APPLICATIONS

OF

LUSTERNIK-SCHNIRELMANN CATEGORY AND ITS

GENERALIZATIONS

John Oprea Department of Mathematics Cleveland State University

LECTURE 2: LS CATEGORY, CRITICAL POINTS AND SYMPLECTIC GEOMETRY

Review of Critical Points and Manifold Structure.

Theorem. Let M be a smooth compact manifold and let Crit(M) denote the minimum number of critical points for any smooth function on M. Then

 $1 + \operatorname{cat}(M) \leq \operatorname{Crit}(M) \leq 1 + \dim(M).$

Morse Theory versus LS Cat Theory

Example: The Torus

First, consider a height function on the Torus. There are 4 critical points: a minimum, 2 saddles and a maximum. In local coords, each critical point has a non-singular Hessian matrix, so is non-degenerate.

Such a function is then called a **Morse function**.

Sub-level sets of the height function on the torus.

Let's focus on the sub-level sets near critical points.

Near the Minimum: A thickened 0-cell (i.e. point)

Near the first saddle: Adding a thickened 1-cell

Near the second saddle: Adding a thickened 1-cell

Near the Maximum: A 2-cell (i.e. disk)

Main Theorem of Morse Theory.

Theorem. If $f \colon M \to \mathbb{R}$ is a Morse function, then M has the homotopy type of a space constructed by attaching a cell of dimension k for each critical point of index k.

(The **index** of a critical point is the number of negative eigenvalues of the Hessian there.)

Corollary. If c_i is the number of critical points of index i, then for all $i \ge 0$, dim $(H^i(M; \mathbb{R})) \le c_i$.

Corollary. A Morse function on the torus T^2 has at least 4 critical points. **Proof**. dim $(H^0(T^2; \mathbb{R})) = 1$, dim $(H^1(T^2; \mathbb{R})) = 2$, and dim $(H^2(T^2; \mathbb{R})) = 1$. **Example**. Let the torus T^2 be represented by the unit square $Sq = [0,1] \times [0,1]$ with $(0,y) \sim (1,y)$ and $(x,0) \sim (x,1) \ \forall x, y$. Define a function $G \colon Sq \to \mathbb{R}$:

 $G(x,y) = \sin(\pi x)\sin(\pi y)\sin(\pi (x+y)).$

G has 3 critical points (recall cat $(T^2) = 2$) at (1/3, 1/3), (2/3, 2/3) and (0, 0). The Hessian at (0, 0)is the zero matrix, so G is not a Morse function.

We can see how to reconstruct the torus from this picture too, but we don't just attach one cell at a time. Start with the minimum, then go above the next critical point to get a wedge of two circles. Finally, attach a 2-cell to get the torus.

Here is G on the torus.

Applications of Category to Symplectic Topology

Definition. A manifold (M^{2n}, ω) is symplectic if ω is a closed 2-form such that ω^n is a volume form on M. In particular, when M is closed, $\operatorname{cup}(M) \ge n$.

Examples:

(1.) \mathbb{R}^{2n} with coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ and $\omega = \sum_{i=1}^n dx_i \wedge dy_i.$ (2.) $\mathbb{C}^n \cong \mathbb{R}^{2n}.$ (3.) T^{2n} , $T^*(M)$, Kähler manifolds, orientable surfaces.

Symplectic manifolds are the natural framework for Hamiltonian dynamics.

Take a time-dependent Hamiltonian $H: M \times \mathbb{R} \to \mathbb{R}$. In coordinate-free language, each function H_t has an associated vector field X_t with $i_{X_t}\omega = dH_t$. The time-dependent vector field X_t has integral curves (q(t), p(t)) with associated flow $\Phi: M \times \mathbb{R} \to M$; $\Phi((q, p), t) = (q(t), p(t))$, where (q(0), p(0)) = (q, p).

The equality $i_{X_t}\omega = dH_t$ gives **Hamilton's Equations** for the flow,

$$\dot{q}_i = rac{\partial H}{\partial p_i}, \quad \dot{p}_i = -rac{\partial H}{\partial q_i}.$$

Definition. The time-1 map $\phi = \Phi_1 = \Phi(-, 1)$ of the flow determined by a time-dependent Hamiltonian is called a *Hamiltonian diffeomorphism*.

Example. Rotation of the torus about its axis is not a Hamiltonian diffeomorphism (because it does not have a fixed point).

The Arnold Conjecture.

If $\phi \colon M \to M$ is a Hamiltonian diffeomorphism on a closed symplectic manifold (M, ω) and $\mathsf{Fix}(\phi)$ stands for the number of fixed points of ϕ , then

 $Fix(\phi) \ge Crit(M).$

The Hamiltonian diffeomorphism can be replaced by a 1periodic flow and the fixed points can be replaced by the 1periodic solutions of the associated Hamilton equations. These are critical points of the following *action functional* on (contractible) loops u in M (i.e. contractible u: $S^1 \rightarrow M$):

$$A_H(u) = -\int_{D^2} \widetilde{u}^* \omega - \int_{S^1} H_t(u(t)) dt$$

$$\widetilde{u}^* D^2 \to M \text{ is an extension to } D^2 \text{ of the}$$

where $\widetilde{u}: D^2 \to M$ is an extension to D^2 of the loop $u: S^1 \to M$ using u's contractibility.

The important thing to notice is that the functional is *not well defined*! Different extensions to the disk can give different results --- unless

$$\omega|_{\pi_2(M)} = 0.$$

Geometrically, this is saying that

$$\int_{S^2} g^* \omega = 0$$

for all $g: S^2 \to M$. Pasting \tilde{u} and \hat{u} together along S^1 gives a map $g: S^2 \to M$ with

$$0 = \int_{S^2} g^* \omega = \int_{D^2} \tilde{u}^* \omega - \int_{D^2} \hat{u}^* \omega,$$

So A_H is well-defined.

Floer used this functional to prove a weak version of the Arnold Conjecture:

Theorem. If $\phi \colon M \to M$ is a Hamiltonian diffeomorphism, then

$$\mathsf{Fix}(\phi) \ge 1 + \mathsf{cup}_{\mathbb{Z}_2}(M).$$

Definition. (M^{2n}, ω) is symplectically aspherical if

$$\omega|_{\pi_2(M)} = 0.$$

Homotopy Interpretation:

We have $H^2(M; \mathbb{R}) \cong \mathsf{Hom}(H_2(M), \mathbb{R})$, so think of ω as a homomorphism $\omega: H_2(M) \to \mathbb{R}$.

The Hurewicz homomorphism (in degree 2), $h: \pi_2(M) \to H_2(M)$, is defined by $h(\alpha) = \alpha_*(\iota)$, where $\alpha: S^2 \to M$ is a representative of the homotopy class $\alpha \in \pi_2(M)$ and $\iota \in H_2(S^2) \cong \mathbb{Z}$ is a chosen (and fixed) generator. The image of the Hurewicz homomorphism, $\operatorname{Im}(h)$, is then a subgroup of $H_2(M)$. The notation $\omega|_{\pi_2(M)} = 0$ then means that $\omega: H_2(M) \to \mathbb{R}$ vanishes on $\operatorname{Im}(h) \subseteq H_2(M)$. **Hopf's Theorem**. The classifying map $f: M \to K(\pi_1(M), 1)$ induces isomorphisms with integral coefficients

 $H_1(M;\mathbb{Z}) \cong H_1(K(\pi_1(M),1);\mathbb{Z}),$

$$\frac{H_2(M;\mathbb{Z})}{\operatorname{Im}(h_2)} \cong H_2(K(\pi_1(M),1);\mathbb{Z}).$$

Corollary. The condition $\omega|_{\pi_2(M)} = 0$ holds if and only if there exists $\omega_{\pi} \in H^2(K(\pi_1(M), 1); \mathbb{R})$ with $f^*\omega_{\pi} = \omega$ where $f: M \to K(\pi_1(M), 1)$. What does this say about LS category?

Recall the Reformulation of LS Category

Let $PX = \{\gamma \colon I \to X | \gamma(0) = x_0\}$. We construct

where $G_{j+1}(X) = G_j(X) \cup C(F_j(X)) \simeq G_j(X)/F_j(X)$ is the mapping cone of the previous fibre inclusion.

Recall: $G_1(X) \simeq \Sigma \Omega X$ since $PX \simeq *$.

Also recall:

Definition-Theorem. $cat(X) \leq n$ if and only if there is a (homotopy) section $s \colon X \to G_n(X)$ (i.e. $p_n \circ s \simeq 1_X$). **Definition**. For $f \colon Y \to X$, $cat(f) \leq n$ if and only if there is a map $s \colon Y \to G_n(X)$ such that $p_n \circ s \simeq f$.

LS Theorem for Flows. If X is a compact metric space with a gradient-like flow Ψ on it and $f \colon X \to Y$ is a map, then

$$1 + \operatorname{cat}(f) \leq \operatorname{Rest}(\Psi).$$

Definition. Let $u \in H^*(X; A)$. The category weight of u, denoted wgt(u), is the maximum k such that $p_{k-1}^*(u) = 0$, where $p_{k-1}^* \colon H^*(X; A) \to H^*(G_{k-1}(X); A)$ is the map induced on cohomology by $p_{k-1} \colon G_{k-1}(X) \to X$.

Properties:

(1.) $wgt(u) \leq cat(X)$. (2.) $wgt(uv) \geq wgt(u) + wgt(v)$. (3.) If $X = K(\pi, 1)$ and $u \in H^d(X)$, then $wgt(u) \geq d$. (4.) If $f \colon X \to Y$, $u \in H^*(Y)$ and $f^*(u) \neq 0$, then wgt $(f^*(u)) \ge wgt(u)$.

(5.) If $f: X \to Y$ is a map and $f^*(u) \neq 0$, then $cat(f) \ge wgt(u)$.

The link between the hard analysis of the Arnold Conjecture and LS category is the following result used by Floer in his proof of the weakened form of the conjecture. **Floer-Hofer Theorem**. Suppose (M^{2n}, ω) is a symplectically aspherical manifold and $H: M \times \mathbb{R} \to \mathbb{R}$ is a 1-periodic time-dependent Hamiltonian. Then

(1.) There is a gradient-like flow Ψ on a compact metric space X_{∞} such that

Rest(Ψ) \leq Number of contractible 1-periodic orbits of the flow Φ associated to H.

(2.) There is a map $\tau: X_{\infty} \to M$ that induces an injection in cohomology (with any coefficients R), $\tau^*: H^*(M; R) \to H^*(X_{\infty}; R)$. Recalling that we replaced fixed points by 1-periodic orbits and using the FH theorem, we have

 $Fix(\phi) \ge Number of contractible 1-periodic orbits$

 $\geq \mathsf{Rest}(\Psi).$

 \geq 1 + cat(au), by LS Thm for Flows.

Also, since $au^*(\omega^n)
eq 0$, we have

 $2n + 1 = \dim(M) + 1 \ge \operatorname{Crit}(M) \ge \operatorname{cat}(M) + 1$

 $\geq \operatorname{cat}(\tau) + 1 \geq \operatorname{wgt}(\omega^n) + 1 = 2n + 1$

since $\omega = f^*(\omega_\pi)$ for $f \colon M \to K(\pi_1(M), 1)$.

Hence, $Crit(M) = cat(\tau) + 1$.

Original Arnold Conjecture Theorem (Rudyak-Oprea). Let (M, ω) be a closed symplectically aspherical manifold and let Crit(M) denote the minimum number of critical points for any smooth function $f: M \to \mathbb{R}$. If $\phi: M \to$ M is a Hamiltonian diffeomorphism and $Fix(\phi)$ stands for the number of fixed points of ϕ , then

 $Fix(\phi) \ge Crit(M).$

Proof.

 $\mathsf{Fix}(\phi) \ge \mathsf{Number} ext{ of contractible 1-periodic orbits}$ $\ge \mathsf{Rest}(\Psi)$ $\ge 1 + \mathsf{cat}(au) = \mathsf{Crit}(M).$