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Abstract

ABSTRACT:
This report was motivated by a study of beta barrels as a secondary
structure in proteins, using methods from differential geometry and
variational calculus, namely Dirichlet and Willmore-type energies.
We review some historical models of beta sheets and explain why
those models are outdated. We provide an elastic membrane model
for these structures, via a certain ‘Generalized Willmore type
energy’. We study the corresponding Euler-Lagrange, as well as a
specific boundary value problem whose solutions are ‘Generalized
Willmore surfaces of revolution’. We study corresponding solutions
both theoretically and numerically (using COMSOL).
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In biochemistry, biophysics and mathematical biology, secondary
structures represent the main types of three-dimensional geometric
shapes of local segments of biopolymers (e.g., proteins and nucleic
acids (DNA/RNA)). On a finer level, the atomic positions in
three-dimensional space are said to form the tertiary structure.
Secondary structure can be formally defined by the hydrogen bonds
of the biopolymer, as observed in an atomic-resolution structure.
In proteins, the secondary structure is defined by the patterns of
hydrogen bonds between backbone amino and carboxyl groups. In
nucleic acids, the secondary structure is defined by the hydrogen
bonding between the nitrogenous bases.
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The sheet (also -pleated sheet) is the second form of regular
secondary structure in proteins, only somewhat less common than
the alpha helix. Beta sheets consist of beta strands connected
laterally by at least two or three backbone hydrogen bonds, forming
a generally twisted, pleated sheet. The higher-level association of
sheets has been implicated in formation of the protein aggregates
and fibrils observed in many human diseases, notably the
amyloidoses involved in Alzheimer’s disease. In contrast to the
alpha helix, the beta pleated sheet, whose name derives from the
corrugated appearance of the extended polypeptide chain, involves
hydrogen bonds between backbone groups from residues distant
from each other in the linear sequence. In beta sheets, two or more
stands that may be widely separated in the protein sequence are
arranged side by side, with hydrogen bonds between the strands.
The strands can run into the same direction (parallel beta sheet)
or antiparallel to one another; mixed sheets with both parallel and
antiparallel strands are also possible.
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http://www.aacc.org/resourcecenters/TestKnowledge/

MOM/Pages/molecule2008.aspx GFP (green fluorescent protein)
has a typical beta barrel structure. Martin Chalfie, Osamu
Shimomura, and Roger Y. Tsien were awarded the 2008 Nobel
Prize in Chemistry on 10 October 2008 for their discovery and
development of the GFP.
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About the GFP: Isolated from jellyfish; has amino-terminal and
carboxyl-terminal beta-pleated sheet motifs that form a barrel. The
alpha-helical middle portion of the protein, which runs through the barrel,
is the chromophore. Cells genetically modified to express one of the
many different forms of green fluorescent protein remain colored under
ultraviolet light and this feature may be used to study them in an
enormous variety of ways. Thanks to Dr. Binchen Mao and Dr. David
Baker (University of Washington) for this pic. As best-fit math model,
they currently use the one-sheeted hyperboloidal model as being
convenient - in spite of the sheets not being straight lines.
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What is the ’real’ shape of a beta barrel? Or: what is the
best model?

Various existing models and their history

- one sheeted hyperboloid (Salemme, 1983; Laster and
al, PNAS, 1988) - still used by chemists in 2014

- twisted hyperboloid (Strophoid), (Novotny, 1984)

- surface on which strands are viewed as helical sheets
(Znamenskiy, 2000)

-“almost-a-cylinder” (in encyclopedia of biochemistry
and online materials)

- catenoid (Kim and Koh, Bioinformatics, 2006)
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Advantages and disadvantages: while these models may be
‘convenient’, they are too far from the physical and geometric
model of beta barrel. For example:
- the one-sheeted hyperboloidal model assumes the strands are
straight-lines - and they are not!
- the catenoid model assumes H = 0 everywhere, while
experiments show that H is small, but not very small!
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Experimental data sustains our hypothesis that the mean curvature
of beta-barrels (performed by Lasters) is far from being equal to
zero for most or all aminoacids; also, it does not vary much from a
point to another so it may be assumed to lie in an interval in an
interval of type (h-c, h+c), for a sufficiently small constant c.
A = Protein type B = Average mean curvature H C = S.D.
standard deviation of mean curvature Examples:
A). Glicolate-oxydase
B). H = 0.035
C). SD = 0.007
A). Taka-amylase
B). H = 0.035
C). SD = 0.007
A). Aldolase
B). H = 0.035
C). SD = 0.012
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No guessing game: time to model beta barrels as
elastic surfaces!

Different types of energies for different elastic
surfaces :

Poisson & Sophie German - 2kc

∫
M
H2 dS

Willmore -

∫
M

(H2 −K) dS

Helfrich for elastic biomembranes- lipid bilayers and cell

membranes -

∫
M

k

2
(2H − c0)2 + k̄K dS
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Note: c0 is called spontaneous curvature for biomembranes and
spontaneous splay for liquid crystal theory.... A c0 for proteins,
called spontaneaus curvature, will depend on the solvent used!

Question: can we assume c0 = 0? Answer: As a pure
mathematician: yes! As an applied scientist: no.
At first, we shall assume c0 = 0 and also the strain tensor coming
from the backbone structure to be negligible. We may reconsider
later!
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Therefore, we introduce.... the Generalized
Willmore energy functional

Theorem

Assume M is a closed surface in R3. Let Ew be the Generalized
Willmore energy functional

Ew =

∫
M

(kH2 + µ) dS, (1)

where k = 2kc, and kc represents the bending rigidity, while µ is
the surface tension coefficient. Then the Euler-Lagrange equation
of (??) is:

∆H + 2H(H2 −K − ε) = 0 (2)

with ε = µ
k .
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The proof is a 7 page one (even with Einstein summation
conventions). It is based on calculus of variations and classical
differential geometry. It mimics the proof of Willmore equation as
Euler-Lagrange equation for the usual Willmore energy functional.
The additional term coming from surface tension complicates
things but not too much!
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Generalized Willmore (G-W.) surfaces of revolution

Consider the parametrization:

r(x, ϕ) = (x, u(x) cosϕ, u(x) sinϕ)

? L-B:

∆gH =
1

u
√

1 + u′2
d

dx

(
u√

1 + u′2
dH

dx

)
? H:

H =
−u′′

2(1 + u′2)3/2
+

1

2u
√

1 + u′2

? K:

K =
−u′′

u(1 + u′2)2

For details on H and K formulas for surfaces of revolution,
one can consult John Oprea’s books (Differential Geometry
and its Applications; and, Mathematics of Soap Films).
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G-W. for a surface of revolution
Numerical results

d

dx

(
u√

1 + u′2
dH

dx

)
+ 2H

(
(H2 − ε)u

√
1 + u′2 − 2H +

1

u
√

1 + u′2

)
= 0

Numerically compute the profile curve u(x) with the boundary
conditions:

u(±1) = α and H(±1) = 0
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G-W. for a surface of revolution
Numerical results

Case 1: Fixed α

Figure: Mean curvature graphs (left), Profile curve u(x) (right) α = 1.0
and ε = 0 : 0.2 : 1
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G-W. for a surface of revolution
Numerical results

Case 2: Fixed ε

Figure: Mean curvature graphs (left), Profile curve u(x) (right) ε = 0.2
and α = 0.2 : 0.2 : 1 and
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G-W. for a surface of revolution
Numerical results

Interesting cases

Figure: Variation of mean curvature for different α values with fixed
ε = 0.2 value.
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G-W. for a surface of revolution
Numerical results

Interesting cases

Figure: Variation of mean curvature for different α values (see values in
the color code legend) with fixed ε = 0.0, 0.1.
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G-W. for a surface of revolution
Numerical results

Interesting cases

Figure: Variation of mean curvature for different α values with
ε = 0.5, 0.6 values.
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G-W. for a surface of revolution
Numerical results

Interesting cases

Figure: Variation of mean curvature for different α values with
ε = 0.9, 1.0 values.
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G-W. for a surface of revolution
Numerical results

ε α∗ ε α∗

0.0

1.50 < α∗ < 1.55

0.6 1.60 < α∗ < 1.65
0.1 0.7 1.65 < α∗ < 1.70
0.2 0.8 1.70 < α∗ < 1.75
0.3 0.9 1.75 < α∗ < 1.80

0.4
1.55 < α∗ < 1.60

1.0 1.80 < α∗ < 1.85
0.5

Table: Experimentally looking for α∗ values corresponding to minimal
case H = 0... Interval of existence of α∗ with variation of ε values.
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G-W. for a surface of revolution
Numerical results

Catenoid !

Figure: α = 1.8 and ε = 0 : 0.2 : 1
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Generalized Willmore Surfaces of Revolution

Theorem

Consider a Cartesian system of axes of coordinates x, y, z in R3

and the circles C1, C2 of the same radius α, centered at (−1, 0, 0)
and (1, 0, 0), situated in planes orthogonal to the x-axis.
Consider all regular surfaces of revolution of annular-type with
boundary C1 ∪ C2. Assume that among all these surfaces, there
exists at least a surface M minimizing the generalized Willmore
energy. This surface in assumed embedded in R3 and admitting
the representation

M := {x, u(x) cosϕ, u(x) sinϕ} : x ∈ [−1, 1], ϕ ∈ R

with some function u ∈ C4([−1, 1], (0,∞)).
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Theorem

(continuation) Then, the surface M is a solution of the following
boundary value problem:

∆H + 2H(H2 −K − ε) = 0 on Mwhere ε =
µ

k
(3)

∂M = C1 ∪ C2, H = 0 on ∂M, u(±1) = α (4)

Moreover: there exists a positive value α∗(ε) such that

(a) If 0 < α < α∗, then G.W.E. admits NO minimal solution, that
is, any solution satisfies: H = 0 on ∂M and H 6= 0 on
M \ (∂M).

(b) If α = α∗, then G.W.E. admits exactly one minimal solution
(a unique catenoid that exclusively depends on α∗).

(c) If α > α∗, then G.W.E admits exactly two minimal solutions
(two catenoids whose equations exclusively depend on α).
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Proof. We deduced the Euler-Lagrange equation based on the
generalized Willmore energy, using standard methods of Calculus of
Variations and Differential Geometry. The last part of the theorem
follows immediately by studying the solutions of the equation
cosh t/t = α. It is easy to prove that in the case a)., this equation
has no solutions, in the case b)., this equation has a unique
solutions, and for the case c)., here are two distinct solutions,
corresponding to the two catenoids of type y = (cosh(tx))/t.
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Solutions of cosh t
t = α

Case a: α = 1.0

No solutions!

Case b: α ≈ 1.5089

Exactly one solution! t ≈ 1.2

y = (cosh(tx))/t
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Solutions of cosh t
t = α

Case c: α = 2.0

Two solutions!

t ≈ 0.5894

t ≈ 2.1268
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Q: And what if we work with the generalized Willmore energy
WHILE considering the spontaneous curvature c0 as being
non-negligible, and while the strain tensor due to a back-bone
atomic structure (such as in beta barrels) is not zero?
A: Then we obtain a slightly modified generalized Willmore
equation:
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The constant c0 highly depends on the solvent that is used for the
protein molecule. On the other hand, the backbone (consisting of
molecular chains of atoms) imposes an additional “backbone strain
tensor” which can be represented by a 2× 2 diagonal matrix A.
Hence, the strain tensor changes the Willmore-type equation into
an equation of a similar form (which we will call Willmore-Helfrich
(W-H) equation for secondary structures in proteins). In isothermic
coordinates, this equation becomes:

k∆g(2H)−2λH+k(2H−c0)(2H2−c0H−2K)+l(a11k1+a22k2) = 0,
(5)
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If the strain tensor matrix is a constant multiple of the identity
matrix, then we can rewrite our equation as:

∆g(H)− (H − c0)(2(H2 −K)− c0H) + (aH − b) = 0, (6)

where the additional constants a, b depend on the magnitude of
the strain tensor for the backbone structure, as well as two
different bending rigidity constants. Remark again that if a, b are
negligible, then H = c0 is a trivial solution of the generalized
Willmore equation. Also remark that CMC solutions are possible
even if a, b constants are non-zero.
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Until now, we saw cases when generalized Willmore surfaces of
revolution (modeling beta barrels) were either catenoids, or
generalized Willmore surfaces, non-minimal. This happened since
we assumed c0 = 0 and negligible backbone strain tensor.
New Case: As we observed before, rotationally symmetric solutions
of the Generalized Willmore equation may be CMC surfaces for
some choices of parameters. These choices may include some
appropriately chosen a, b, or a, b negligible and c0 non-negligible.
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CMC surfaces of revolution (also called Delaunay surfaces)

Constant mean curvature surfaces of revolution were
obtained by rotating the roulettes of the conics

Parabola

Ellipse

Hyperbola
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Delaunay surfaces

Catenary → Catenoid (H = 0)

www.mathcurve.com/courbes2d/delaunay/delaunay.shtml

http://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/catenoid.html
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Delaunay surfaces

Surfaces of revolution with CMC that are obtained by rotating the
roulettes of the conics

Undulary → Unduloid (H 6= 0)

www.mathcurve.com/courbes2d/delaunay/delaunay.shtml

http://virtualmathmuseum.org/Surface/unduloid/unduloid.html
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Delaunay surfaces

Parametrization of an undulary:

x(t) =
a2 − ε2

a

t∫
0

du

(1 + ε
a cosu)

√
1− ε2

a2
cos2 u

,

y(t) =
√
a2 − ε2

√
a− ε cos t

a+ ε cos t
.

For an ellipse with arc length 2h, we have

2h =

2π∫
0

√
a2 − ε2 cos2 θ dθ,

a(ε, h) =
h

2π

(
1 +

√
1 +

ε2π2

h2

)
=
h

π
+
ε2

4

π

h
+O

(
ε3π3

h3

)
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Figure: Undulary profiles with their limiting cases: sphere, and right
cylinder
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Figure: Profiles of an unduloidal beta barrel for different radii α
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