On New Ideas of Nonlinearity in Quantum Mechanics

Vasyl Kovalchuk

XVI-th International Conference on
Geometry, Integrability and Quantization
Varna, Bulgaria, June 6-11, 2014

[1] V. Kovalchuk and J. J. Sławianowski:
Hamiltonian systems inspired by the Schrödinger equation, Symmetry, Integrability and Geometry: Methods and Applications

4, 046, 9 pages, 2008.

* * *

[2] J. J. Sławianowski and V. Kovalchuk:
Schrödinger and related equations as Hamiltonian systems, manifolds of second-order tensors and new ideas of nonlinearity in quantum mechanics,

Reports on Mathematical Physics
65, 1, pp. 29-76, 2010.

$$
* * *
$$

[3] J. J. Sławianowski and V. Kovalchuk:
Schrödinger equation as a hamiltonian system, essential nonlinearity,
dynamical scalar product and some ideas of decoherence,
in: Advances in Quantum Mechanics,
Prof. Paul Bracken (Ed.),
ISBN: 978-953-51-1089-7,
InTech, Rijeka, pp. 81-103, 2013.

Quantum mechanics is plagued by paradoxes:

- decoherence,
- measurement process,
- reduction of the state vector.

Main concern is the linearity of the Schrödinger equation, which seems to be drastically incompatible with above-mentioned problems.

At the same time linearity works beautifully when:

- describing the unobserved unitary quantum evolution,
- finding the energy levels,
- in all statistical predictions.

Perhaps we deal here with a very sophisticated and delicate nonlinearity which becomes active and remarkable just in the process of interaction between quantum systems and "large" classical objects.

The main idea is:

- to analyze the Schrödinger equation and corresponding relativistic linear wave equations as usual self-adjoint equations of mathematical physics derivable from variational principles.

Lagrangian \Rightarrow Hamiltonian:

- Legendre transformation for the Schrödinger and Dirac equations is uninvertible and
leads to constraints in the phase space. Dirac formalism is the solution.
Incidentally, introducing the second-order time derivatives to dynamical equations, even as small corrections, regularizes Legendre transformation.

$$
* * *
$$

In non-relativistic quantum mechanics there are certain hints suggesting just such a modification in the nano-scale physics.
[Kozlowski M., Marciak-Kozlowska J., From quarks to bulk matter, Hadronic Press, USA, 2001.]

Step 1:

The quantum Fourier equation which describes the heat (mass) diffusion on the atomic level has the following form:

$$
\frac{\partial T}{\partial t}=\frac{\hbar}{m} \nabla^{2} T
$$

If we take the substitution $t \rightarrow i t / 2$ and $T \rightarrow \psi$, then we end up with the free Schrödinger equation:

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

Step 2:

The complete Schrödinger equation with the potential term V after the reverse substitutions $t \rightarrow-2 i t$ and $\psi \rightarrow T$ gives us the parabolic quantum Fokker-Planck equation, which describes the quantum heat transport for $\Delta t>\tau$, where $\tau=\hbar / m \alpha^{2} c^{2} \sim 10^{-17} \mathrm{sec}$ and $c \tau \sim 1 \mathrm{~nm}$, i.e.,

$$
\frac{\partial T}{\partial t}=\frac{\hbar}{m} \nabla^{2} T-\frac{2 V}{\hbar} T
$$

Step 3:

For ultrashort time processes when $\Delta t<\tau$ one obtains the generalized quantum hyperbolic heat transport equation:

$$
\tau \frac{\partial^{2} T}{\partial t^{2}}+\frac{\partial T}{\partial t}=\frac{\hbar}{m} \nabla^{2} T-\frac{2 V}{\hbar} T
$$

Step 4:

This leads us to the second-order modified Schrödinger equation

$$
2 \tau \hbar \frac{\partial^{2} \psi}{\partial t^{2}}+i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi
$$

in which the additional term describes the interaction of electrons with surrounding spacetime filled with virtual positron-electron pairs.

$$
* * *
$$

Analogy to superposition of Dirac and d'Alembert operators (KGD equation).
[Sławianowski J.J., Kovalchuk V. Klein-Gordon-Dirac equation: physical justification and quantization attempts, Rep. Math. Phys. 49 (2002), 249-257.]

The conceptual transition from special to general theory of relativity:

- the metric tensor looses its status of the absolute geometric object and becomes included into degrees of freedom (gravitational field).

In our treatment:

- the Hilbert-space scalar product becomes a dynamical quantity which satisfies together with the state vector the system of differential equations.

The main idea:

- there is no fixed scalar product metric!
- the dynamical term of Lagrangian describing the self-interaction of the metric is invariant under the total group $\mathrm{GL}(n, \mathbb{C})$.

The natural metric of this kind:

- introducing to the theory a very strong nonlinearity which induces also the effective nonlinearity of the wave equation even if there is no "direct nonlinearity" in it.

Strong nonlinearity prevents us from finding a rigorous solution.

But some partial results are possible:

- if we fix the behaviour of wave function to some simple form, then for the scalar product behaviour there are rigorous exponential solutions (including infinitely growing/exponentially decaying in the future - some decay/reduction phenomena).

Two kinds of degrees of freedom (dynamical variables):

- wave function,
- scalar product.

They are mutually interacting.

N-level quantum system:

We can define the "wave function" of the n-level quantum system as a following n-vector: Let us take a set of n elements and some function ψ defined on it, i.e.,

$$
\psi=\left[\begin{array}{c}
\psi^{1} \\
\vdots \\
\psi^{n}
\end{array}\right], \quad \psi^{a}=\psi(a) \in \mathbb{C}
$$

Let H be a unitary space (n-dimensional "Hilbert space" \mathbb{C}^{n}) with the scalar product

$$
G: H \times H \rightarrow \mathbb{C}
$$

which is a sesquilinear hermitian form.

The general Lagrangian:

$$
\begin{aligned}
L & =\alpha_{1} i G_{\bar{a} b}\left(\bar{\psi}^{\bar{a}} \dot{\psi}^{b}-\dot{\psi^{a}} \psi^{b}\right)+\alpha_{2} G_{\bar{a} b} \dot{\bar{\psi}}{ }^{\bar{a}} \psi^{b}+\left[\alpha_{4} G_{\bar{a} b}+\alpha_{5} H_{\bar{a} b}\right] \bar{\psi}^{\bar{a}} \psi^{b} \\
& +\alpha_{3}\left[G^{b \bar{a}}+\alpha_{9} \bar{\psi}^{\bar{a}} \psi^{b}\right] \dot{G}_{\bar{a} b}+\Omega[\psi, G]^{d \bar{c} b \bar{a}} \dot{G}_{\bar{a} b} \dot{G}_{\bar{c} d}-\mathcal{V}(\psi, G)
\end{aligned}
$$

where

$$
\begin{aligned}
\Omega[\psi, G]^{d \bar{b} \bar{a}} & =\alpha_{6}\left[G^{d \bar{a}}+\alpha_{9} \bar{\psi}^{\bar{a}} \psi^{d}\right]\left[G^{b \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{b}\right] \\
& +\alpha_{7}\left[G^{b \bar{a}}+\alpha_{9} \bar{\psi}^{\bar{a}} \psi^{b}\right]\left[G^{d \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{d}\right]+\alpha_{8} \bar{\psi}^{\bar{a}} \psi^{b} \bar{\psi}^{\bar{c}} \psi^{d}, \\
\Omega[\psi, G]^{d \bar{b} \bar{a}} & =\Omega[\psi, G]^{b \bar{a} d \bar{c}},
\end{aligned}
$$

and the potential \mathcal{V} can be taken, for instance, in the following quartic form:

$$
\mathcal{V}(\psi, G)=\varkappa\left(G_{\bar{a} b} \overline{\psi^{\bar{a}}} \psi^{b}\right)^{2}
$$

The first and second terms (those with α_{1} and α_{2}) describe the free evolution of wave function ψ while G is fixed. The Lagrangian for trivial part of the linear dynamics (those with α_{4}) can be also taken in the more general form $f\left(G_{\bar{a} b} \bar{\psi}^{\bar{a}} \psi^{b}\right)$, where $f: \mathbb{R} \rightarrow \mathbb{R}$. The term with α_{5} corresponds to the Schrödinger dynamics while G is fixed and then

$$
H^{a}{ }_{b}=G^{a \bar{c}} H_{\bar{c} b}
$$

is the usual Hamilton operator. If we properly choose the constants α_{1} and α_{5}, then we obtain precisely the Schrödinger equation. The dynamics of the scalar product G is described by the terms linear and quadratic in the time derivative of G. In the above formulae $\overline{\psi^{\bar{a}}}=\overline{\psi^{a}}$ denotes the usual complex conjugation and $\alpha_{i}, i=\overline{1,9}$, and \varkappa are some constants.

The equations of motion:

$$
\begin{aligned}
\frac{\delta L}{\delta \bar{\psi}^{\bar{a}}} & =\alpha_{2} G_{\bar{a}} \ddot{\psi}^{b}+\left(\alpha_{2} \dot{G}_{\bar{a} b}-2 \alpha_{1} i G_{\bar{a} b}\right) \dot{\psi}^{b}-2 \alpha_{8} \dot{G}_{\bar{a} b} \psi^{b} \dot{G}_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d} \\
& -2 \alpha_{9}\left(\alpha_{6} \dot{G}_{\bar{a} d} \dot{G}_{\bar{c} b}+\alpha_{7} \dot{G}_{\bar{a} b} \dot{G}_{\bar{c} d}\right) \psi^{b}\left(G^{d \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{d}\right) \\
& +\left[\left(2 \varkappa G_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d}-\alpha_{4}\right) G_{\bar{a} b}-\alpha_{5} H_{\bar{a} b}-\left[\alpha_{3} \alpha_{9}+\alpha_{1} i\right] \dot{G}_{\bar{a} b}\right] \psi^{b}=0 \\
\frac{\delta L}{\delta G_{\bar{a} b}} & =2 \Omega[\psi, G]^{b \bar{a} d \bar{c}} \ddot{G}_{\bar{c} d}+2 \dot{\Omega}[\psi, G]^{b \bar{a} \bar{c}} \dot{G}_{\bar{c} d}+\left(2 \varkappa G_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d}-\alpha_{4}\right) \bar{\psi}^{\bar{a}} \psi^{b} \\
& +2 G^{d \bar{a}}\left[\alpha_{6} G^{b \bar{c}}\left(G^{f \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{f}\right)+\alpha_{7} G^{b \bar{c}}\left(G^{f \bar{e}}+\alpha_{9} \bar{\psi}^{\bar{e}} \psi^{f}\right)\right] \dot{G}_{\bar{c} d} \dot{G}_{\bar{e} f} \\
& -\alpha_{2} \dot{\psi}^{\bar{a}} \dot{\psi}^{b}+\left[\alpha_{3} \alpha_{9}+\alpha_{1} i\right] \dot{\bar{\psi}}^{\bar{a}} \psi^{b}+\left[\alpha_{3} \alpha_{9}-\alpha_{1} i\right] \bar{\psi}^{\bar{a}} \dot{\psi}^{b}=0
\end{aligned}
$$

where

$$
\begin{aligned}
\dot{\Omega}[\psi, G]^{\bar{a} d \bar{c}} & =\alpha_{8}\left(\dot{\bar{\psi}}^{\bar{a}} \psi^{b} \bar{\psi}^{\bar{c}} \psi^{d}+\bar{\psi}^{\bar{a}} \dot{\psi}^{b} \bar{\psi}^{\bar{c}} \psi^{d}+\bar{\psi}^{\bar{a}} \psi^{b} \dot{\bar{\psi}}^{\bar{c}} \psi^{d}+\bar{\psi}^{\bar{a}} \psi^{b} \bar{\psi}^{\bar{c}} \dot{\psi}^{d}\right) \\
& +\alpha_{6} \alpha_{9}\left(\left[\dot{\bar{\psi}}^{\bar{a}} \psi^{d}+\bar{\psi}^{\bar{a}} \dot{\psi}^{d}\right]\left[G^{b \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{b}\right]+\left[\dot{\bar{\psi}}^{\bar{c}} \psi^{b}+\bar{\psi}^{\bar{c}} \dot{\psi}^{b}\right]\left[G^{d \bar{a}}+\alpha_{9} \bar{\psi}^{\bar{a}} \psi^{d}\right]\right) \\
& +\alpha_{7} \alpha_{9}\left(\left[\dot{\bar{\psi}}^{\bar{a}} \psi^{b}+\bar{\psi}^{\bar{a}} \dot{\psi}^{b}\right]\left[G^{d \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{d}\right]+\left[\dot{\bar{\psi}}^{\bar{c}} \psi^{d}+\bar{\psi}^{\bar{c}} \psi^{d}\right]\left[G^{b \bar{a}}+\alpha_{9} \bar{\psi}^{\bar{a}} \psi^{b}\right]\right) \\
& -\alpha_{6}\left[G^{d \bar{e}} G^{f \bar{a}}\left(G^{b \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{b}\right)+G^{b \bar{e}} G^{f \bar{c}}\left(G^{d \bar{a}}+\alpha_{9} \bar{\psi}^{\bar{a}} \psi^{d}\right)\right] \dot{G}_{\bar{e} f} \\
& -\alpha_{7}\left[G^{b \bar{e}} G^{f \bar{a}}\left(G^{d \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{d}\right)+G^{d \bar{e}} G^{f \bar{c}}\left(G^{\bar{a}}+\alpha_{9} \overline{\psi^{\bar{a}}} \psi^{b}\right)\right] \dot{G}_{\bar{e} f .} .
\end{aligned}
$$

Pure dynamics for G :

The equations of motion for the pure dynamics of scalar product G while the wave function ψ is fixed are as follows:

$$
\begin{aligned}
\Omega[\psi, G]^{b \bar{a} d \bar{c}} \ddot{G}_{\bar{c} d} & =\left(\frac{\alpha_{4}}{2}-\varkappa G_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d}\right) \bar{\psi}^{\bar{a}} \psi^{b}+\alpha_{7} \dot{G}_{\bar{c} d} \dot{G}_{\bar{e} f} \gamma[\psi, G]^{d \bar{e} f \bar{c} b \bar{a}} \\
& +\alpha_{6} \dot{G}_{\bar{c} d} \dot{G}_{\bar{e} f}\left(\gamma[\psi, G]^{b \bar{e} f \bar{c} d \bar{a}}+\gamma[\psi, G]^{f \bar{d} d \bar{c} b \bar{c}}-\gamma[\psi, G]^{b \bar{e} d \bar{a} f \bar{c}}\right)
\end{aligned}
$$

where

$$
\gamma[\psi, G]^{f \bar{e} d \bar{c} \bar{b} \bar{a}}=G^{f \bar{e}} G^{d \bar{c}}\left(G^{b \bar{a}}+\alpha_{9} \bar{\psi}^{\bar{a}} \psi^{b}\right) .
$$

If we additionally suppose that $\alpha_{4}=\alpha_{8}=\alpha_{9}=\varkappa=0$, then the above expression simplifies significantly:

$$
\left(\alpha_{6} G^{b \bar{c}} G^{d \bar{a}}+\alpha_{7} G^{b \bar{a}} G^{d \bar{c}}\right)\left(\ddot{G}_{\bar{c} d}-\dot{G}_{\bar{c} f} G^{f \bar{c}} \dot{G}_{\bar{e} d}\right)=0
$$

Hence, the pure dynamics of the scalar product is described by the following equations:

$$
\ddot{G}_{\bar{a} b}-\dot{G}_{\bar{a} d} G^{d \bar{c}} \dot{G}_{\bar{c} b}=0 .
$$

Let us now demand that $\dot{G} G^{-1}$ is equal to some constant value E, i.e., $\dot{G}=E G$, then

$$
\ddot{G}=E \dot{G}=E^{2} G
$$

and

$$
\dot{G} G^{-1} \dot{G}=E G G^{-1} E G=E^{2} G
$$

therefore our equations of motion are fulfilled automatically and the solution is as follows:

$$
\begin{aligned}
G(t)_{\bar{a} b}= & (\exp (E t))^{\bar{a}}{ }_{\bar{a}} G_{0 \bar{c} b} . \\
& * * *
\end{aligned}
$$

Similarly if we demand that $G^{-1} \dot{G}$ is equal to some other constant E^{\prime}, i.e., $\dot{G}=G E^{\prime}$,

$$
\ddot{G}=\dot{G} E^{\prime 2}=G E^{\prime 2}, \quad \dot{G} G^{-1} \dot{G}=G E^{\prime} G^{-1} G E^{\prime}=G E^{\prime 2},
$$

then the equations of motion are also fulfilled and the solution is as follows:

$$
G(t)_{\bar{a} b}=G_{0 \bar{a} d}\left(\exp \left(E^{\prime} t\right)\right)^{d}{ }_{b} .
$$

The connection between these two different constants E and E^{\prime} is written below:

$$
\dot{G}(0)=\dot{G}_{0}=G_{0} E^{\prime}=E G_{0}
$$

Usual and first-order modified Schrödinger equations:

The second interesting special case is obtained when we suppose that the scalar product G is fixed, i.e., the equations of motion are as follows:

$$
\alpha_{2} \ddot{\psi}^{a}-2 \alpha_{1} i \dot{\psi}^{a}+\left(2 \varkappa G_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d}[\psi, G]-\alpha_{4}\right) \psi^{a}-\alpha_{5} H^{a}{ }_{b} \psi^{b}=0 .
$$

Then if we also take all constants of model to be equal to 0 except of the following ones:

$$
\alpha_{1}=\frac{\hbar}{2}, \quad \alpha_{5}=-1
$$

we end up with the well-known usual Schrödinger equation:

$$
i \hbar \dot{\psi}^{a}=H^{a}{ }_{b} \psi^{b} .
$$

Its first-order modified version is obtained when we suppose that G is a dynamical variable and α_{2} is equal to 0 , i.e.,

$$
\begin{aligned}
i \hbar \dot{\psi}^{a} & =H^{a}{ }_{b} \psi^{b}-\left[\frac{i \hbar}{2}+\alpha_{3} \alpha_{9}\right] G^{a \bar{c}} \dot{G}_{\bar{c} b} \psi^{b}+\left(2 \varkappa G_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d}-\alpha_{4}\right) \psi^{a} \\
& -2 \alpha_{8} G^{a \bar{c}} \dot{G}_{\bar{c} b} \psi^{b} \dot{G}_{\bar{e} d} \bar{\psi}^{\bar{e}} \psi^{d}-2 \alpha_{9} G^{a \bar{c}}\left(\alpha_{6} \dot{G}_{\bar{c} d} \dot{G}_{\bar{e} b}+\alpha_{7} \dot{G}_{\bar{c} b} \dot{G}_{\bar{e} d}\right) \psi^{b}\left(G^{d \bar{e}}+\alpha_{9} \bar{\psi}^{\bar{e}} \psi^{d}\right),
\end{aligned}
$$

$$
\begin{aligned}
2 \Omega[\psi, G]^{b \bar{a} d \bar{c}} \ddot{G}_{\bar{c} d} & =\left[\frac{i \hbar}{2}-\alpha_{3} \alpha_{9}\right] \bar{\psi}^{\bar{a}} \dot{\psi}^{b}-\left[\frac{i \hbar}{2}+\alpha_{3} \alpha_{9}\right] \dot{\bar{\psi}}^{\bar{a}} \psi^{b} \\
& -2 G^{d \bar{a}}\left[\alpha_{6} G^{b \bar{e}}\left(G^{f \bar{c}}+\alpha_{9} \bar{\psi}^{\bar{c}} \psi^{f}\right)+\alpha_{7} G^{b \bar{c}}\left(G^{f \bar{e}}+\alpha_{9} \bar{\psi}^{\bar{e}} \psi^{f}\right)\right] \dot{G}_{\bar{c} d} \dot{G}_{\bar{e} f} \\
& -\left(2 \varkappa G_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d}-\alpha_{4}\right) \bar{\psi}^{\bar{a}} \psi^{b}-2 \dot{\Omega}[\psi, G]^{b \bar{a} d \bar{c}} \dot{G}_{\bar{c} d} .
\end{aligned}
$$

We can rewrite the above equation of motion for ψ in the following form:

$$
i \hbar \dot{\psi}^{a}=H_{\mathrm{eff}}{ }^{a}{ }_{b} \psi^{b},
$$

where the effective Hamilton operator is given as follows:

$$
\begin{aligned}
H_{\mathrm{eff}}{ }^{a}{ }_{b} & =H^{a}{ }_{b}-\left[\frac{i \hbar}{2}+\alpha_{3} \alpha_{9}\right] G^{a \bar{c}} \dot{G}_{\bar{c} b}+\left(2 \varkappa G_{\bar{c} d} \bar{\psi}^{\bar{c}} \psi^{d}-\alpha_{4}\right) \delta^{a}{ }_{b}-2 \alpha_{8} G^{a \bar{c}} \dot{G}_{\bar{c} b} \dot{G}_{\bar{e} d} \bar{\psi}^{\bar{e}} \psi^{d} \\
& -2 \alpha_{9} G^{a \bar{c}}\left(\alpha_{6} \dot{G}_{\bar{c} d} \dot{G}_{\bar{e} b}+\alpha_{7} \dot{G}_{\bar{c} b} \dot{G}_{\bar{e} d}\right)\left(G^{d \bar{e}}+\alpha_{9} \bar{\psi}^{\bar{e}} \psi^{d}\right) .
\end{aligned}
$$

Future research:

- What if we admit "dissipative" models, where the Schrödinger equation does possess some "friction-like" term? \Rightarrow Some quantum models of dissipation.

Further investigation is required.

Thank you for your attention!

