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Lie symmetries of boundary value problems: Bluman’s definition, its
applicability range and the relevant examples

A PDE cannot model any real process without additional condition(s) on the
unknown function(s) because one reflects only a general physical (biological,
chemical etc.) law. Only a boundary-value problem (BVP) based on the given
PDE can describe many real processes arising in nature and society.

One may note that the symmetry-based methods were not widely used for
solving BVPs. The obvious reason follows from the following observation: the
relevant boundary and initial conditions are usually not invariant under any
transformations, i.e., they don’t admit any symmetry of the governing PDE(s).
Nevertheless there are some classes of BVPs which can be solved by means of
the Lie symmetry based algorithm. This algorithm uses the notion of Lie’s
invariance of BVP in question.

The first rigorous definition of Lie’s invariance for BVPs was formulated by
Bluman in 1970s.[G.W. Bluman, 1971,1974]. This definition and several
examples are summarized in his book [Bluman & Anco, 2002] and was used
(explicitly or implicitly) in several papers to derive exact solutions of some
BVPs. It should be noted that Ibragimov’s definition of BVP invariance [N.H.
Ibragimov, 1992, 2009, 2011], which was formulated independently, is
equivalent to Bluman’s. Notably, one may say that BVP invariance became to
be widely investigated only since 1990s.
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Lie symmetries of boundary value problems: Bluman’s definition, its
applicability range and the relevant examples

Bluman’s definition
In this section, I restrict myself to the case when the basic equation of BVP is
a two-dimensional evolution PDE of kth–order (k ≥ 2). In this case the
relevant BVP may be formulated as follows:

ut = F
(
x, u, ux, . . . , u

(k)
x

)
, (t, x) ∈ Ω ⊂ R

2 (1)

sa(t, x) = 0 : Ba

(
t, x, u, ux, . . . , u

(k−1)
x

)
= 0, a = 1, 2, . . . , p, (2)

where F and Ba are smooth functions in the corresponding domains, Ω is a
domain with smooth boundaries and sa(t, x) are smooth curves. t and x denote

differentiation with respect to these variables, u
(j)
x = ∂ju

∂xj , j = 1, 2, . . . , k. It is
assumed that BVP (1)–(2) has a classical solution (in a usual sense).
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Lie symmetries of boundary value problems: Bluman’s definition, its
applicability range and the relevant examples

Consider the infinitesimal generator

X = ξ
0(t, x)

∂

∂t
+ ξ

1(t, x)
∂

∂x
+ η(t, x, u)

∂

∂u
(3)

(hereafter ξ0, ξ1 and η are known smooth functions), which defines a Lie
symmetry acting on (t, x, u)–space ! Let X(k) be the kth–prolongation of the
generator X calculated by the well-known prolongation formulae.

Definition (Bluman &Kumei, 1989; Bluman & Anco,2002)

The Lie symmetry X (3) is admitted by the boundary value problem (1)–(2) if:

(a) X(k)
(
F

(
x, u, ux, . . . , u

(k)
x

)
− ut

)
= 0 when u satisfies (1);

(b) X(sa(t, x)) = 0 when sa(t, x) = 0, a = 1, 2, . . . , p;

(c) X(k−1)
(
Ba

(
t, x, u, ux, . . . , u

(k−1)
x

))
= 0 when Ba = 0 on sa(t, x) = 0

a = 1, 2, . . . , p.
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Lie symmetries of boundary value problems: Bluman’s definition, its
applicability range and the relevant examples

Let as consider example [Bluman & Anco,2002]. MAI of the linear heat
equation consists of 6 basic operators creating AL6 [S.Lie, 1881] ???? to check
!

∂t, ∂x, 2t∂t + x∂x,

I = u∂u, G = t∂x − 1
2
xu∂u,

Π = t2∂t + tx∂x − 1
2
(x2

2
+ t)u∂u,

(4)

and the standard (for any linear PDE !) operator X∞. Consider the Cauchy
problem

ut = uxx, t > 0, x ∈ R

t = 0 : u = u0(x)
(5)
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Lie symmetries of boundary value problems: Bluman’s definition, its
applicability range and the relevant examples

Consider the most general form of operators from AL6

X = ciXi = ξ0(t, x) ∂
∂t

+ ξ1(t, x) ∂
∂x

+ f(t, x)u ∂
∂u

ξ0(t, x) = c1 + 2c3t + c6t
2, ξ1(t, x) = c2 + c3x + c5t + c6tx

f(t, x) = c4 − c5
2

x − c6
1
2
(x2

2
+ t)

(6)

Items [b]-[c] of Definition lead to

c1 = 0, f(0, x)u0(x) = ξ
1(0, x)

du0

dx
(7)

An interesting case is the Dirac function u0 = δ(x), when one arrives at 3-dim
Lie algebra

G, Π, D1 = 2t∂t + x∂x − u∂u (8)

In particular, the well-known solution

u(t, x) =
1√
4πt

exp
(
− x2

4t

)
(9)

can be obtained
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Generalisation of Bluman’s definition

Bluman’s definition can not be directly applied to BVP of more general form:

with boundary conditions defined on infinity, i.e. manifolds including
points (or surfaces) at infinity

with boundary conditions on the moving surfaces, which are described by
unknown functions

Let us consider BVP (1)–(2), which includes also the boundary conditions

x = ∞ : Γ
(
t, u, ux, . . . , u

(k−1)
x

)
= 0,

Assume that Eq. (1) and conditions (2) are invariant under the group of
translations on the plane (t, x):

t
′ = t + λ1ε, x

′ = x + λ2ε, u
′ = u, λ1λ2 6= 0, (10)

so that the corresponding infinitesimal generator is

X = λ1∂t + λ2∂x (11)
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Generalisation of Bluman’s definition

Nevertheless it is clear that the condition (10) including
x = ∞ is invariant under (10)
the Definition is not applicable. Moreover, the problem occurs if one generalizes
Definition in the standard way by formulation an additional condition for (11)
like those (b) and (c): x − L = 0, where L → ∞ because this leads to

lim
L→∞

X(x − L)|x=L = lim
L→∞

λ2 = λ2 6= 0.
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New definition of Lie invariance for BVPs

Consider a BVP for a system of n evolution equations (n ≥ 2) with m + 1
independent (t, x) (hereafter x = (x1, x2, . . . , xm)) and n dependent
u = (u1, u2, . . . , un) variables. Let us assume that the basic equations are

u
i
t = F

i
(
t, x, u, ux, . . . , u

(k)
x

)
, i = 1, . . . , n (12)

and are defined on (0, +∞) × Ω ⊂ R
m+1 Hereafter

u
(j)
x =

∂ju

∂xj1 . . . ∂xjn

, j = 1, 2, . . . , k; j1 + . . . + jn = j

Consider three types of boundary and initial conditions

sa(t, x) = 0 : B
j
a

(
t, x, u, . . . , u

(kj
a)

x

)
= 0, (13)

Sb(t, x) = 0 : B
l
b

(
t, x, u, . . . , u

(kl
b)

x , S
(1)
b , . . . , S

(Kl
b)

b

)
= 0, (14)

γc(t, x) = ∞ : Γm
c

(
t, x, u, . . . , u

(km
c )

x

)
= 0. (15)

where a = 1, . . . , p, j = 1, . . . , na; b = 1, . . . , q, l = 1, . . . , nb; c = 1, . . . , q,
m = 1, . . . , nc; kj

a < k, kl
b < k and km

c < k are given numbers.
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New definition of Lie invariance for BVPs

Consider an N–parameter (local) Lie group GN of point transformations of
variables (t, x, u) in the Euclidean space R

n+m+1 (open subset of R
n+m+1)

defined by the equations

t
∗ = T (t, x, ε), x

∗
i = Xi(t, x, ε), u

∗
j = Uj(t, x, u, ε),

where i = 1, . . . , m, j = 1, . . . , n; ε = (ε1, . . . , εN ) — are the group
parameters. According to the general Lie group theory, one may construct the
corresponding N-dimensional Lie algebra LN with the basic generators

Xα = ξ
0
α

∂

∂t
+ξ

1
α

∂

∂x1
+ . . .+ξ

m
α

∂

∂xm

+η
1
α

∂

∂u1
+ . . .+η

n
α

∂

∂un

, α = 1, 2, . . . , N,

(16)
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New definition of Lie invariance for BVPs

We assume that Sb(t, x) = 0, b = 1, . . . , q are non-degenerating manifolds of
the group GN , i.e., can be expressed via its invariants, which depend only on
the independent variables (t, x, u).
In the extended space R

n+m+q+1 of the variables (t, x, u, S) (here

S = (S1, ..., Sq) ), the Lie algebra LN defines the Lie group G̃N

t
∗ = T (t, x, ε), x

∗
i = Xi(t, x, ε), u

∗
j = Uj(t, x, u, ε), S

∗
b = Sb(t, x), (17)

where i = 1, . . . , m, j = 1, . . . , n, b = 1, . . . , q.
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New definition of Lie invariance for BVPs

Definition

A boundary value problem of the form (12)–(15) is called to be invariant with respect

to the Lie group G̃N if:

(a) the manifold determined by system (12) in the space of variables(
t, x, u, . . . , u

(k)
x

)
is invariant with respect to the kth–order prolongation of the

group GN ;

(b) each manifold determined by conditions (13) with the any fixed number a is
invariant with respect to the kath–order prolongation of the group GN in the

space of variables
(
t, x, u, . . . , u

(ka)
x

)
, where ka = max{kj

a, j = 1, . . . , na};

(c) each manifold determined by conditions (14) with the any fixed number b is

invariant with respect to the kbth–order prolongation of the group G̃N in the

space of variables
(
t, x, u, . . . , u

(kb)
x , Sb, . . . , S

(kb)
b

)
, where

kb = max{kl
b, Kl

b, l = 1, . . . , nb};

(d) each manifold determined by conditions (15) with the any fixed number c is
invariant with respect to the kcth–order prolongation of the group GN in the

space of variables
(
t, x, u, . . . , u

(kc)
x

)
, where kc = max{km

c , m = 1, . . . , nc}.
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New definition of Lie invariance for BVPs

Definition

The functions uj = Φj(t, x), j = 1, . . . , n and Sb = Ψb(t, x), b = 1, . . . , q form
an invariant solution (u, S) of BVP (12)–(15) corresponding to the Lie group

G̃N if:

(i) (u, S) satisfies equations and conditions (12)–(15) ;

(ii) the manifold
M = {uj = Φj(t, x), j = 1, . . . , n; Sb = Ψb(t, x), b = 1, . . . , q} is an
invariant manifold of this Lie group.

Remark 1. Both definitions can be straightforwardly generalized on BVPs with
governing systems of equations of hyperbolic, elliptic and mixed types.
However, one should additionally assume that n-component governing system
of PDEs are presented in a ’canonical’ form (some authors uses the natation
’involution form’ in this context), i.e. one possesses a simplest form and there
are no any non-trivial differential consequences.

Roman Cherniha Lie and conditional symmetries of nonlinear boundary value problems:



Algorithm of the group classification for the class of BVPs

Algorithm for solving the group classification problem for a BVP class
If the system of differential equations contain as coefficients arbitrary functions
then the group classification problem springs up. Such kind of problems was
formulated and solved for a class of non-linear heat equations in the pioneering
Ovsiannikov work in 1959. Ovsiannikov’s method is based on the classical Lie
scheme and a set of equivalence transformations of the given class of PDEs.

At the present time, more general algorithms for group classification problems
were developed, which take into account form-preserving (admissible)
transformations [J.Kingston, 1991] and were successfully applied to different
classes of PDEs . In particular, the group classification problems were solved
for classes of single RDC equations and RD systems using such transformations
in [ R.Ch. & J.R.King 2001,2005,2006; R.Ch. & M.Serov, 2006; R.Ch.,
M.Serov & I. Rassokha 2008] )
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Algorithm of the group classification for the class of BVPs

We propose the following algorithm of the group classification

(I) to construct the equivalence group Eeq of local transformations, which
transform the governing system of equations into itself;

(II) to extend space of Eeq action on the variables S = (S1, ..., Sq) by adding

the identity transformations for them, denoting the group obtained as Ẽeq;

(III) to find the equivalence group ẼBV P
eq of local transformations, which

transform the class of BVPs (12)–(15) into itself, one extends space of the

Ẽeq action on the prolonged space, where all arbitrary elements arising in
boundary conditions (13)–(15) are treated as new variables.

(IV) to perform the group classification of the governing system (12) up to

local transformations generated by the group ẼBV P
eq ;

(V) using Definition, to find the principal group of invariance G̃0, which is
admitted by each BVP belonging to the class in question;

(VI) using Definition and the results obtained at step (IV), to describe all

possible ẼBV P
eq -inequivalent BVPs of the form (12)–(15) admitting

maximal invariance groups of higher dimensionality than G̃0.
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Let us consider the class of (1+3)-dim. BVPs describing melting and
evaporation of a solid material ( see [ Lyubov B Ya and Sobol’ E N 1983]–
linear case; [R.Ch. 2003] – nonlinear case)

∂u

∂t
= ∇ (d1(u)∇u) , (t, x) ∈ Ω1(t), (18)

∂v

∂t
= ∇ (d2(v)∇v) , (t, x) ∈ Ω2(t), (19)

S1(t, x) = 0 : d1v
∂u

∂n1
= HvV1 · n1 − Q(t) · n1, u = uv, (20)

S2(t, x) = 0 : d2m
∂v

∂n2
= d1m

∂u

∂n2
+ HmV2 · n2, u = um, v = vm,(21)

|x| = +∞ : v = v∞, t ∈ T, (22)

d1(u), d2(v) are smooth non-negative functions

d1v, d1m, d2m, Hv, Hm are positive parameters with physical
interpretation;

Q(t) · n1 6= 0, Vk · nk 6= 0, k = 1, 2; ∇ ≡ (∂x1 , ∂x2 , ∂x3);

uv, um, vm, v∞ ≥ 0: uv 6= um, vm 6= v∞; |∇Sk| 6= 0,
∂Sk

∂t
6= 0, k = 1, 2.
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Figure:
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Table 3. The group classification of system (18)–(19) [R.Ch.& J.R.King, 2006]

no d1(u) d2(v) МАI

1. ∀ ∀ AE(1, 3) = 〈∂t, ∂xa , xa∂xb
− xb∂xa , 2t∂t + xa∂xa 〉

2. k1 ∀ AE(1, 3), u∂u, α(t, x)∂u

3. ∀ k2 AE(1, 3), v∂v , β(t, x)∂v

4. eu ev AE(1, 3), xa∂xa + 2∂u + 2∂v

5. eu vm AE(1, 3), xa∂xa + 2∂u + 2
m

v∂v

6. un ev AE(1, 3), xa∂xa + 2
n

u∂u + 2∂v

7. un vm AE(1, 3), D = xa∂xa + 2
n

u∂u + 2
m

v∂v

8. u− 4
5 v−

4
5 AE(1, 3), |x|2∂xb

− 2xbxa∂xa + 5xbu∂u + 5xbv∂v , D

9. k1 k2 AE(1, 3), u∂u, v∂v , α(t, x)∂u, β(t, x)∂v ,

Ga = t∂xa − xa

(
1

2k1
u∂u + 1

2k2
v∂v

)
,

Π = t2∂t + txa∂xa − 1
4k1

(|x|2 + 6k1t)u∂u−

− 1
4k2

(|x|2 + 6k2t)v∂v

10. k1 k1 AE(1, 3), u∂u, v∂v , v∂u, u∂v,

α(t, x)∂u, β(t, x)∂v, Ga, Π (k2 = k1)
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Theorem

BVP (18)–(22) with the arbitrary given functions d1(u), d2(v) (d1(u) 6= d2(v))
and Qa(t), a = 1, 2, 3 is invariant under the three-dim. Lie algebra (trivial Lie
algebra) presented in case 1 of Table 4. The maximal algebra of invariance
(MAI) of BVP (18)–(22) doesn’t depend on the form of d1(u) and d2(v).
There are only five BVPs from the class (18)–(22) with the correctly-specified
functions Qa(t), a = 1, 2, 3 admitting MAI of a higher dimensionality, namely:
four- or five-dim. Lie algebras of invariance (up to equivalent representations

generated by equivalence transformations from the group ẼBV P
eq ). These MAI

and the relevant functions Qa(t), a = 1, 2, 3 are presented in cases 2–6 of
Table 4.
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Table 4. Lie invariance of BVP (18)–(22)

no Q1(t) Q2(t) Q3(t) МАI

1. ∀ ∀ ∀ P1, P2, P3

2. 0 0 q(t) P1, P2, P3, J12

3. Θ1(λt) Θ2(λt) q3 P1, P2, P3, Pt + λJ12

4. 1√
t

Θ1

(
1
2
λ log t

)
1√
t

Θ2

(
1
2
λ log t

)
q3√

t
P1, P2, P3, D0 + λJ12

5. 0 0 q Pt, P1, P2, P3, J12

6. 0 0 q√
t

P1, P2, P3, D0, J12

where : Pa = ∂xa , Pt = ∂t, J12 = x1∂x2 − x2∂x1 , D0 = 2t∂t + xa∂xa

Θ1(τ ) = q1 cos τ + q2 sin τ, Θ2(τ ) = −q1 sin τ + q2 cos τ,

q 6= 0, q1, q2, q3, λ are arbitrary constants, q(t) 6= 0 is an arbitrary smooth
function.
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Now we demonstrate how one can apply the result obtained to construct exact
solutions of BVPs from the class under study. Let us consider a nonlinear
model of heat transfer processes in metals under the action of intense constant
energy flaxes directed perpendicular to the metal surface. This model coincides
with the BVP problem (18)–(22), where Q(t) = q ≡ (0, 0, q), q = const.
According to Table 4 such BVP admits the five-dim. MAI A5. First of all, we
construct the optimal systems of s-dimensional subalgebras (s ≤ 5) of A5.
This can be done using the well-known Lie-Goursat classification method for
the subalgebras of algebraic sums of Lie algebras and the known results of
subalgebras classification of low-dimensional real Lie algebras [ Pathera J et al
1975; Pathera J & Winternitz P 1977 ]. Thus, we’ve constructed the complete
list of subalgebras of the algebra A5. This list can be divided on subalgebras of
different dimensionality.
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Reduction of BVP (18)–(22) via 〈J12 + β (P3 cos φ + Pt sin φ) , P3 sin φ − Pt cos φ〉

Ansatz and BVP obtained :

u = u(r, z), v = v(r, z), Sk = Sk(r, z), k = 1, 2,

where z = x3 − µt − β arctan x1
x2

, r =
√

x2
1 + x2

2 are invariant variables.

1

r

∂

∂r

(
rd1(u)

∂u

∂r

)
+

(
β2

r2
+ 1

)
∂

∂z

(
d1(u)

∂u

∂z

)
+ µ

∂u

∂z
= 0, (23)

1

r

∂

∂r

(
rd2(v)

∂v

∂r

)
+

(
β2

r2
+ 1

)
∂

∂z

(
d2(v)

∂v

∂z

)
+ µ

∂v

∂z
= 0, (24)

S1(r, z) = 0 : d1v∇
′u · ∇′S1 = (µHv − q)

∂S1

∂z
, u = uv, (25)

S2(r, z) = 0 : d2m∇′v · ∇′S2 = d1m∇′u · ∇′S2 + µHm
∂S2

∂z
, u = um, v = vm,(26)

r2 + z2 = +∞ : v = v∞, (27)

Here µ is to-be-determined velocity, ∇′ ≡
(

∂
∂r

,

√
β2

r2 + 1 ∂
∂z

)
.
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

The further reduction of BVP (23)–(27) with β = 0.
The variables z = x3 − µt, r =

√
x2

1 + x2
2 admit clear physical meaning: the

first one makes the transition to a moving coordinate system (in the direction
of the variable x3) with the origin at the evaporation surface, the second one
presents the radial symmetry of the process with respect to the variables x1

and x2. Obviously, such situation takes place if the surface bounded by a circle
of the radius R is exposed by the flux Q(t) = q ≡ (0, 0, q).
Using ad hoc ansatz [Ivantsov GP, 1947]

u = u(ω), v = v(ω), Sk = Sk(ω), ω = z +
√

z2 + r2, k = 1, 2,

we arrive at BVP for ODEs

d

dω

(
ωd1(u)

du

dω

)
+ µ

ω

2

du

dω
= 0, 0 < ω1 < ω < ω2,

d

dω

(
ωd2(v)

dv

dω

)
+ µ

ω

2

dv

dz
= 0, ω > ω2,

ω = ω1 : 2d1v
du

dω
= µHv − q, u = uv,

ω = ω2 : 2d2m
dv

dω
= 2d1m

du

dω
+ µHm, u = um, v = vm,

ω = +∞ : v = v∞,

where ωk, k = 1, 2 and µ are to-be-determined constants.
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Figure: Paraboloid
x2
1+x2

2

ω2
k

+
2(x3−µt)

ωk
− 1 = 0, k = 1, 2
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Exact solution of (18)–(22) with d1(u) = a1, d2(v) = a2, and Q(t) = q
[Lyubov B & Sobol’ E 1983]

u =
uv − um

Φ1(R) − Φ1(ω2)
Φ1

(√
x2
1 + x2

2 + (x3 − µt)2 + x3 − µt

)
+ umv,

v =
vm − v∞
Φ2(ω2)

Φ2

(√
x2
1 + x2

2 + (x3 − µt)2 + x3 − µt

)
+ v∞,

Sk ≡
x2
1 + x2

2

ω2
k

+
2(x3 − µt)

ωk

− 1 = 0, k = 1, 2; ω1 = R.

where ω1 = R, while ω2 and µ are solutions of the transcendent equations

2d1v
uv − um

Φ1(R) − Φ1(ω2)
R−1e

− µ
2a1

R
= µHv − q,

2d2m
vm − v∞
Φ2(ω2)

ω−1
2 e

− µ
2a2

ω2 = 2d1m
uv − um

Φ1(R) − Φ1(ω2)
ω−1

2 e
− µ

2a1
ω2 + µHm,

and the notation

Φk(ω) =

+∞∫

ω

ω−1e
− µ

2ak dω, k = 1, 2; umv =
umΦ1(R) − uvΦ1(ω2)

Φ1(R) − Φ1(ω2)
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Lie symmetries of the class of (1+3)-dimensional BVPs of the Stefan type

Exact solution of (18)–(22) with d1(u) = u−1, d2(v) = 1 and Q(t) = q
[R.Ch. & S.Kovalenko 2011]

(|x(t,µ)|+x3−µt)u∫

Ruv

dν

ν
(
1 + e−W(eA)+A

) = ln
|x(t, µ)| + x3 − µt

R

v =
vm − v∞
Φ(ω2)

Φ (|x(t, µ)| + x3 − µt) + v∞,

Sk ≡
x2
1 + x2

2

ω2
k

+
2(x3 − µt)

ωk

− 1 = 0, k = 1, 2; ω1 = R,

where W (x) is the Lambert function, |x(t, µ)| =
√

x2
1 + x2

2 + (x3 − µt)2 and

A = −
µ

2
ν + ln

(
(µHv − q)

R

2

)
+ (µHv − q)

R

2
+

µ

2
Ruv

Here ω1 = R, while ω2 and µ are solutions of the transcendent equations

ω2um∫

Ruv

dν

ν
(
1 + e−W(eA)+A

) = ln
ω2

R
,

2
vm − v∞
Φ(ω2)

e−
µ
2

ω2 = 2e
−W

(
eA(ω2)

)
+A(ω2)

+ µω2Hm.
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Definition of conditional invariance of multi-dimensional BVPs of evolution
type

Definition of conditional invariance
Let’s assume that the basic equation of BVP in question is a multidimensional
evolution PDE of kth–order (k ≥ 2). In this case the relevant BVP may be
formulated as follows:

ut = F
(
t, x, u, ux, . . . , u

(k)
x

)
, x ∈ Ω ⊂ R

n
, t > 0 (28)

sa(t, x) = 0 : Ba

(
t, x, u, ux, . . . , u

(ka)
x

)
= 0, a = 1, 2, . . . , p, ka < k (29)

where F and Ba are smooth functions in the corresponding domains, Ω is a
domain with smooth boundaries and sa(t, x) are smooth curves. Hereafter the
notations

u
(j)
x =

∂ju

∂xj1 . . . ∂xjn

, j = 1, 2, . . . , k; j1 + . . . + jn = j

are used and assumed that BVP (28)–(29) has a classical solution.
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Definition of conditional invariance of multi-dimensional BVPs of evolution
type

Consider a BVP for the evolution equation (28) involving conditions (29) and
the boundary conditions at infinity:

γc(t, x) = ∞ : Γc

(
t, x, u, ux, . . . , u

(kc)
x

)
= 0, c = 1, 2, . . . , p∞. (30)

Here kl < k, kc < k, n1 and p∞ are the given numbers, the γc(t, x) are
specified functions by which the domain (t, x). We assume that a classical
solution still exists for this BVP.
Let us assume that the operator

Q = ξ
0(t, x, u)

∂

∂t
+ ξ

a(t, x, u)
∂

∂xa

+ η(t, x, u)
∂

∂u
(31)

is a Q-conditional symmetry of PDE (28), i.e.:

(
ut − F

(
t, x, u, ux, . . . , u

(k)
x

)) ∣∣∣
M

= 0, (32)

where Q
k

is the kth prolongation of Q and the manifold

M = {ut − F
(
t, x, u, ux, . . . , u

(k)
x

)
= 0, Q(u) = 0} with

Q(u) ≡ ξ0(t, x, u)ut + ξa(t, x, u)uxa − η(t, x, u).
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Definition of conditional invariance of multi-dimensional BVPs of evolution
type

Remark . Rigorously speaking, one needs to reduce the manifold M by adding
the differential consequences of equation Q(u) = 0 up to order k, which leads
to huge technical problems in the application of the criterion obtained.
However, in the case of evolution equations the resulting symmetries will be
still the same provided ξ0(t, x, u) 6= 0 in Q.

Let us consider for each c = 1, 2, . . . , p∞ the manifold

M = {γc(t, x) = ∞, Γc

(
t, x, u, ux, . . . , u

(kc)
x

)
= 0} (33)

in the extended space of variables t, x, u, ux, . . . , u
(kc)
x and assume that there

exists a such smooth bijective transform of the form

τ = f(t, x), y = g(t, x), w = h(t, x, u), (34)

where y = (y1, . . . , yn), f(t, x) and h(t, x, u) are smooth functions and g(t, x)
is a smooth vector function that maps the manifold M into

M∗ = {γ∗
c (t, x) = 0, Γ∗

c

(
τ, y, u, uy , . . . , u

(k∗
c )

y

)
= 0} (35)

of the same dimensionality in the extended space.
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Definition of conditional invariance of multi-dimensional BVPs of evolution
type

Definition

BVP (28)–(29) and (30) is Q-conditionally invariant under operator (31) if:

(a) the criterion (32) is satisfied;

(b) Q(sa(t, x)) = 0 when sa(t, x) = 0, Ba|sa(t,x)=0 = 0, a = 1, . . . , p;

(c) Q
ka

(
Ba

(
t, x, u, ux, . . . , u

(ka)
x

))
= 0 when Ba|sa(t,x)=0 = 0, a = 1, . . . , p;

(d) there exists a smooth bijective transform (34) mapping M into M∗ of the
same dimensionality;

(e) Q∗(γ∗
c (τ, y)) = 0 when γ∗

c (τ, y) = 0, c = 1, 2, . . . , p∞;

(f) Q
∗

k∗
c

(
Γ∗

c

(
τ, y, u, uy , . . . , u

(k∗
c )

y

))
= 0 when Γ∗

c |γ∗
c (τ,y)=0 = 0,

c = 1, . . . , r,

where Γ∗
c and γ∗

c (τ, y) are the functions Γc and 1
γc(t,x)

, respectively, expressed

via the new variables. Moreover, the operator Q∗, i.e (31) in the new variables,
is defined on M∗ (may be, excepting a finite number of points).
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Definition of conditional invariance of multi-dimensional BVPs of evolution
type

Example. Consider the reaction-diffusion-convection equation

∂u

∂t
=

∂

∂x
(um

ux) + λ1u
m

ux + λ2u
−m

, (36)

where λk, k = 1, 2 and m 6= −1, 0 are arbitrary constants in the domain
Ω = {(t, x) : t > 0, x ∈ (z1, z2), z1 < z2 ∈ R}
Supplying the Neumann boundary conditions

x = za : ux = ϕa(t), a = 1, 2, (37)

where ϕ1(x), ϕ2(t) are the specified smooth functions, one obtains BVP (36)–
(37) is a nonlinear BVP, which is the standard object for investigation. Eq.
(36) admits the Q-conditional symmetry (R.Ch. & O.Pliukhin, 2007)

Q =
∂

∂t
+ λ2u

−m ∂

∂u
, λ2 6= 0 (38)

Now we apply Definition 2 to BVP (36)– (37) in order to obtain the
correctly-specified constraints when this problem is conditionally invariant under
operator (38). Obviously, the first item is fulfilled by the correct choice of the
operator. Item (b) is satisfied automatically because of the operator structure.
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Definition of conditional invariance of multi-dimensional BVPs of evolution
type

A non-trivial result is obtained by application of item (c) to the boundary
conditions (37). In fact, calculating the first prolongation (i.e. ka = 1) of
operator (38)

Q
1

= Q − mλ2u
−m−1 ∂

∂ut

− mλ2u
−m−1 ∂

∂ux

(39)

and acting on (37), one obtains two first-order ODEs

x = za : ϕ̇a(t) + mλ2ϕa(t)u−m−1 = 0, a = 1, 2 (40)

to find the functions ϕa(t), a = 1, 2. Thus, BVP (36)– (37) is Q-conditionally
invariant under (38) if and only if (40) hold.
One may note that (40) is nothing else but the Dirichet conditions and,
generally speaking, they may contradict to the Neumann conditions (37).
Happily, there is case when the constraints (40) do not produce any boundary
conditions: ϕa(t) = 0, a = 1, 2, i.e., the problem with the zero Neumann
conditions (zero flux on boundaries)

x = za : ux = 0, a = 1, 2, (41)

is invariant under the Q-conditional symmetry (38).
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Conclusions

1 A new definition of BVP invariance and the relevant example are presented

2 Algorithm for solving the group classification problem for a BVP class is
worked out

3 The group classification problem (a complete description of Lie
symmetries) for the class of (1+3)-dim. BVPs modeling processes of
melting and evaporation under a powerful flux of energy is derived

4 Reductions of BVPs of the Stefan type to BVPs for ODE and examples of
exact solutions are constructed

5 Definition of conditional invariance for BVPs is worked out and the
relevant example is presented

This research was supported by a Marie Curie International Incoming
Fellowship within the 7th European Community Framework Programme

XXXIV Dynamics Days Europe 8-12 Sep. 2014 | Uni. of Bayreuth | Germany
Minisymposia: Applications of symmetry-based methods to nonlinear real world
models
Organizers: R. Cherniha (Kyiv, Ukraine and Nottingham, UK); M.Henkel
(Nancy, France) and J.R. King (Nottingham, UK) Deadline: July 1, 2014

Roman Cherniha Lie and conditional symmetries of nonlinear boundary value problems:


