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Abstract

e The so-called Willmore functional assigns to each surface in the three dimen-
sional Euclidean space its total squared mean curvature. The surfaces providing
local extrema to this functional are referred to as the Willmore surfaces. The
mean and Gaussian curvatures of these surfaces obey the corresponding Euler-
Lagrange equation, which is usually called the Willmore equation.

e The present work is concerned with a particular class of axially symmetric
solutions to the Willmore equation. Not long ago, it was established that there
is a special class of axially symmetric Willmore surfaces, regarded in Monge
representation, whose profile curve height functions satisfy a one-parameter
family of second-order nonlinear ordinary differential equations.

e In this work we give explicit expressions for the foregoing profile curves in
terms of Jacobi elliptic functions and integrals and show that the corresponding
Willmore surfaces are nodoid-like.
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Willmore Surfaces

Willmore Functional

e The so-called Willmore functional (energy)
W= / H?*dA (1)
s

assigns to each surface S in the three-dimensional Euclidean space R? its total
squared mean curvature WW. Here, H is the local mean curvature the surface S,
dA is the area element on the surface S.

e This functional has drawn much attention after [Willmore, 1965] where T. J.
Willmore proposed to study the surfaces providing extremum to the functional
(1), which are usually referred to as the Willmore surfaces.

e This interest is related to the so-called Willmore conjecture [Willmore, 1965]
concerning the global problem of minimizing of (1) among the class of immersed
tori: the integral of the square of the mean curvature of a torus immersed in R3
is at least 2%, which have been proved recently [Marques & Neves, 2012].

e The Willmore surfaces are of great importance for the conformal geometry be-
cause of the invariance of Willmore functional (energy) under the 10-parameter
group of special conformal transformations in R3.
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Willmore Surfaces

Willmore Equation

e The Euler-Lagrange equation associated with the Willmore functional, which
is further referred to as the Willmore equation, has the form

AH+2(H?* - K)H =0 (2)

A is the Laplace-Beltrami operator on & and K is its Gaussian curvature.

e According to [Thomsen, 1923], Schadow was the first who derived Eq. (2) in
1922 as the Euler-Lagrange equation for the variational problem

[ m - ymyan 3)
S

where 1/R; and 1/Rs are the two principal curvatures of the surface S, which
was studied by Thomsen in connection with the conformal geometry.

e Actually, according to [Nitsche: 1989, 1993] the history of this variational
problem can be traced about two centuries back to the memoir by Siméon Denis
[Poisson, 1812] and that by Marie-Sophie [Germain, 1821] where the functional
(1) was proposed as the bending energy of elastic shells.
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Willmore Surfaces

Related Functionals and Equations

e In 2D string theory and 2D gravity based on the [Polyakov, 1981] integral
over surfaces, the functional (1) is known as the Polyakov’s extrinsic action.

e In mathematical biology it appears in the [Helfrich,1973] model as one of the
terms that contribute to the energy of cell membranes

fb:/ Bkc(2H+co)2+kGK] dA—i—/\/dA—i—p/dV (4)
S S

Here k. and kg are real constants representing the bending and Gaussian rigidity
of the membrane, cq is the spontaneous curvature, \ is the tensile stress, p is the
pressure, V is the enclosed volume. The corresponding Euler-Lagrange equation
derived by [Ou-Yang and Helfrich, 1989] reads

AH + (2H + co) (H? = (co/2)H — K) — (\ke)H = —p/(2k). (5)

e The Helfrich functional (4) and the corresponding Euler-Lagrange equation
(5) play an important role in the continuum theory of carbon nano structures,
see [Ou-Yang et al.: 1997, 2002, 2008 ], [Mladenov et al., 2013].
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Symmetry Groups of the Willmore Equation

Willmore Equation in Monge Representations

o Let (21,22 2%) be a fixed right-handed rectangular Cartesian coordinate sys-
tem in the 3-dimensional Euclidean space R? in which a surface S is immersed,
and let this surface be given in Monge representations, i.e. by the equation

S:ad=w',2?), (#',2%) e QCR? (6)

where w : R2 — R is a single-valued and smooth function possessing as many
derivatives as may be required on the domain €. Let us take z', 22 to serve as
Gaussian coordinates on the surface S.

e Then the components of the first g.g, second b,z fundamental tensor, and
the alternating tensor e of S are given by the expressions

1/2

Gap = Oap + Waws, bag =g was, =g (7)

g = det(gap) = 1+ (w1)* + (w2)” (8)

0qp is the Kronecker delta symbol, e is the alternating symbol and Way...on
(k = 1,2,...) denote the k-th order partial derivatives of the function w with
respect to the variables ! and z2.
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Symmetry Groups of the Willmore Equation

Willmore Equation in Monge Representations

e The mean H and Gaussian K curvatures of the surface S are given as follows

1. 1 5 a oy
H = §g ﬁbag = §g 3/2 (5 ﬁwag +e Meﬁ waﬂwuwl/) (9>
K= Teongovy b oL o—20u 60
—58 £ afB W—ig € e WapWpy (1())
where
g8 = g1 (5aﬂ + ea“eﬂuwﬂwy) (11)

are the contravariant components of the first fundamental tensor.
e The Willmore functional (1) reads

1
W = // Ldz'dz?, L= 19_5/2 ((5°‘ﬁwa5 + eo‘“eB”Ql)agu;Hu;l,)2 (12)
Q

e Here and in what follows, Greek indices have the range 1, 2, and the usual
summation convention over a repeated index is employed.
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Symmetry Groups of the Willmore Equation

Willmore Equation in Monge Representations

e The application of the Euler operator

0 0 0
E = Eri D”—awﬂ +D“DV—8wW - (13)
D —i—i-w i—i—w i+w i_ﬁrw L‘f’
¢ 9ao *ow a”@wu “’“’aww T H o

on the Lagrangian density L of the Willmore functional leads, after taking into
account

92 P P
_ _aB —1/2. 9 (172 a8\ 9
A=9" s 79 g (9 9 )axﬁ

to the Willmore equation (2), which takes the form
E=(1/2)g7 29 g" wo g, + @ (21, T2, w, w1, . . ., Wa2) = 0 (14)

where ® (z1, T2, w, w1, ..., wsee) is a differential function of the independent and
dependent variables and the derivatives of the dependent variable up to third
order.
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Symmetry Groups of the Willmore Equation

The Group of Special Conformal Transformations in R3

translations 9 P 9
NEET T VT
rotations
ool 20 a0 0 20 O
LT 2 T B ST 8w  Yartt VT  aw Vo2
dilatation
vi=a'—5 + 2i—|—w 0
ox! 0z 0
inversions
0 0 0
vs = [(2')* = (%) — w?] Fsias 2:1:1332@ + 2:z:1w8—w
0 0 0
Vg = 2{1}21‘1% + [(1‘2)2 — (1‘1)2 — ’U.)2] @ + 2{1}2’11.)8—20
1o} 0 0
Vip = 256120@ + 2x2ww + [w? = (%)% = (2")?] S

sil, Peter, Emilian & Ivailo Nodoid-Like Willmore Surfaces GIQ2014, Varna

10 / 36



Symmetry Groups of the Willmore Equation

The Group of Special Conformal Transformations in R3

e The following Propositions [Vassilev & Mladenov, 2004] clarify the invariance
properties of the Willmore equation relative to one-parameter Lie groups of
point transformations of R3. The coordinates (z!, 2, w) on R? represent the
involved independent and dependent variables z', 22 and w, respectively. The

results are obtained using Lie infinitesimal technique.

Proposition 1. The 10-parameter Lie group Gscr of special conformal trans-
formations in R® (whose basic generators are v;, j = 1...10) is the largest
group of point (geometric) transformations of the involved independent and
dependent variables that a generic equation of form (14) could admit.

Proposition 2. In Monge representation, the Willmore equation admits all
the transformations of the group Gsor.

Remark. All vector fields v;, j = 1,...,10 are variational symmetries of the
Willmore equation, i.e., infinitesimal divergence symmetries of the Willmore
functional. Hence, Noether’s theorem implies the existence of ten linearly inde-
pendent conservation laws that hold on the smooth solutions of the Willmore
equation.
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Symmetry Groups of the Willmore Equation

Group-Invariant Solutions

e Once a group G is found to be a symmetry group of a given differential
equation, it is possible to look for the so-called group-invariant (G-invariant)
solutions of this equation — the solutions, which are invariant under the trans-
formations of the symmetry group G.

e The main advantage that one can gain when looking for this kind of particular
solutions of the given differential equation consists in the fact that each group-
invariant solution is determined by a reduced equation obtained by a symmetry
reduction of the original one and involving less independent variables than the
latter.

e Let G (v) be a one parameter group generated by a vector field v belonging
to the Lie algebra Lgcr, that is v is a linear combination of the vector fields
v, j=1...10,

10
v = Z Cjvj (15)
j=1

where ¢j, 7 = 1...10, are real numbers — the components of the vector field v
with respect to the basic vector fields v;.
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Symmetry Groups of the Willmore Equation

Group-Invariant Solutions

e Then, G (v) is a symmetry group of the Willmore equation and so one can
look for the G (v)-invariant solutions of this equation. For that purpose, first
one should find a complete set of functionally independent invariants of the
group G (v). In the present case this is a set of two functionally independent

functions I, (acl, z2, w) such that

vl, =0
the vector field v being regarded here as an operator acting on the functions

¢ : R?® = R. Then, if the necessary condition for the existence of group invariant
solutions is satisfied, which in the present case reads

rank (%) =1 (16)

assuming that 0I; /0w # 0, one can seek the G (v)-invariant solutions in the
form

UZU(S), Uzll, S:IQ. (17)
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Axisymmetric Solutions of the Willmore Equation

Reduced Equation

e The rotationally-invariant solutions of the Willmore equation (2) are sought
in the form

w = w(r), r=+/(z)? + (22)2.

After such a symmetry reduction, this equation reads

R = (2 7'3 +4 7'3 ’UJE + 2 7'3 'wﬁ)wrmﬂr
+(4r* 4872 w? 4+ 4r* wt — 207 wewr, — 2072 WEWey ) Wrpy
—5r2 (3w, + 3w? + rwy, — 67 wiw,, w2,

+(rwl —2r — 3rw)w,, + 2w, + Twd +9wd + 5w! +w) =0

where

dw Pw dBw d*w
wT:E’ wrrzmy wrrrzwa 'w'rrrr:m'
e Simultaneously, the mean and Gaussian curvatures take the forms
1 rwp, + wi’ + w, 1 wprw,
T or T . oN3/2 T L o2 (18)
2 (14 wp)” r(1+w?)
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Axisymmetric Solutions of the Willmore Equation

An Intermediate Integral of the Reduced Equation

e Consider the following normal system of two ordinary differential equations

((ii—l::v, dv—:l:l (v*+1) \/1124-20.1\/02—1—1 (19)

dr  Tr

which is equivalent to the single second-order equation

d?w 1 dw dw? dw

e [ ==n | =) 42 =) 1. 2

dr? r[(dr) + ] <dr> e <dr> + (20)
e Each solution of system (19) or equation (20) is a solution of the reduced

Willmore equation R = 0, see [Vassilev & Mladenov, 2004]. In this way, we
have determined a special class of axially symmetric Willmore surfaces.

e It is worth nothing that system (19) and equation (20) turn out to be invariant
under the translations of the variable w and the scaling transformations

w — wn, T =T, neR.
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Axisymmetric Solutions of the Willmore Equation

Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

e The substitutions u = vv2 + 1, p = Inr transform system (19) as follows

dw _ efVuz -1 (21)

dp
du)® 2(. 2 2
— | =u*(v®—1) (v®+2au—1). (22)
dp
e In terms of a new variable ¢ such that
dp 1
£ _ - 23
de u (23)

Eq. (22) may be written in the form

(%) =P(u), Pu)=(u®-1)(w®+2au—1) (24)

and Eq. (21) becomes
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Axisymmetric Solutions of the Willmore Equation

Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

Using the standard approach [Whittaker & Watson] [Abramowitz & Stegun]),

we can express a class of solutions of Eq. (24) corresponding to the root u =1
of the polynomial P(u) as follows

(1) = 2va? +1— (Va2 +1—a+1)sn® (A, k)
" _2\/a2+1—(\/a2+1+a+1)sn2()\t,k)

(26)
where A= vaZ+1 kzi 1+;

’ V2 a?+1
Then, using Eq. (26), one can write down the solution p (¢) of Eq. (23)

M 4+a—1 M —a+1
_ ()2 _
p(t)=(N+a)t S H( % ,am(At,k),k). (27)

Finally, using that p = Inr and Eq. (21) we arrive at the following analytic
representation of the parametric equations for the profile curves of the axially
symmetric Willmore surfaces determined by Eq. (20)

1
r(t) = ep(t)7 w(t) = /ep(t)m U (t)2 —1dt+b, b= const. (28)
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Nodoid-Like Willmore Surfaces

Numerical Calculations

e Unfortunately, the parametric equations (28) are too complicated to be used
for displaying the respective surfaces directly. This, however, can be done by
solving numerically system (19) taking as initial values at » = 1 an arbitrary real
number for w (because of the invariance of system (19) under the translation of
this variable) and v = 0. Indeed, for each surface of the considered class Eqs.
(26) and (27) imply «(0) = 1 and p(0) = 0 and hence v =0 at r = 1.

e Two Willmore surfaces obtained in this way are depicted in Figure 1. First
of them (Figure 1, left) is constructed by joining two profile curves I'_ and I'}
(see Figure 2, left), which are generated by solving numerically system (19),
choosing respectively sign ”-” and sign ”+” of the right-hand side of the second
equation in this system, setting a = 0.2 and taking v = 0 as initial condition at
r = 1. The second one is constructed by joining another couple of profile curves
I'_ and f‘+ (see Figure 2, right) obtained in the same manner, but now a = 1.
The Gaussian curvatures corresponding to both profile curves I'_ and I'y are
identical, while the respective mean curvatures are symmetric with respect to
the r-axis. The same holds true for the Gaussian and mean curvatures of the
curves I'_ and f+.
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Nodoid-Like Willmore Surfaces

Numerical Calculations
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Figure 2. The curves I'_ (left, thick), I'y (left, thin), I_ (right, thick) and T',
(right, thin).
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Nodoid-Like Willmore Surfaces

Numerical Calculations

Figure 1. Willmore surface constructed by the profile curves I'_ UT'y (left) and
I'_ uTy (right).
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Nodoid-Like Willmore Surfaces

Concluding Remarks

e In this work, we have determined analytically only one class of axially sym-
metric Willmore surfaces — those that arises from the solutions of Eq. (24)
corresponding to the root u = 1 of the polynomial P(u). There are however
other possibilities, which will be analysed elsewhere.

e It is worth noting as well that spheres and catenoids belong to the class of
axially symmetric Willmore surfaces determined by Eq. (20). Indeed, it is easy
to verify that the functions w = +vR2 —72 and w = Rln (r £ vr? — R?),
where R is an arbitrary real constant, determining the corresponding profile
curves satisfy Eq. (20) in the case a = 0.
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Axisymmetric Equilidrium Shapes

Sketch of a Surface of Revolution

Suppose that a part of an axisymmetrically deformed SWCNT admits graph
parametrization. This means that it may be thought of as a surface of
revolution obtained by revolving around the z-axis a plane curve I' laying in
the zOz-plane, which is determined by the graph (z, z(z)) of a function

z = z(x).
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Axisymmetric Equilidrium Shapes

Shape Equation

For each such surface the general shape equation (5) reduces to the following
nonlinear third-order ordinary differential equation

CE d2pd 1 de\’
cos® apd—;g = 4sinypcos? apd—fvfﬁ — cos (sin2 p— 3 cos? <p> <£>
Tsingcos? o [dyp ? 2cos? o d?p
_‘_7 R L
2x dx x  da? (29)

A B 2csing sin? ¢ — 2cos? ¢ dep

=+ (k_c + 5 " = - 972 cosp T
A 2 sin?@42cos? ) si

(2 ¢y sin"gp p\sing p
ke 2 222 T ke

(derived in [Hu & Ou-Yang, 1993]) where ¢ is the angle between the z-axis
and the tangent vector to the profile curve T, i.e., the tangent (slope) angel,
considered as a function of the variable z.
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Axisymmetric Equilidrium Shapes

Exact Solutions of the Shape Equation

[Naito et al., 1995] discovered that the shape equation (29) has the following

class of exact solutions
sing = ax + b+ de 1,

provided that a, b and d are real constants, which meet the conditions

2
P 9 ch A
o a“co a<2—|—kc> 0,

2
IR
b<2aco—|— 5 +kc> =0,
b(b* — dad — 4cod — 2) =0,

and
d (b* — 4ad — 2cod) = 0.
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Exact Solutions of the Shape Equation

Six types of solutions of form (30) to Eq. (29) can be distinguished on the
ground of conditions (31) — (34) depending on the values of ¢g, A and p.
Case A. If ¢o = 0, A =0, p = 0, then the solutions to Eq. (29) of the form (30)
are sin ¢ = ax, sin ¢ = az + /2 and sin p = dz ™!, the respective surfaces
being spheres, Clifford tori and catenoids.

Case B. If ¢g =0, A # 0, p =0, then the solutions of the considered type
reduces to sinp = dz~! (catenoids).

Case C. If ¢g =0, A # 0, p # 0 and p = 2a), then only one branch of the
regarded solutions remains, namely sin ¢ = ax (spheres).

Case D. If ¢g # 0, A = 0, p = 0, then one arrives at the whole family of
Delaunay surfaces corresponding to the solutions of the form

1 d
sinp = —5c0 + — (35)

Case E. If ¢g 0, A £ 0, p =0 and

A 1
= —5¢0 (2a + o),

one gets only solutions of the form sin ¢ = az (spheres).
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Exact Solutions of the Shape Equation

Case F. If ¢y # 0, A # 0, p # 0, then four different types of solutions of form
(30) to Eq. (29) are encountered: (a) sinp = ax (spheres) if

P A i
R P A 0.
. a<k6+aco+2>, (36)
(b) sing = ax + v/2 (Clifford tori) if
A 1
k% = —2d’cy, = —5¢0 (4a + co); (37)
(c) solutions of the form (35) (Delaunay surfaces) if
P+ co\ = 0; (38)
(d) solutions of the form
1 1
inp=—-co (b*>+2 b— —
sin ¢ 160 (b +2)z+ et (39)

which take place provided that
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Parametric Equations of the Unduloid-Like Surfaces

Below, we derive the parametric equations of the surfaces corresponding to the
solutions of form (39) to Eq. (29).

First, it is clear that the variable x must be strictly positive or negative,
otherwise the right-hand side of Eq. (30) is both undefined and its absolute
value is greater than one, which is in contradiction with the sin-function
appearing in the left-hand side of this relation.

Next, according to the meaning of the tangent angle

j—z =tangp (41)

which for the foregoing class of solutions (39) implies

2
d 2 b—c[)%—%q)(bz—f'?)x
ey - L e
1- [b—q}%—%co(b2+2)x}
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Parametric Equations of the Unduloid-Like Surfaces

In terms of an appropriate new variable ¢, relation (42) may be written in the
form

2
(5) --Fawew (13)
(5) = 1@+ @) (44)
where
_
o (2 +b2)%1
L, 4B+ 4
Q@ =yt aw Y (45)
e AB-D) 4
@0 =y gw ) 1)
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Parametric Equations of the Unduloid-Like Surfaces

It should be noticed that the roots of the polynomial Q(z) = Q1(z)Q2(x) read

_ 2sign(b) h—1 = 2sign (b)) h+1 (47)
Vb +2h+1 coVb?+2h—1

4b atB 2N FT

TTa®r2) 2 e+ 2)

s 4 atf 22D+ 1

o (B2 +2) 2 co (€2 +2)

where

h—\/1+|b|+\/2+b2- 48)

S\ 14 b = V22
Hence, Eq. (43) has real-valued solutions if and only if at least tow of these

roots are real and different. Evidently, the roots v and § can not be real, but
a and (3 are real provided that |b| > 1/2 as follows be relations (47) and (48).
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Parametric Equations of the Unduloid-Like Surfaces

Now, using the standard procedure for handling elliptic integrals (see [?,
22.7]), one can express the solution z(t) of equation (43) in the form

~ 2sign(b) (1 B 2h ) (49)
coVb? + 2 h+ cn(t, k)
where
p— Lo 3
2 42402

Consequently, using expressions (45) and (46), one can write down the
solution z(t) of equation (44) in the form

1 9 4bx(t) 4
(1) = —/ [x 0~ st 2 +2>]dt. (50)
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Parametric Equations of the Unduloid-Like Surfaces

Finally, performing the integration in the right-hand-side of Eq. (50), one
obtains (k) du(t. k)
sn(t n(t t
t)=u |E tk), k) — ——— L —— . 51

Z() u (am(? )7 ) h—l—Cn(t,k) 2 ( )
Thus, for each couple of values of the parameters ¢g and b, (49) and (51) are
the sought parametric equations of the contour of an axially symmetric
unduloid-like surface corresponding to the respective solution of the membrane
shape equation (29) of form (39).
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