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Quantum mechanics is plagued by paradoxes:

e decoherence,
e measurement process,

e reduction of the state vector.

Main concern is the linearity of the Schrodinger equation, which seems to be drastically
incompatible with above-mentioned problems.

At the same time linearity works beautifully when:

e describing the unobserved unitary quantum evolution,
e finding the energy levels,

e in all statistical predictions.

Perhaps we deal here with a very sophisticated and delicate nonlinearity which becomes
active and remarkable just in the process of interaction between quantum systems and
“large” classical objects.



The main 1dea 1is:

e to analyze the Schrédinger equation and corresponding relativistic linear wave equ-
ations as usual self-adjoint equations of mathematical physics derivable from variatio-
nal principles.

Lagrangian = Hamiltonian:

e Legendre transformation for the Schrédinger and Dirac equations is uninvertible and
leads to constraints in the phase space. Dirac formalism is the solution.

Incidentally, introducing the second-order time derivatives to dynamical equations, even
as small corrections, regularizes Legendre transformation.

X 3k ok
In non-relativistic quantum mechanics there are certain hints suggesting just such a mo-

dification in the nano-scale physics.

[Kozlowski M., Marciak-Kozlowska J., From quarks to bulk matter, Hadronic Press, USA, 2001.]

[Marciak-Kozlowska J., Kozlowski M. Schrédinger equation for nanoscience, arXiv.org:cond-mat /0306699.]
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Step 1:

The quantum Fourier equation which describes the heat (mass) diffusion on the atomic
level has the following form:

IR 1)

— = —V°T.
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If we take the substitution ¢ — it/2 and T' — 1, then we end up with the free Schrodinger

equation:

L 0\
Step 2:

The complete Schrodinger equation with the potential term V' after the reverse substitu-
tions t — —2it and ¢ — T gives us the parabolic quantum Fokker-Planck equation, which
describes the quantum heat transport for At > 7, where 7 = h/ma?c? ~ 10717 sec and
ct ~ 1 nm, i.e.,

A I rmady
m h

— —— |
II



Step 3:

For ultrashort time processes when At < 7 one obtains the generalized quantum hyperbolic

heat transport equation:
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Step 4:
This leads us to the second-order modified Schrédinger equation
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in which the additional term describes the interaction of electrons with surrounding space-
time filled with virtual positron-electron pairs.

0
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Analogy to superposition of Dirac and d’Alembert operators (KGD equation).

[Stawianowski J.J., Kovalchuk V. Klein-Gordon-Dirac equation: physical justification and quantization
attempts, Rep. Math. Phys. 49 (2002), 249-257 |
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The conceptual transition from special
to general theory of relativity:

e the metric tensor looses its status of the absolute geometric object and becomes inc-
luded into degrees of freedom (gravitational field).

In our treatment:

e the Hilbert-space scalar product becomes a dynamical quantity which satisfies together
with the state vector the system of differential equations.

The main idea:

e there is no fixed scalar product metric!

e the dynamical term of Lagrangian describing the self-interaction of the metric is inva-
riant under the total group GL(n, C).



The natural metric of this kind:

e introducing to the theory a very strong nonlinearity which induces also the effective
nonlinearity of the wave equation even if there is no “direct nonlinearity” in it.

Strong nonlinearity prevents us from finding a rigorous solution.

But some partial results are possible:

e if we fix the behaviour of wave function to some simple form, then for the scalar
product behaviour there are rigorous exponential solutions (including infinitely gro-
wing /exponentially decaying in the future — some decay/reduction phenomena).

Two kinds of degrees of freedom (dynamical variables):

e wave function,

e scalar product.

They are mutually interacting.

RIHRRGEHRE =



N-level quantum system:

We can define the “wave function” of the n-level quantum system as a following n-vector:

Let us take a set of n elements and some function 1 defined on it, i.e.,
¢1
NS N Y* =1(a) € C.
¢’I’L
Let H be a unitary space (n-dimensional “Hilbert space” C") with the scalar product

G:HxH—C,

which is a sesquilinear hermitian form.
The general Lagrangian:

L = 01iGg (Eaf/}b - Zatﬁb) SN OézGabZd@bb + [uGap + a5 Hap] 99"
+ a3 [G" + agd™’] Gay + Q, GI" GG — V (v, G)



where
Q[w)G]dEb& = ag [Gd& _‘_aga@wd] [Gbé_i_agaéwb]
+ a7 [G" + agp™’] [G* + agpp?] + asd PPy,

and the potential V can be taken, for instance, in the following quartic form:

V (¥, G) = x (Gatb™y?)” .

The first and second terms (those with o1 and as) describe the free evolution of wave
function ¢ while G is fixed. The Lagrangian for trivial part of the linear dynamics (those
with ay) can be also taken in the more general form f (Ga;@atbb), where f : R — R. The
term with as corresponds to the Schréodinger dynamics while G is fixed and then

H% = G*Hy,

is the usual Hamilton operator. If we properly choose the constants a; and as, then
we obtain precisely the Schrodinger equation. The dynamics of the scalar product G is
described by the terms linear and quadratic in the time derivative of G. In the above
formulae ¥ = 1) denotes the usual complex conjugation and a;, i = 1,9, and s are some
constants.
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The equations of motion:

;ELG = ayGa?® + <042Gab — 2&1iGab> W — 208G p* G egtp®op?
—-2@9GmeGw+%wGme>¢bﬂﬂa+aﬁﬁ¢%
SN [(Q%ng@%d — au) Gap — s Hap — [z + 0] Gab] W =0,
;ib = 20y, GGy + 20, G Grq + (236G y” — ag) P9

+ 2G" [a6G" (GI° + agp“®T) + a7 G™ (GT° + gy )] GauGey
— ™ + [asag + and PYP + ey — aad] PP = 0,

where

Oy, G = g <anbac¢d+Ea¢bacwd+wawbzc¢d+Ea¢bac¢d>
o ([Ea¢d+aa¢d] [GbE“FOégEE?,bb] N [$c¢b+ac¢b} [Gda+&gaa¢d}>
e <[anb+ga¢b} [Gd5+&9wé¢d] N {Eélbd‘i‘aéléd} [Gba—i—agw_}@bb})
5 [GEGTT (G¥ + agly?) + GG (G + agp®yD)] Gy
w7 [GRG (G% + agl?) + GG (G + agh™?)] Gy



Pure dynamics for G-

The equations of motion for the pure dynamics of scalar product G while the wave function
1 is fixed are as follows:

Qe GIPE Gy = (% N %chaﬂpd) b + 047Gédééf7[¢, G)defan
Rk %Géd(;éf (,yw’ G]béfédd + [, G]fadéba — [, G]béddfé) 7

where

,y[w’ G]fédéb& NN GféGdE (de 3 &gw&wb) ]

If we additionally suppose that ay = ag = a9 = » = 0, then the above expression
simplifies significantly:

(05GP G + G G™) (GGat — GeGT*Ciea) = 0.
Hence, the pure dynamics of the scalar product is described by the following equations:

Gop — GoaG Gy = 0.



Let us now demand that GG is equal to some constant value F, i.e., G = EG, then
€= b =

and

GGG = EGG'EG = E?G,

therefore our equations of motion are fulfilled automatically and the solution is as follows:

G(t)as = (exp(Et))° :Goz.
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Similarly if we demand that G™'G is equal to some other constant E’, i.e., G = GF/,
ENeEaEr?2 (GG =GEGGE = GE?,
then the equations of motion are also fulfilled and the solution is as follows:
G(t)as = Goaa (exp(E'H)" .
The connection between these two different constants £ and E’ is written below:

G(0) = Gy = GoE' = EG,.



Usual and first-order modified Schrodinger equations:

The second interesting special case is obtained when we suppose that the scalar product
G is fixed, i.e., the equations of motion are as follows:

aoth® — 2089 + (2%G5d@6¢d [, G] — o) * — as H4%? = 0.

Then if we also take all constants of model to be equal to 0 except of the following ones:

h
SANSS 57 Q5 = _17
we end up with the well-known usual Schrodinger equation:
ih® = Hob.

Its first-order modified version is obtained when we suppose that GG is a dynamical variable
and as is equal to 0, i.e.,

3 ia a_,.b ih ac/ b ¢ d a

iyt = Hoy)" — |5+ ogon| GHGay” + (256Gag)®y® — au) ¢

— 205G“Gat)’ Geath " — 209G <046G5dGab + 047(;51)@5(1) W (GP + agp®y?)
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20y, GGy = [%i S 043049} PP — [% i 043049} P
oG [046Gbé (G’fé + agﬂ%f) S e (Gfé + agﬁéwf)] ngégf
— (25Gagp®? — ay) PP — 20, G) Gy,
We can rewrite the above equation of motion for ¢ in the following form:
im" = Heg" 1",
where the effective Hamilton operator is given as follows:

ik A\ \\ N
Heg = H% — [3 & 043049] G“Ga+ (25Gatp“? — ay) 6% — 203G Gy GeqthY”

- QOégGaE <Q6G5dGéb SR Oé7G5bGéd> (Gdé + Oégaéwd) 8

Future research:

e What if we admit “dissipative” models, where the Schrédinger equation does possess
some “friction-like” term? = Some quantum models of dissipation.

Further investigation is required.
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Thank you for your attention!
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