number ν modulo 2M . In
the ν-th sector we introduce the ordering :

α ≥ν β iff Imλ(α− β)(J) ≥ 0

α >ν β iff Imλ(α− β)(J) > 0
(5)

In each sector we have the sets of positive and negative roots ∆±ν with
respect to the ν-ordering and we define δ±ν = ∆±ν ∩ δν where

δν = {α ∈ ∆ : Im(λα(J)) = 0 for λ ∈ Lν} (6)





Then a system of integral equations can be written in every sector Ων,
ν = 1, 2, . . . , 2M .:

〈α|m|β〉 = 〈α|β〉+ i

x∫
−∞

〈α|q(y)m(y)|β〉e−iλ(α−β)(J)(x−y)dy

for α− β ≤ν 0, α, β ∈ Γ

〈α|mβ|〉 = i

x∫
+∞

〈α|q(y)m(y)|β〉e−iλ(α−β)(J)(x−y)dy

for α− β >ν 0, α, β ∈ Γ

(7)

where Γ is the set of weights in a given finite dimensional irreducible
representation of g.

Without going into details which could be found in (Gerdjikov and
Yanovski 1994), we only state that for large classes of potentials q(x) =∑

α∈∆ qα(x)Eα for λ ∈ Ων there exist fundamental solution mν(x, λ) which
is analytic in Ων except for finite number of poles. The set Σ coincides
with the continuous spectrum of the problem and the points where the



solutions mν have poles – give the discrete spectrum. For example if

one defines ‖q‖1 =
∑
α∈∆

+∞∫
−∞

|qα(x)|dx then this is a norm on the space of

integrable potentials L1(ḡ,R) and it can be shown that if ‖q‖1 < 1 there
is no discrete spectrum.

For potentials belonging to L1(ḡ,R) the spectrum could be much more
complicated, involving both discrete and continuous spectrum. (Beals
and Coifman 1985,1987; Zhou 1989).

One should mention also that for fixed ν the solution mν(x, λ) al-
lows continuous extension to the closure Ων of the sector Ων

and if q has integrable derivatives up to the n-th order then

m(x, λ) = 1V +
n∑
i=1

ai(x)λ−i + o(λ−(n+1)) when |λ| → ∞, uniformly in

x ∈ R, where the coefficients ai(x) are calculated through q and
its x-derivatives.

Consequently, for small potentials in any fixed Ων we have unique so-
lution mν(x, λ) with the stated properties, anaytic in Ων and allowing
continuation to its boundary – the rays Lν and Lν+1.



Knowing the fundamental solutions mν(x, λ) one can construct the fun-
damental solutions (FAS) χν(x, λ) of the CBC system setting χν(x, λ) =
mν(x, λ)eiJxλ and using them to build up the spectral theory of the op-
erator L in any faithful representation of g. This includes of course com-
pleteness relations. The details of this can be found in (Gerdjikov and
Yanovski 1994). Below we shall just recall the main results but first we
need a few words about the Inverse Scattering Method for the CBC sys-
tem.

2.2 Elements of Inverse Scattering Method

Let us introduce some notation. First, we write an inverse putting
‘hat’ over the corresponding symbol. Next, if we have a function f(λ)
that is section analytic on the sectors Ων and in each sector Ων it allows
extension by continuity to the boundary of the sector, then for λ on the
ray Lν we shall denote the restriction of f in the sector Ων by fν(λ), and
for λ belonging to the ray Lν the limit from Ων by f+

ν (λ) and from Ων−1



by f−ν (λ). Next, let

δ±ν = ∆±ν ∩ δν, δν = {α ∈ ∆ : Im(λα(J)) = 0 for λ ∈ Lν}
gν– the semisimple algebra with root system δν (8)

πν– the system of simple roots for gν

Now we are ready to describe the jumps of the solutions m(x, λ) on the
rays Lν. For λ ∈ Lν they are given by:

m+
ν (x, λ) = m−ν (x, λ)e−iJλxgν(λ)eiJλx (9)

gν(λ) = Ŝ−ν (λ)S+
ν (λ) = D̂−ν (λ)T̂+

ν (λ)T−ν (λ)D+
ν (λ) (10)

Here S±ν (λ), T±ν (λ), D±ν (λ) are defined by the asymptotic of m±ν (x, λ)
when x→ ±∞:

S±ν (λ) = lim
x→−∞

(
eiλJxm±ν (x, λ)e−iλJx

)
= lim

x→−∞
eiJλxχ±ν (x, λ) (11)

T∓ν (λ)D±ν (λ) = lim
x→+∞

(
eiλJxm±ν (x, λ)e−iλJx

)
= lim

x→+∞
eiJλxχ±ν (x, λ)



One can write S±ν , T
±
ν , D

±
ν also into the form

S±ν (λ) = exp
∑
α∈δ+ν

s±ν,α(λ)E±α, T±ν (λ) = exp
∑
α∈δ+ν

t±ν,α(λ)E±α (12)

D±ν,α(λ) = exp
∑
α∈πν

d±ν,α(λ)Hα (13)

In other words S±ν , T
±
ν , D

±
ν belong to the subgroup Gν with algebra gν.

Consider the sets

TS =
2M⋃
ν=1

{s±ν,α(λ) : α ∈ ∆+
ν , λ ∈ Lν}, TT =

2M⋃
ν=1

{t±ν,α(λ) : α ∈ ∆+
ν , λ ∈ Lν}

The factors D±ν (λ) could be recovered from each of these sets. Each
of the above sets could be chosen as a set of minimal scattering data.
The Inverse scattering Method then consists of recovering the potential
from the scattering data. It is important that the relations (9) could be
regarded as Riemann-Hilbert problem related to the bunch of rays Lν
with canonical normalization at λ = ∞. The possibility to solve that
problem underlies the Inverse Scattering techniques and in particular the



so-called dressing method for finding the potential and therefore the so-
called soliton solutions. These solutions correspond to the situation when
we have only discrete spectrum.

Another sets of scattering data which is related to the expansions over
the so-called adjoint solutions or Generalized Exponents in the Λ-operator
approach or AKNS method. It has been introduced by (Ablowitz, Kaup,
Newell and Segur, 1974), see (Gerdjikov, Vilasi, and Yanovski 2008) for
comprehensive bibliography

3. Λ-operator approach to the soliton equa-
tions associated with the linear CBC system

3.1 Expansions over adjoint solutions

We define in each Ων analytic solutions χν(x, λ) of (1) and then we set

eνα(x, λ) = π0(χν(x, λ)Eαχ
−1
ν (x, λ)), λ ∈ Ων (14)

According to our agreement for λ ∈ Lν we shall write m+
ν (x, λ) and

χ+
ν (x, λ) if the solution is extended from the sector Ων and m−ν (x, λ)



(χ−ν (x, λ)) if it is extended from Ων−1. Analogously, we shall write e
(−;ν)
α (x, λ)

if the solution is extended from the sector Ων−1 and e
(+;ν)
α (x, λ) if the so-

lution is extended from the sector Ων. In other words, for λ ∈ Lν

e(−;ν)
α (x, λ) = π0(χν−1(x, λ)Eαχ

−1
ν−1(x, λ)) (15)

e(+;ν)
α (x, λ) = π0(χν(x, λ)Eαχ

−1
ν (x, λ))

Suppose that we have a L1-integrable function h : R 7→ ḡ. Then the
completeness relation in adjoint representation (we remind that there is
no discrete spectrum) can be cast into the following form :

h(x) =
1

2π

2M∑
ν=1

∫
Lν

{(
∑
α∈δ+ν

e(+;ν)
α (x)〈〈e(+;ν)

−α , [J, h]〉〉 − e(−;ν)
−α (x)〈〈e(−;ν)

α , [J, h]〉〉})dλ

(16)
h(x) =

− 1

2π

2M∑
ν=1

∫
Lν

{
∑
α∈δ+ν

(e
(+;ν)
−α (y)〈〈e(+;ν)

α , [J, h]〉〉 − e(−;ν)
α (y)〈〈e(−;ν)

−α , [J, h]〉〉}dλ

(17)



In the above we used the following notation: for two functions f(x), g(x)
with values in g we put

〈〈f, g〉〉 =

+∞∫
−∞

〈f(x), g(x)〉dx

It can be shown that the expansions (16),(17) converge in the same sense
as the classical Fourier expansions for h(x).

Using Theorem 3.2 from (Gerdjikov and Yanovski 1994) one can see
that

(Λ− − λ)e(+;ν)
α = 0, (Λ− − λ)e

(−;ν)
−α = 0, α ∈ δ+

ν (18)

(Λ+ − λ)e
(+;ν)
−α = 0, (Λ+ − λ)e(−;ν)

α = 0, α ∈ δ+
ν (19)

where the operators Λ± are given by

Λ±(X(x)) =

ad −1
J

i∂xX + π0[q,X] + iad q

x∫
±∞

(id − π0)[q(y), X(y)]dy

 (20)



The above operators are the famous Generating, Recursion or Λ-operators
related to the CBC system, see (Gerdjikov, Vilasi and Yanovski 2008,
Gerdjikov and Yanovski 1994). We see that the expansions in the above
are in fact the spectral decompositions for the operators Λ− and Λ+. This
is the reason the expansions we had are sometimes called the General-
ized Fourier Expansions and the functions e±;ν

α (x, λ) are called
Generalized Exponents. When one expands over the Generalized Ex-
ponents the potential q(x) one gets as coefficients the minimal scattering
data. Let us briefly outline this construction. Suppose that B ∈ h, δq(x)
is a variation of the potential function. Then we have the following ex-
pansions for the function ad −1

J [B, q]:

ad −1
J [B, q](x) =

i

2π

2M∑
ν=1

∫
Lν

∑
α∈δ+ν

(
ρ+
ν;B,−αe

(+;ν)
α − ρ−ν;B,αe

(−;ν)
−α

)
dλ (21)

ad −1
J [B, q](x) =

i

2π

2M∑
ν=1

∫
Lν

∑
α∈δ+ν

(
σ+
ν;B,αe

(+;ν)
−α − σ−ν;B,−αe

(−;ν)
α

)
dλ (22)



where

ρ±ν;B,∓α ≡ i

+∞∫
−∞

〈[q, B], e
(±;ν)
∓α 〉dx = 〈Ŝ±ν BS±ν , E∓α〉 (23)

σ±ν;B,±α ≡ −i

+∞∫
−∞

〈[q, B], e
(±;ν)
±α 〉dx = 〈D̂±ν T̂∓ν BT∓ν D±ν , E±α〉 (24)

The expansions for ad −1
J δq run as follows

ad −1
J δq(x) =

i

2π

2M∑
ν=1

∫
Lν

∑
α∈δ+ν

(
δρ+

ν;−αe
(+;ν)
α − δρ−ν;αe

(−;ν)
−α

)
dλ (25)

ad −1
J δq(x) =

i

2π

2M∑
ν=1

∫
Lν

∑
α∈δ+ν

(
δσ+

ν;αe
(+;ν)
−α − δσ−ν;−αe

(−;ν)
α

)
dλ (26)



where

δρ±ν;∓α(λ) ≡ −i

+∞∫
−∞

〈δq, e(±;ν)
∓α 〉dx = 〈Ŝ±ν δS±ν , E∓α〉(λ) (27)

δσ±ν;±α(λ) ≡ i

+∞∫
−∞

〈δq, e(±;ν)
±α 〉dx = 〈D̂±ν T̂∓ν δ(T∓ν D±ν ), E±α〉(λ) (28)

Let us remark that for q(x) with values in g = h⊥ both ad −1
J [B, q](x) and

ad −1
J δq(x) are well defined. Let us introduce now another set of scattering

data:

Tρ,B =
2M⋃
ν=1

{ρ+
ν;B,−α(λ), ρ−ν;B,α(λ);α ∈ ∆+

ν , λ ∈ Lν} (29)

Tσ,B =
2M⋃
ν=1

{σ+
ν;B,α(λ), σ−ν;B,−α(λ);α ∈ ∆+

ν , λ ∈ Lν} (30)

The formulae (21) and (25) show that the mapping from the potential
function q(x) to either of the scattering data sets Tρ,Tρ can be regarded



as generalized Fourier transform. Then (23), (24) play the role of the

inverse Fourier transform formulae; the functions e
(±;ν)
α play the role as

the exponents in the Fourier transform and the operators Λ± then play
the role the operator i∂x plays for the usual Fourier transform.

3.2 The NLEEs related to the CBC system

The NLEEs associated with the linear problem L (and integrable through
some kind of inverse scattering technique for L) are most easily found if
we adopt the approach based on the expansions (27), (28), (21). Indeed,
consider the equations having the form:

r∑
k=1

fk(Λ±)ad −1
J [Hk, q] + iad −1

J qt = 0 (31)

where f(λ) =
∑r

k=1 fk(λ)Hk. Here {Hk}rk=1 is the part of the Cartan-Weil
basis giving a basis in h and fk(λ) are polynomials in λ and λ−1. f(λ)
is known as the dispersion law of the corresponding NLEE. Expanding
through the generalized exponents it could be written also in the following



two equivalent forms:

i
dρ±ν;∓α

dt
+

r∑
k=1

fk(λ)ρ±ν;Hk,∓α(λ, t) = 0, 1 ≤ ν ≤ 2M (32)

i
dσ±ν;±α

dt
+

r∑
k=1

fk(λ)σ±ν;Hk,±α(λ, t) = 0, 1 ≤ ν ≤ 2M (33)

where of course for the functions with index ν the argument λ belongs to
Lν. Naturally, this is in accordance with the fact that the equations we
are speaking about have a Lax representation of the type [L,A] = 0. In
terms of the scattering data factors S±ν , T

±
ν , D

±
ν these equations is written

as

i
dS±ν
dt

+ [f(λ), S±ν ] = 0, i
dT±ν
dt

+ [f(λ), T±ν ] = 0, i
dD±ν
dt

= 0 (34)

So the method of solving the Cauchy problem for corresponding NLEEs
consists of the following steps: i) first finding the scattering data corre-
sponding to q(x, t = 0); ii) finding the evolution of the scattering data
using (34); iii) finally, by some inverse scattering technique (for example
Cauchy-Riemann problem) finding the function q(x, t).



The equations for D±ν show that they are not changed by the evolution
and then naturally they are related with the conservation laws for the
given NLEE.

4. CBC system – the conservation laws

4.1 Properties of the adjoint solutions hν,H

Below we present the formulae for the conservation laws obtained through
the theory of recursion operators. Their advantage is that they are com-
pact in contrast with the formulae obtained via another approaches which
are constructed with recurrent procedures and give us the possibility to
describe which of them trivialize if we have reductions.

The conservation laws are closely related to the functions
hν,H(x, λ) = χνHχ̂ν(x, λ), H ∈ h, x ∈ R, λ ∈ Ων and more pre-
cisely of their projections haν,H(x, λ) = π0hν,H(x, λ) as well as for
the corresponding extensions h±ν,H(x, λ), h±aν,H(x, λ) of these func-
tions to the rays Lν. Here of course χν(x, λ) is a FAS to the CBC



system analytic in the sector Ων.
The results that follow are important ingredients for our construction.

We start with the asymptotic behavior of the ”h”-solutions (functions of
the type hν,H = χνHχ

−1
ν ):

Proposition 0.1 Let H ∈ h be an arbitrary element from the Cartan
subalgebra. Consider hν,H(x, λ) = χν(x, λ)Hχ−1

ν (x, λ) where χν(x, λ) is
the fundamental solution to Lχ = 0 in some sector of analyticity Ων.
Suppose the derivatives of the potential q(x) up to the order N belong to
the class L1(R). Suppose also that Sν is proper open sub-sector of Ων, that
is, Sν is an open sub-sector of Ων and its closure belongs to Ων. Then for
λ tending to infinity but remaining in Sν we have the following asymptotic
formulae which hold uniformly in x:

hν,H = H +
N∑
k=1

λ−k(Λk−1
− qH + iI−(Λk−1

− )qH) + o(λ−N) (35)



where we have used the notation

qH ≡ ad−1
J [q,H], I±f ≡

x∫
±∞

(id − π0)adq(y)f(y)dy. (36)

In the above f(x) is differentiable, absolutely integrable on the line, taking
values in ḡ and Λ− is the operator we introduced in (20). In what follows
up to the end of this subsection we shall assume that the potential q(x)
is a Schwartz-type function. Then the asymptotic formula can be written
for arbitrary N and all the expressions we write make sense. Next result
is about the integral representation of the adjoint solutions:

Proposition 0.2 The following integral representations hold:

1. For λ ∈ Ων we have:

haν,H(x, λ) =
i

2π

2M∑
η=1

∫
Lη

h−aη,H(x, µ)− h+a
η,H(x, µ)

µ− λ
dµ (37)





2. For λ on the ray Lν and λ 6= 0 we have

1

2
(h−aν,H(x, λ)− h+a

ν,H(x, λ)) =
i

2π

2M∑
η=1

p.v.

∫
Lη

h−aη,H(x, µ)− h+a
η,H(x, µ)

µ− λ
dµ

(38)

Of course the principle value is necessary to be taken only on the ray Lν
but in the way the things are now written (38) becomes more symmetric.

4.2 Conservation laws. General description

The idea of finding the conservation laws is to use D±ν (λ) (or their
’logarithms’) are generating functions for the conservation laws. More
precisely, we have the following situation. Consider the quantities

D±ν,j(λ) = 〈ων,j|D±ν (λ)|ων,j〉, j = 1, 2, . . . r = rank g (39)

where ων,j are the highest weights for the representations of the algebra
g with the ordering in Ων. We define also

d±ν,j(λ) = logD±ν,j(λ), λ ∈ Lν (40)



It can be seen that D±ν,j(λ), which originally were defined only on the ray
Lν, are extensions of functions D̄η,j(λ) which are analytic in the sectors
Ωη, η = ν, ν + 1. In fact for λ ∈ Ων

D̄ν,j(λ) = lim
x→+∞

〈ων,j|eiλJxmν(λ, x)e−iλJx|ων,j〉 = lim
x→+∞

〈ων,j|mν(λ.x)|ων,j〉

j = 1, 2, . . . r = rank g, ν = 1, 2, . . . 2M (41)

Thus for λ ∈ Lν we have D̄ν+1,j(λ) = D+
ν,j(λ), D̄ν,j(λ) = D−ν,j(λ). In

addition, limλ→∞ D̄ν,j = 1. For j = 1, 2, . . . r = rank g, ν = 1, 2, . . . 2M
define

d̄ν,j(λ) = log D̄ν,j(λ) (42)

The functions d̄ν,j(λ) are also analytic in Ων and limλ→∞ d̄ν,j(λ) = 0. If
one considers them in any sub-sector Sν of Ων one has the asymptotic
expansions

d̄ν,j(λ) =
∞∑
s=1

dν,j,sλ
−s, λ ∈ Sν, |λ| >> 1 (43)

and dν,j,s are then the required conservation laws. It turns out that it is
easier to work with some linear combinations of the functions d̄ν,j(λ). In



order to see that let us remark that since D±ν (λ) = exp
(∑

α∈πν d
±
ν,α(λ)Hα

)
we have

d±ν,j(λ) = log〈ων,j|D±ν (λ)|ων,j〉 =
∑
α∈πν

ων,j(Hα)d±ν,α(λ) (44)

and the sets d±ν,j(λ) and d±ν,α(λ) are expressed one through another as lin-
ear combinations with constant coefficients. The above means that the
coefficients d±ν,α(λ) also allow analytic continuation, that is, these func-
tions are extensions of functions dη,α(λ) analytic in Ωη, η = ν, ν + 1 and
more generally, for H ∈ h the functions d±ν,H(λ) =

∑
α∈πν

d±ν,α(λ)〈Hα, H〉

allow analytic extensions dν,H to the sectors Ων, and have the asymptotic:

d±ν,H(λ) =
∞∑
k=1

d±H,kλ
−k, |λ| >> 1 (45)

(One can prove that actually the coefficients in the asymptotic expansion
do not depend on the sector). We shall denote the extensions in the sector
Ωη by dη,H(λ). Naturally, in a similar way as above, the factors D±ν (λ)
allow analytic continuations denoted by Dν(λ). The first way to obtain



the coefficients dν,α,s is first to use the Wronskian relations(
iχ̂±ν

dχ±ν
dλ

(x, λ)− Jx
)
|+∞−∞ =

+∞∫
−∞

(
χ̂±ν Jχ

±
ν (x, λ)− J

)
dx, λ ∈ Lν (46)

in order to relate the derivatives with respect to λ of the dη,H(λ) and the
functions haν,H . The next step is to use the integral representations of the
functions haν,H = π0χνHχ

−1
ν , H ∈ h in order to obtain the relation

haν,H = (Λ± − λ)−1ad −1
J [H, q], λ ∈ Ων (47)

and finally to use the asymptotic formulae for haν,H . We cannot go into
more details in such a short note so we shall present the final results:

dH,s =
1

s

+∞∫
−∞

x∫
−∞

〈[J, q],Λs
±ad −1

J [H, q]〉dydx, s = 1, 2, . . . (48)

The second way of obtaining the conservation laws is similar, but we use



another type of Wronskian relations:

i〈χ̂±ν δχ±ν , H〉|+∞−∞ = −
+∞∫
−∞

〈χ̂±ν δχ±ν , H〉dx (49)

this time relating the variations of dη,H(λ) when we make a variation δq of
the potential and the functions haν,H . Then we again use the asymptotic
of the functions haν,H and we get another formula

δdH,s = −i

+∞∫
−∞

〈δq,Λs−1
± ad −1

J [H, q]〉dx, s = 1, 2, . . . (50)

The last equations are more popular in another form. Let us identify the
space SJ consisting of Schwartz-type functions on the line with values in
h⊥ = ḡ and its dual S∗J through the bilinear form: (X, Y ) 7→ 〈〈X, Y 〉〉. In
other words, we shall consider the elements from S∗J as generalized func-
tions (distributions) with test functions from SJ . In fact the functionals
we shall have will be regular, that is locally integrable functions over R,
and even most of them will belong to SJ . Taking into account all this for



the differentials of the conservation laws we get

ddH,s = −iΛs−1
± ad −1

J [H, q] (51)

and hence
ddH,s = Λ±ddH,s−1, s = 2, 3, . . . (52)

The above relations in the case g = sl (2,C) are called Lenart relations,
see (Adler, 1979), so we shall call them Lenart-type relations or Lenart
chains.

One can prove that with the above identification ddν,H = ihaν,H which
explains why the functions haν,H are so important in the study of the
conservation laws. One can use another type of Wronskian relations in
order to get another expression which in fact is none but the Poincaré
lemma for closed forms:

dH,s = −i

+∞∫
−∞

1∫
0

〈q,Λs−1
± |(ζq)ad −1

J [H, ζq]〉dζdx (53)

One can observe that in it enters Λs−1 instead of Λs as in (48). So in
the calculation of the conservation laws the above formula can be a real



advantage as the expressions become increasingly more complicated when
s increases.
4.3 CBC system – locality of the conservation laws

Now we shall treat the questions of the locality of the NLEEs related
to the CBC system and their conservation laws, proving also that the
conservation laws are in involution with respect to the hierarchy of sym-
plectic structures we introduced earlier. The idea of the proof we present
here has been used in (Gerdjikov,Yanovski 1985 JINR) for the case of the
classical Zakharov-Shabat system. We start with the following:

Theorem 0.2 If for arbitrary H,W ∈ h the expression 〈J, [qH ,ΛN
−qW ]〉 is

x-derivative of local function on q, qx, . . . then the expression ΛN+1
− qF for

every F ∈ h is also a local function.

Proof. Indeed,

Λ−ΛN
−qF = iad −1

J ∂xΛ
N
−qF + ad −1

J [q, π0Λ
N
−qF ] + iad −1

J ad qI−ΛN
−qF

The expression in the integrand of I−ΛN
−qF can be cast into the following



form:

(id − π0)[q,Λ
N
−qF ] =

r∑
s=1

Hs〈Hs, [q,ΛN
−qF ]〉

where {Hs}rs=1, {Hs}rs=1 are two bi-orthogonal bases of h. By assumption
I−ΛN

−qF is local so the expression ΛN+1
− qF is also local. Let us remark that

that if what is assumed in the theorem is true then of course in all the
formulae of this subsection one could put Λ+ and I+ instead of I−. Indeed
from the above proof it follows that for any N = 1, 2, . . . we have
+∞∫
−∞

(id −π0)Λ
N
−qFdx = 0 so since I−ΛN

−qF = I+ΛN
−qF +

+∞∫
−∞

(id −π0)Λ
N
−qFdx

we get I−ΛN
−qF = I+ΛN

−qF for arbitrary natural N and hence for any
natural N we have ΛN

−qF = ΛN
+qF .

Now we have

Lemma 0.1 For H,W ∈ h the following formulae hold:

〈J, [qH ,ΛN
−qW ]〉 − 〈J, [ΛN

−qH , qW ]〉 =

= i∂x

{∑N−1
k=0

(
〈I−Λk

−qH , I−ΛN−k−1
− qW 〉 − 〈Λk

−qH ,Λ
N−k−1
− qW 〉

)} (54)



Proof. From the differential equation for hH it is readily seen that for
H,W ∈ h, λ ∈ Ων, µ ∈ Ωη we have the following important relations:

i∂x〈hν,H(x, λ), hW,η(x, µ)〉 = (λ− µ)〈J, [hH,ν(x, λ), hW,η(x, µ)]〉 (55)

For big λ, µ we can insert here the asymptotic formulae we obtained in
Lemma 0.1 and as the asymptotic are uniform in x we can differentiate.
Comparing then the coefficients of the power series we obtain the following
identities:

〈J, [Λk−1
− qH ,Λ

s
−qW ]〉 − 〈J, [Λk

−qH ,Λ
s−1
− qW ]〉 =

= i∂x
(
〈I−Λk−1

− qH , I−Λs−1
− qW 〉 − 〈Λk−1

− qH ,Λ
s−1
− qW 〉

) (56)

and summing them up for k = 0, 1, . . . N −1, s = N −k we get the result.
Finally, using induction and Lemma 0.1 one proves

Theorem 0.3 For arbitrary H,W ∈ h and arbitrary natural N the ex-
pressions 〈J, [qH ,ΛN

±qW ]〉 are x-derivatives of local functions on q, qx, . . ..

Corollary 0.1 For every H ∈ h and N = 0, 1, 2, . . . the expressions ΛN
±qH

are local function on q, qx, . . . and thus all the equations:

ad−1
J ∂tq = ΛN

±qH , N = 0, 1, 2, . . .



are local.

Corollary 0.2 The conservation laws

dW,s =
1

s

+∞∫
−∞

dx

x∫
−∞

〈[J, q],Λs
±qW 〉dy, s = 1, 2, . . . , W ∈ h

have local densities.

Corollary 0.3 The conservation laws dW,s are in involution with respect
to the hierarchy of symplectic forms Ωm.

Indeed, as it is well-known the NLEEs are Hamiltonian with respect to a
hierarchy of symplectic forms:

Ωm(X, Y ) =

+∞∫
−∞

〈X,Λm
±ad −1

J (Y )〉dx, m = 0, 1, 2 . . . (57)

Taking into account the form of Ωm the result easily follows.



Zn reductions
The general formulae that we have permit to treat easily the case when

we have Mikhailov-type reductions. In case we have Zn the algebra g

splits into a direct sum of eigenspaces of an automorphism K order n of
that leaves h invariant. As an example let us take K to be a Coxeter
automorphism. We have

g = ⊕n−1
s=0g

[s] (58)

where for each X ∈ g[s] we have KX = ωsX (ωn = 1) and the spaces g[s],
g[k] for k+ s 6= 0 (modn) are orthogonal with respect to the Killing form.
For h one has similar splitting but many of the spaces h[p] are zero, the
numbers p for which h[p] 6= 0 are called exponents of g. In particular we
have J ∈ h[1], q(x) ∈ g[0]. Then one readily sees that if H ∈ h[p] 6= 0 from
the conservation laws (48) ”survive” only those for which p+s = 0 mod (n)

Needless to say the results about the locality still hold.
As for the symplectic forms Ωm , again one readily sees for m 6=

0 (modn) they degenerate. However, the remaining still make a hier-
archy endowing the space of potentials with Poisson-Nijenhuis structure
(Yanovski, 2012 JGSP).
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