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LECTURE 2: LS CATEGORY, CRITICAL POINTS
AND SYMPLECTIC GEOMETRY

Review of Critical Points and Manifold Structure.

Theorem. Let M be a smooth compact manifold and let
Crit(M ) denote the minimum number of critical points for

any smooth function on M. Then

1+ cat(M) < Crit(M) <1 +4dim(M).



Morse Theory versus LS Cat Theory

Example: The Torus | R

Madmum

First, consider a
height function on
the Torus. There are - {ssadte
4 critical points: a
minimum, 2 saddles
and a maximum.

In local coords,
each critical point Minimum
has a non-singular

_HeSSIan matrix, so Such a function is then called a
IS non-degenerate. Morse function.

Saddle




Sub-level sets of the height function on the torus.




Let’s focus on the sub-level sets near critical points.

Near the Minimum:
A thickened O-cell
(.e. point)

Near the first
saddle: Adding a
thickened 1-cell




Near the second
saddle: Adding a
thickened 1-cell

Near the Maximum:
A 2-cell (i.e. disk)




Main Theorem of Morse Theory.
Theorem. If f: M — R is a Morse function, then M has

the homotopy type of a space constructed by attaching a cell

of dimension k for each critical point of index k.

(The index of a critical point is the number of negative eigenvalues
of the Hessian there.)

Corollary. If ¢; is the number of critical points of index z,
then for all ¢ > 0, dim(H*(M; R)) < ¢;.

Corollary. A Morse function on the torus T? has at least

4 critical points.
Proof. dim(H°(T2;R)) = 1, dim(H(T?;R)) = 2,
and dim( H2(T?2;R)) = 1.



Example. Let the torus T? be represented by the unit
square Sq = [0, 1] x [0, 1] with (O,y) ~ (1,y) and
(z,0) ~ (x,1) Vz,y. Define a function G: Sq — R:

G(z,y) = sin(zwzx) sin(wy) sin(r(z 4+ v)).

GG has 3 critical points

(recall cat(T?) = 2) at
(1/3,1/3), (2/3,2/3) and
(0,0). The Hessian at (0,0)

is the zero matrix, so GG

Is not a Morse function.




We can see how to reconstruct the torus
from this picture too, but we don't just
attach one cell at a time. Start with the
minimum, then go above the next critical
point to get a wedge of two circles.
Finally, attach a 2-cell to get the torus.

Here is G on the torus.
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Applications of Category to Symplectic Topology

Definition. A manifold (M?2", w) is symplectic if w is a
closed 2-form such that w™ is a volume form on M.
In particular, when M is closed, cup(M) > n.

Examples:

(1.) R2™ with coordinates (x1,...,Zn,y1,...,Yn) and
w = E?zl dx; N\ dy;.

(2.) C"* = R2"™.

(3.) T2n T*(M), Kahler manifolds, orientable surfaces.



Symplectic manifolds are the natural framework

for Hamiltonian dynamics.
Take a time-dependent Hamiltonian H: M X R — R. In

coordinate-free language, each function H; has an associated
vector field X with 7 x . w = dH;. The time-dependent vec-
tor field X; has integral curves (g(t), p(t) with associated
flow : M xR — M; &((g,p),t) = (q(t),p(t)),

where (¢(0),p(0)) = (g, p).

The equality 1x,w = dH; gives Hamilton’s Equations
for the flow,
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Definition. The time-1 map ¢ = ®1 = ®(—, 1) of the
flow determined by a time-dependent Hamiltonian is called a

Hamiltonian diffeomorphism.

Example. Rotation of the torus about its axis is not a
Hamiltonian diffeomorphism (because it does not have a

fixed point).

The Arnold Conjecture.

It . M — M is a Hamiltonian diffeomorphism on a closed
symplectic manifold (M, w) and Fix(¢) stands for the num-

ber of fixed points of ¢, then

Fix(¢) > Crit(M).



The Hamiltonian diffeomorphism can be replaced by a 1-
periodic flow and the fixed points can be replaced by the 1-
periodic solutions of the associated Hamilton equations.
These are critical points of the following action functional on
(contractible) loops u in M (i.e. contractible u: St — M):

A (u) = —/D2 Tw — [Sl H,(u(t)) dt

where % D2 — M is an extension to D? of the loop
uw St = M using u's contractibility.

The important thing to notice is that the functional is not well
defined! Different extensions to the disk can give different
results --- unless

w"]TQ(M) — O



Geometrically, this is saying that

/Szg*ou:O

for all g: S? — M. Pasting @ and @ together along S
gives a map ¢: S2 — M with

~ %

0= g w = / wrw — u*w,
S2 D2 D2
So Ay is well-defined.

Floer used this functional to prove a weak version of the Arnold
Conjecture:
Theorem. If . M — M is a Hamiltonian diffeomor-

phism, then

Fix(¢) > 1 + cupz, (M)



Definition. (M?2™, w) is symplectically aspherical if

w'?Tz(M) — O
Homotopy Interpretation:

We have H2(M:R) = Hom(H>(M),R), so think of
w as a homomorphism w: H>(M) — R.

The Hurewicz homomorphism (in degree 2), h: mo(M ) —
Ho5(M), is defined by h(a) = aw(1), where a: S2 — M
is a representative of the homotopy class o € m>(M ) and
. € Ho(S?) = Z is a chosen (and fixed) generator.



The image of the Hurewicz homomorphism, Im(h), is then
a subgroup of H>(M ). The notation W‘WQ(M) = O then
means that w: Ho (M) — RvanishesonIm(h) C Ho(M).

Hopf’s Theorem. The classifyingmap f: M — K (w1 (M), 1)
induces isomorphisms with integral coefficients

Hi(M;Z) = Hi(K(m1(M),1),7Z),

Ho(M;Z) -,
Im(hy)

Ho(K(m1(M),1),Z).

Corollary. The condition w|7r2(M) = 0 holds if and only
if there exists wy € H2(K (w1 (M), 1); R) with
f*wr = w where f: M — K(m1 (M), 1).



What does this say about LS category?

Recall the Reformulation of LS Category
Let PX = {~v: I — X|y(0) = zg}. We construct

QX - FX) — - Fu(X)
! 1 1
PX — G1(X) — -+ Gp(X)

po p1d o ped
x ¥ x .. x

where Gj—l—].(X) = GJ(X)UC(F](X)) ~ GJ(X)/FJ(X)

is the mapping cone of the previous fibre inclusion.

Recall: G1(X) ~ QX since PX ~ x.



Also recall:
Definition-Theorem. cat( X ) < n if and only if there is a
(homotopy) section s: X — Gn(X) (i.e. pnos~ 1x).

Definition. For f: Y — X, cat(f) < n if and only if
thereisamap s: Y — Gn(X) such that p, 0 s ~ f.

LS Theorem for Flows. If X is a compact metric space
with a gradient-like flow W onitand f: X — Y is a map,
then

1 4 cat(f) < Rest(W).



Definition. Let u € H*(X; A). The category weight of

u, denoted wgt(u), is the maximum k such that py 1 (u) =
O, wherep;. 1 H*(X; A) = H*(Gr_1(X); A) is the
map induced on cohomology by pr._1: G_1(X) — X.

Properties:

(1.) wgt(u) < cat(X).

(2.) wgt(uv) > wgt(u) + wgt(v).

(3.) If X = K(m,1) and u € H4(X), then
wgt(u) > d.



(4.) If f: X ->Y, ue H*(Y) and f*(u) # 0,
then wagt(f*(u)) > wgt(u).

(5.) If f: X —Y is a map and f*(u) £ 0O,
then cat(f) > wagt(u).

The link between the hard analysis of the Arnold Conjecture
and LS category is the following result used by Floer in his
proof of the weakened form of the conjecture.



Floer-Hofer Theorem. Suppose (M2", w) is a symplec-
tically aspherical manifold and H: M X R — R is a 1-

periodic time-dependent Hamiltonian. Then

(1.) There is a gradient-like flow W on a compact metric

space X oo such that

Rest(W) < Number of contractible 1—periodic
orbits of the flow ® associated to H.

(2.) There is a map 7: Xoo — M that induces an injection

in cohomology (with any coefficients R),

™ H*(M;R) - H"(X~; R).



Recalling that we replaced fixed points by 1-periodic
orbits and using the FH theorem, we have

Fix(¢) > Number of contractible 1—periodic orbits
> Rest(W).

> 1+ cat(7), by LS Thm for Flows.

Also, since 7*(w™) % 0, we have
2n + 1 =dim(M) + 1 > Crit(M) > cat(M) + 1
>cat(7) + 1 >wgt(w”) +1=2n+1
since w = *(wx) for f: M — K(m1(M),1).
Hence, Crit(M) = cat(7) + 1.



Original Arnold Conjecture Theorem (Rudyak-Oprea).
Let (M, w) be a closed symplectically aspherical manifold
and let Crit(M) denote the minimum number of critical
points for any smooth function f: M — R. If ¢: M —
M is a Hamiltonian diffeomorphism and Fix(¢) stands for
the number of fixed points of ¢, then

Fix(¢) > Crit(M).
Proof.

Fix(¢) > Number of contractible 1—periodic orbits
> Rest(WV)
> 1+ cat(7) = Crit(M).




