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Motivation

Theory of visible actions on complex manifolds,
introduced by T. Kobayashi
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Visible action

.
Definition (Visible action)..

.

Let G be a Lie gp, X a cpx mfd. We say G↷ X is
strongly visible if the following hold.

1. ∃S ⊂ X s.t. X′ := G · S is open in X.

2. ∃σ : X′ → X′ an anti-holo. diffeo. s.t.
σ|S = idS and σ(G · x) ⊂ G · x ∀x ∈ X′.
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Visible action

Aim: Uniform treatment of multiplicity-free (M.F.)
representations of Lie groups
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Multiplicity-free representation

.
Definition (M.F. representation)..

.

Let G be a loc. cpt gp, V a unitary rep’n of G.
We say V is M.F. if EndG(V) is commutative.

If dimC(V) is finite,

V is M.F. ⇔ V =
∑
π∈Ĝ

mπVπ, mπ ≤ 1 (∀π).

In general,

V is M.F. ⇔ V =
∫

Ĝ
mπVπdµ,mπ ≤ 1 (a.e. π).

Visible action{ M.F. rep’n
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mπVπ, mπ ≤ 1 (∀π).

In general,

V is M.F. ⇔ V =
∫

Ĝ
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Propagation theorem of M. F. property

.
Theorem (Kobayashi (’13))
..

.

G: Lie gp,
W → X: holo. Hermitian G-vector bd’l,
V: unitary rep’n of G.

V is M.F. if the following hold.

1. There exists a G-embedding V ↪→ O(X,W).

2. The G-action G↷ X is strongly visible.

3. The isotropy rep’n Gx ↷Wx (x ∈ S) is M.F.
(+some compatibility conditions on σ)

“Propagation theorem of M.F. property”
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Propagation theorem of M. F. property

In the statement of the propagation theorem, we
do not need to assume that

G is compact, reductive,...

V is of finite dim’l, discretely
decomposable,...or

X is cpt.
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Multiplicity-free representation

.
Example (M.F. representation)..

.

1. G: semisimple Lie gp,
K: max. cpt subgp.

L2(G/K) is M.F.

The G-action G↷ GC/KC is strongly visible
(Kobayashi (’05)).

There exists a G-embedding L2(G/K) ↪→ O(U)
(Krötz–Stanton (’05)).
Here U ⊂ GC/KC is the complex crown of G/K
(Akhiezer–Gindikin (’90)).
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Multiplicity-free representation

.
Example (M.F. representation)..

.

2. G: simple gp of Hermitian type,
H: symmetric subgroup (H = Gτ, τ2 = idG),
π: unitary highest rep’n of scalar type.

The restriction π ↓H is M.F.

π can be realized in O(G/K,L).

The visibility of H ↷ G/K (Kobayashi (’07))
follows from the Cartan decomposition in the
symmetric setting G = HAK .
(Flensted-Jensen (’78), Hoogenboom (’83),
T. Matsuki (’95, ’97).)
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Cartan decomposition

The Cartan decomposition G = KAK was
introduced by É. Cartan (’27).
.
Example..

.

G = GL(n,R), K = O(n) = Gτ (τ(g) =Tg−1),
A =diag(n,R)>0.

∀g ∈ G, ∃k ∈ K, ∃x ∈Symm(n,R)>0 s.t. g = kx.
∃h ∈ K, ∃a ∈ A s.t. x = hah−1.

Hence g = khah−1 ∈ KAK.
This means G = KAK.

For any reductive group G and its symmetric cpt
subgp K = Gτ, we have G = KAK with A an
abelian subgp.
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Multiplicity-free representation

.
Example (M.F. representation)..

.

3. G: simple gp of Herm. type,
N: maximal unipotent subgp,
π: unitary highest rep’n of scalar type.

The restriction π ↓N is M.F.

π can be embedded into O(G/K,L).

The visibility of N ↷ G/K (Kobayashi’05)
follows from the Iwasawa decomposition
G = NAK.
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Classification of visible action

Let (G, K) be a Herm. sym. pair, (G, H) a sym.
pair. Then H ↷ G/K is strongly visible
(Kobayashi (’07)).

Let (GC,V) be a linear M.F. space of a cpx.
reductive alg. gp, G its cpt real form. Then
G↷ V is strongly visible (A. Sasaki (’09,’11)).
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Classification of visible action

Let GC/HC be one of the following spherical
varieties.

SL(2n + 1,C)/Sp(n,C),

SO(2n + 1,C)/GL(n,C),

Sp(n,C)/(C∗ × Sp(n − 1,C)),

SO(8,C)/G2(C)

Then the action G↷ GC/HC of a cpt real form
G is strongly visible. (Sasaki (’11-’13)).
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Spherical variety

GC: cpx reductive alg. gp, B: Borel subgp
(GC = GL(n,C), B = {upper triangular matrices}),
X: cpx alg. variety with GC-action.

GC ↷ X is spherical if B has an open orbit on X.
Rem: Any cpx symmetric space
(e.g. GL(n,C)/(GL(p,C) ×GL(q,C))) is spherical.
.
Fact (c.f. J. Wolf’s book (’07))..

.

If (G, H) is a reductive Gel’fand pair, GC/HC is
spherical.

Exa: (G, H) = (GL(n,R),O(n)), (O(n),O(n − 1)),...
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Classification of visible action

Let G = U(n), L and H its Levi subgps.

Kobayashi (’07) classified visible actions on
generalized flag varieties of type A, i.e., triples
(G, L, H) s.t. one of (equivalently, all of) the
following actions is strongly visible.

L ↷ G/H, H ↷ G/L, diag(G)↷ (G×G)/(H×L)

• A pioneering work on L\G/H in non-symmetric
setting.
• L\G/H in the symmetric case is well-studied
by Flensted-Jensen (’78), Hoogenboom (’83),
T. Matsuki (’95, ’97).
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Generalized Cartan decomposition

.
Definition (Generalized Cartan decomposition)..

.

G: conn. cpt Lie gp,
T: maximal torus of G,
L, H: Levi subgps containing T,
σ: Chevalley–Weyl involution of G w.r.t. T.
(σ2 = idG and σ(t) = t−1 ∀t ∈ T.)

If there exists B ⊂ Gσ s.t.

L × B × H → G is surjective,

then we call G = LBH a generalized Cartan
decomposition.
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Generalized Cartan decomposition

G: conn. cpt Lie gp,
T: maximal torus of G,
L, H: Levi subgps containing T,
σ: Chevalley–Weyl involution of G w.r.t. T.
σ acts on three cpx mfds

G/L, G/H, (G× G)/(L × H)

as anti-holomorphic diffeomorphisms.

Suppose that we have G = LBH for some
B ⊂ Gσ.
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Kobayashi’s triunity principle

Suppose that G = LBH holds.

Then we obtain three strongly visible actions.

H ↷ G/L, L ↷ G/H, diag(G)↷ (G×G)/(L×H).

Furthermore, we can obtain three M.F. theorems
by the propagation theorem.

IndG
L
χL ↓H , IndG

H
χH ↓L, IndG

L
χL ⊗ IndG

H
χH .

Here χL and χH are unitary characters of L and H.
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Classification of visible action

.
Theorem (-T (’12))..

.

G: conn. cpt Lie gp,
T: maximal torus,
L, H: Levi subgps containing T,
σ: Chevalley–Weyl involution w.r.t. T.

We have a classification of a triple (G, L, H) s.t.
L × B × H → G is surjective for a subset B of Gσ.
.
Remark..

.

In the type A case (G = U(n)), the theorem is due
to Kobayashi (’07).
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By the theorem, we can obtain a classification of
visible actions on flag varieties and find that

M.F.⇔ visible⇔ spherical.

More precisely:
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Classification of visible action

.
Corollary (-T (’12))
..

.

G :conn. cpt Lie gp,
T :max torus,
L, H: Levi subgps containing T,
σ: Chevalley–Weyl involution w.r.t. T.
Then the following 10 conditions are equivalent.

∃B ⊂ Gσ s.t. G = LBH .

H acts on G/L strongly visibly.

L acts on G/H strongly visibly.

diag(G) acts on (G× G)/(L × H) strongly
visibly.
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Classification of visible action

.
Corollary (continued)
..

.

The restriction of IndG
L
χL to H is M.F.

The restriction of IndG
H
χH to L is M.F.

IndG
L
χL⊗IndG

H
χH is M.F.

Yuichiro Tanaka Visible actions on flag varieties



Classification of visible action

.
Corollary (continued)
..
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Classification of visible action

.
Corollary (continued)
..

.

The restriction of IndG
L
χL to H is M.F.

The restriction of IndG
H
χH to L is M.F.

IndG
L
χL⊗IndG

H
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Classification of visible action

.
Corollary (continued)
..

.

G/L ≃ GC/PL is HC-spherical.

G/H ≃ GC/PH is LC-spherical.

(G× G)/(L × H) ≃ (GC × GC)/(PL × PH) is
diag(GC)-spherical.

Here, spherical⇔ Borel subgp has an open orbit.
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Corollary (continued)
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Classification of visible action

.
Corollary (continued)
..

.

G/L ≃ GC/PL is HC-spherical.

G/H ≃ GC/PH is LC-spherical.

(G× G)/(L × H) ≃ (GC × GC)/(PL × PH) is
diag(GC)-spherical.

Here, spherical⇔ Borel subgp has an open orbit.
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Remark

.
Remark..

.

For the type A case (G = U(n)), this corollary
is due to Kobayashi (’07).

The equivalence: M.F.⇔ spherical was proved
by Vinberg–Kimel’fel’d (’78).

Classification of M.F. tensor product rep’ns in
the maximal parabolic setting was given by
Littelmann (’94).

Classification of M.F. tensor product rep’ns in
the general setting was completed by
Stembridge (’03) by a combinatorial method.
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Summary

Visible action

We have a classification of visible actions on
generalized flag varieties for any type.

Regarding reductive group-actions on
generalized flag varieties, we have

M.F.⇔ visible⇔ spherical.
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Kobayashi’s triunity principle (written again)

Suppose that G = LBH holds.
Then we obtain three strongly visible actions.

H ↷ G/L, L ↷ G/H, diag(G)↷ (G×G)/(L×H).

Furthermore, we can obtain three M.F. theorems
by the propagation theorem.

IndG
L
χL ↓H , IndG

H
χH ↓L, IndG

L
χL ⊗ IndG

H
χH .

Here χL and χH are unitary characters of L and H.
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Motivation

.
Theorem (Kobayashi (’13) (written again))
..

.

G: Lie gp,
W → X: holo. Hermitian G-vector bd’l,
V: unitary rep’n of G.

V is M.F. if the following hold.

1. There exists a G-embedding V ↪→ O(X,W).

2. The G-action G↷ X is strongly visible.

3. The isotropy rep’n Gx ↷Wx (x ∈ S) is M.F.
(+some compatibility conditions on σ)

“Propagation theorem of M.F. property”
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Motivation

M.F. rep’n
O(X,W)

“Small” M. F. rep’n
Wx

Visible action
G↷ X

Propagation th’moo

������

??
??

??

We can reduce complicated M. F. th’ms to a pair of
data:

visible actions on cpx mfds, and

much simpler M. F. th’ms

(seeds of M. F. rep’ns by Kobayashi).
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Motivation

G: Lie gp, V: M. F. unitary rep’n of G.

Find a visible action G↷ X and a seedWx s.t.
V ↪→ O(X,W).

.
Problem..

.

G: cpt. Lie gp,
V1,V2: irr. rep’s of G with V1 ⊗ V2 M. F.
Find visible actions and seeds for M. F. tensor
products V1 ⊗ V2.
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Classification of visible action

.
Theorem (Kobayashi (’07))
..

.

G = U(n); L, H: Levi subgps of G.
The table gives a classification of (G, L, H)
satisfying one of the equivalent conditions:

L ↷ G/H is strongly visible,

H ↷ G/L is strongly visible,

diag(G)↷ (G× G)/(H × L) is strongly visible.
Table : Visible actions on generalized flag varieties of type A

G L H
U(n) U(n) or U(1)× U(n − 1) arbitrary Levi subgp

U(p) × U(q) U(n1) × U(n2) × U(n3)
min{p, q} ≤ 2 or min{n1, n2, n3} ≤ 1

(p+ q = n1 + n2 + n3 = n).
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Classification of M.F. representation

.
Theorem (Kobayashi (’07))
..

.

For M.F. tensor product rep’ns of U(n), a
classification of seeds is given as follows.

1-dim’l rep’n.

ΛiCn ↓Tn.

SiCn ↓Tn.

V2ϖk ↓U(n1)×U(n2)×U(n3).

Here ϖk (1 ≤ k ≤ n − 1) is a fundamental weight
of U(n).
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Classification of visible action

.
Theorem (-T (’13))..

.

G = SO(N), L, H: Levi subgps of G.
A classification of strongly visible actions
L ↷ G/H, H ↷ G/L, G↷ (G× G)/(L × H) is
given as follows.

Table : Visible action on orthogonal generalized flag varieties

G L H
SO(N) arbitrary Levi subgp

SO(N) U( j) × SO(N − 2 j) U(1)× SO(2N − 2)
U([N/2]) U([N/2]) or ξ(U([N/2]))

(continued on the next page)

α1 α2 α3 αN/2−3αN/2−2

αN/2

αN/2−1

• ⇆ ξ• • • •
•

AAA
A

•}}}}

Figure : Dynkin diagram of type DN/2
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Classification of visible action

.
Theorem (continued)
..

.

Table : Visible actions on orthogonal generalized flag varieties

G L H
U(1)× SO(2n − 2) U( j) × U(n − j)

ξ(U( j) × U(n − j))
U(1)× U(n − 1)
ξ(U(1)× U(n − 1)

SO(2n) U(n) or ξ(U(n)) U(1)× U(1)× SO(2n − 4)
U(2)× SO(2n − 4)
U(3)× SO(2n − 6)

U(4) ξ(U(2)× U(2))
ξ(U(4)) U(2)× U(2)
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Classification of M.F. representation

.
Theorem (-T (’13))..

.

For M.F. tensor product rep’ns of SO(N) (or
Spin(N)), a classification of seeds is given as
follows.

(1) 1-dim’l rep’n.

(2) CN ↓T[N/2] or SpinN ↓T[n/2].

(3) Λi(CN) ↓U( j)×SO(N−2 j).

(4) SpinN ↓{±1,±
√
−1}·Spin(N−2).
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Remark

.
Remark (written again)
..

.

For the type A case (G = U(n)), this corollary
is due to Kobayashi (’07).

The equivalence: M.F.⇔ spherical was proved
by Vinberg–Kimel’fel’d (’78).

Classification of M.F. tensor product rep’ns in
the maximal parabolic setting was given by
Littelmann (’94).

Classification of M.F. tensor product rep’ns in
the general setting was completed by
Stembridge (’03) by a combinatorial method.

Yuichiro Tanaka Visible actions on flag varieties



A classification of M. F. tensor product Vλ1 ⊗ Vλ2 for G = SO(2n + 1).

(i) (λ1, λ2) = (sωn, tωn) or (sω1, tω j) with 1 ≤ j ≤ n and s, t ∈ N.

(ii) λ1 = 0, ω1 or ωn; λ2 is arbitrary.

(iii) λ1 = ωi or 2ωn; λ2 = tω j with 1 ≤ i, j ≤ n and t ∈ N.

(iv) λ1 = ωn + sω j ; λ2 = tω1 with 1 ≤ j ≤ n and s, t ∈ N.

A classification of M. F. tensor product Vλ1 ⊗ Vλ2 for G = SO(2n).

(i’) (λ1, λ2) = (sω1, tω j + uωn−1) or (sω1, tω j + uωn) with
1 ≤ j ≤ n and s, t, u ∈ N,
λ1 = sωn−1 or sωn; λ2 = tω3, tω1 + uω2, tω1 + uωn−1,
tω1 + uωn or tωn−1 + uωn with s, t, u ∈ N, or
λ1 = sω5−ϵ ; λ2 = tω2 + uω2+ϵ with n = 4 and ϵ = 1 or 2.

(ii’) λ1 = 0, ω1, ωn−1 or ωn; λ2 is arbitrary.
(iii’) λ1 = κωi ; λ2 = tω j , where t ∈ N and κ, i, j satisfy one of the

following three conditions.
(iii’-1) κ = 1 and i + j ≤ n.
(iii’-2) κ = 1, 1 ≤ i ≤ n and j = n − 1 or n.
(iii’-3) κ = 2, i = n − 1 or n and 1 ≤ j ≤ n.
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Classification of M.F. representation

.
Theorem (-T (’13))..

.

For M.F. tensor product rep’ns of SO(N) (or
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Summary

Visible action

We have a classification of visible actions on
generalized flag varieties for any type.

Regarding reductive group-actions on
generalized flag varieties, we have

M.F.⇔ visible⇔ spherical

Seed

We have a classification of seeds for M.F.
tensor product rep’ns of U(n) and SO(n).
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Shukran Spasiba

Blagodarya Thank you
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