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§1. Introduction

Let X be an oriented Riemannian four-manifold with boundary

M =9X.

For the trivial principal bundle P = X x S U(n) we denote by A(X)
the space of irrreducible connections on X. We shall prove the
following theorems.

Theorem

Let P = X x SU(n) be the trivial S U(n)—principal bundle on a
four-manifold X. There exists a canonical pre-symplectic structure
on the space of irreducible connections A(X) given by the 2-form

s 1 1
oa(@b) = @fXTr[(ab—ba)FA]—%IMTr[(ab—ba)A], Q)

for a,b € TaAA(X)
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Theorem
Let w be a 2-form on A(M) defined by

on@ab) = - fM Tri(ab— ba)A]. @

for a,b € TAA(M).
Let
AM) = {Aeﬂ(M); Fa=0, f TrAS = o} ?3)
M

Then (ﬂg(M), wlﬂ%(M) ) is a pre-symplectic manifold.
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§1. Introduction

This is a part of the author’s research on geometric quantization
theory of connection spaces.

The followings were proved previously

Kori, T., Chern-Simons pre-quantization over four-manifolds, Diff.
Geom. and its Appl. 29 (2011), 670-684.
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Let Go(X) be the group of gauge transformations on X that are
identity on the boundary M. The action of Go(X) on A(X) is a
Hamiltonian action and the corresponding moment map is given by

O : ANX) — (LieGo) = Q*X LieG): A— Fz.

1 .
(D(A), &) = DHA) = 5 fx Tr(F4¢), foré e LieGo(X). (4)
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§1. Introduction

Note

Pre-quantization of a manifold endowed with a closed 2-form
[Guillemin et al.] .

For a manifold X endowed with a closed 2-form o, we call a
pre-quantization of (X, o) a hermitian line bundle (L, <, >) over X
equiped with a hermitian connection V whose curvature is o
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§1. Introduction

There exists a pre-quantization of the moduli space
(M = A (X)/Go(X). w), that is,
there exists a hermitian line bundle with connection £” — M?,
whose curvature is equal to the pre-symplectic form i w,

where
AX) ={Aec AX); Fa=0,)}

and the closed 2-form w on M’ is induced from that on A’(X) (as
the boundary value and as the quotient ) of o=:

wa(@b) = - f Tr[(ab- ba)A].
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§2. Space of connections

M : a compact, connected and oriented m-dimensional riemannian
manifold

with boundary M. G = SU(N), N > 2.

PS5 M:a principal G-bundle,

A = A(M) the space of irreducible connections over P,

TaA =0YM,LieG)): tangent space atA,

and,
AcA aeTpA = A+acA.

TAA = Q™(M, LieG)), cotangent space of at A
The pairing of @ € T\A and a € TaA is given by

(@, a)A:f tr(ana)
M
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§2. Space of connections

A vector field v on A is a section of the tangent bundle;

V(A) € TaA,

a 1-form ¢ on A is a section of the cotangent bundle; ¢(A) € T, A.
For a function F = F(A) on A valued in a vector space V,

the derivation daF is defined by the functional variation of A € A:

OAF : TaA— V, (%)

(0aF)a = tlimo%(F(A+ta)—F(A)), forae TaA. (6)

For example,
(0nA)a = a,
The curvature of A € A is by definition
1 .
Fa=dA+S[ANA] € Q2 (M, LieG),

and we have
(0aFa)a = daa.
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§2. Space of connections

The derivations of a vector field and a 1-form ¢ are defined :
(0av)a e TaA, (Oap)ac TrA, Yae TaA.
We have the following formulas:
[V.W]a = (aV)WA = (OaW)Va, (7

(e, u)a = {@a. (OaU)VA) + {(0a@) Va, Un). (8)

Let a‘belhe exterior derivative on A(M). For a function F on
A(M), (dF)aa = (0aF) a.
For a 1-form ® on A(M),

(d®)a(a,b) = (da < ®,b >)a— (9 < D,a>)b— < ®,[a,b] >

< (0a®)a,b > — < (0pa®)b,a >, 9)
For a 2-form ¢ is a 2-form

(dg)a(@ b, c) = (Bap(b, c)a+ (Bag(c, )b + (9ag(a b))c.  (10)
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§3. Canonical structure on T*A

T*A s A: the cotangent bundle.
Tangent space to T*A at the point (A, 1) € T*A is

TayT A=TaAS T A = QY(M, LieG) Q™ (M. Lie G).

The canonical 1-form 6 on T*A is defined by

G(AJ)(( 2 )) = (/1,7'[*( Z )>A= j’;l tran A ( 2 )ET(AA)T*ﬂ

For a 1-form ¢ on A,
0 0 = ¢. (11)

The derivation of the 1-form 0 is given by

a .
a(,we( N )=a/, V(a=(waya1 ) e TanT"A.  (12)
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In fact,

(a(M)a)(( ))_ lim 1f(tra/\(/l+ta)—tra/\/l)_jl\‘/|tra/\a.

The canonical 2-form is defind by

o = do. (13)
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§3. Canonical structure on T*A

We have

TAY (( Z ) ( ,Z )) =(a,b)a—(B,a)a= fM trfbAra—anp].

In fact
e 2)-(2)

o is a non-degenerate closed 2-form on the cotangent space
T*A.
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§3. Canonical structure on T*A

For a function ® = ®(A, 1) on T*A corresponds the Hamitonian
vector field X¢

(dO)ay = c(Xo(A ), - ). (14)

The directional derivative 6p® € T*A of ® = ®(A, 1) at
(AL eTA:

(OA®, @)a = lim %(@(A +tad) - D(A ), acTadA.

The exterior differential of @ at the point (A, 1) is defined.

~ a a .
(d‘D)(M)( o ) = (6aD, a)p + (@, 6, D)A ( N )E TayT A

So the Hamiltonian vector field of ® is

i)
- Sa® )’
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§3. Canonical structure on T*A

G(M); Group of ( pointed ) gauge transformations :

G(M) = {g € QIM.G);  g(po) = 1. (15)
G(M) acts freely on A(M) by

g-A=gldg+gtAg= A+ g dag. (16)

G(M) = Q(M, LieG) acts on TaA by ; a — Ady1a =g lag,

on T3 A by its dual @ — gag™.

Hence the canonical 1-form and 2-form are G(M)-invariant.

The infinitesimal action of £ € Lie G(M) on T*A gives a vector field
&é1+4 ((called fundamental vector field ) on T*A :

daé )

17
€] ()

d A
ralA Q) = P exptf«( 1 )=(

at (A1) e TA.
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§3. Canonical structure on T*A

The moment map of the action of G on the symplectic space
(T*A, o) is described as follows.
For each £ € Lie G we define the function

VAN =t Era) = [ w(hEn D). a8

Then the correspondence & — ®%(A, 1) is linear.
Hence ®(A, 1) € (LieG)* and
we have a map

O:T"A> (A1) — DA ) € (Lieg)".
(18) yields

dof = o(éra, - ), for V&€ LieG. (19)
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§3. Canonical structure on T*A

Theorem

The action of the group of gauge transformations G(M) on the
symplectic space (T*A(M), o) is an hamiltonian action and the
moment map is given by

(A1) = fM tr (dad A A). (20)
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§3. Canonical structure on T*A

Generating functions

Let
§: A — T"A :alocal section of T"A
We write it by §A) = (A, s(A)) with S(A) € T A.
The pullback of the canonical 1-form 8 by § defines a 1-form 6° on

A:
6:(a) = (S 0)na, aeTpA. (21)
6°=s. (22)
That is,
(0°)aa = (S(A), a). (23)
forae TpA.
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§3. Canonical structure on T*A

Let oS = §* be the pullback by § of the canonical 2-form o

. a
oSis a closed 2-form on A. From Lemma 6 we see
oS=ds. (25)

Example [(Atiyah-Bott, 1982)]
Let M be a surface ( 2-dimensional manifold ).

TaA = ThA ~ QY(M, LieG)
Define the generating function
S: A3 A— gA) = Aec QY(M,LieG) = ThA
Then
@ma= [ w(na),
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§3. Canonical structure on T*A

and

wa@b) = o3(ab) = (d69a(a b) = ((9a6%)a, by — ((9a65)b, @)

fMtr(ba)—fMtr(ab):Zf'\Atr(ba). (26)

Then (A(M), w) is a symplectic manifold, in fact w is
non-degenerate.
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§4. Pre-symplectic structure on the space of connections on a
four-manifold

X : Riemannian four-manifold with boundary M = dX that may be

empty.
P = X x SU(n) : the trivial principal bundle

A(X) : the space of irrreducible Lil—connections
2

TAA(X) = Q;l(x, LieG), the tangent space
2
§: a section of the cotangent bundle

S0 = (A ) = (A a(AFa + Fah= 349 (20

S(A) = q(AFa + FaAA - 2A%) : a 3-form on X valued in sun),
Os =z
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§4. Pre-symplectic structure on the space of connections on ¢

The differential of S becomes

a
(§*)Aa=( )a
g(aFa+ Faa+Adaa+daaA- 3(aA? + AaA+ A2a))

for any a € TpaA.
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Lemma

Let 6% = §'0 and o5 = §'c be the pullback of the canonical forms by
8. Then we have

1 1.,
Hi(a):mfxTr[(AF+FA—§A)a], acTaA, (29)
and

oa@b) = 8—71T3 fx Tr[(ab—ba)F] - 2723 fa . Tr[(ab-ba)A]. (29)

The first equation follows from the deinition; (§'0)aa = (S(A), a) .

Tosiaki Kori
Pre-symplectic structure on the space of connections



§4. Pre-symplectic structure on the space of connections on ¢

Fora b e TaA,
[d69a@b) = ((@a8%a by - (Ia69)b, a)
= 2Tlna fx Tr[2(ab- ba)F — (ab- ba)A?
— (bdaa + dpab— daba— adab)Al].
Since

d Tr[(ab-ba)A] = Tr[(b daa+daa b-dab a—a dab)A]+T r[(ab-ba)(F+A?)],

we have
o b)—ifTr[(ab—ba)F - if Tr[(ab-ba)A]
A & B 871’3 X 2471’3 M ’
(30)
fora,be TaA. |
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§4. Pre-symplectic structure on the space of connections on ¢

Theorem

Let P = X x SU(n) be the trivial S U(n)—principal bundle on a
four-manifold X. There exists a pre-symplectic structure on the
space of irreducible connections A(X) given by the 2-form

1 1
oa@b) = 53 fXTr[(ab— ba)F] - a3 fM Tr[(ab- ba)A]. (31)
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§4. Pre-symplectic structure on the space of connections on ¢

If X has no boundary and A is a flat connection then O'Z =0, so we
have the following

Proposition

Let X be a compact 4-manifold without boundary then
LS=(¥A); AeA (X))
is a Lagrangian submanifold of T*A(X).

In fact daSis an isomorphism, so §A becomes a submanifold of
T*A.
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§5. Flat connections on a three-manifold

Put
on@b) = -q [ Triab-baA) (32)
ka(a b,c) = -3q f Tr[(ab- ba)], (33)
M
for a, b e TaA.
Then _
dwa = ka. (34)

In fact, for a, b, c € TaoA, we have

dwa(a, b, c) = 39a(wa(a, b))(c) = —3q f,;l Tr[(ab-ba)c] = ka(a, b, ¢).
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ka=0 = (A(M), w) is pre-symplectic.

In general (A(M), w) is not pre-symplectic.
Which subspace of (A(M) is pre-symplectic?
For SU(2), it is shown that

k=0, w=0.

In the following we deal with the case for G = SU(n), n > 3.
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Is the space of flat connections A°(M) pre-symplectic ?
Let A’ = A’(M) be the space of flat connections;

A (M) = {A e AM); Fa = 0}.
The tangent space of A’ at A € A" is given by
TaA’ = {ae QY(M, LieG); daa=0}, (35)

orthogonally decomposition:
TAA” = {dag; € € G(M) } @ Hb,
where Hj = {ae Q(M,ad P); dja = daa=0}.

A (M) is G(M)—invariant,
daé for & € LieG(M) is a vector field along A°(M) ,

dadaé = [Fa, €] =0,
i.e. the action of G(M) on A’(M) is infinitesimally symplectic.
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Direct computation to show that (A’(M), w) , or its subspace, is
pre-symplectic is difficult.

For example, if we take the following section of the cotangent
bundle Ty A = Q?(M, Lie G);

f(A) = (A Fa),

then

O'f(a, b) U'(A,FA)(( dia )’( dEb ))

ftr(b/\dAa—a/\dAb):fd(tr(ab)):O.
M M

sodF =0. Every connection is a critical point of the generating
function F.
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Next if we take
f(A) = (A A?).

we have

a b
o'ab)= ‘T(A’Az)(( aA+ Aa )( bA+ Ab )) =0.

Thus the pullback of the canonical 2-form o by the local section
S(A) = pFa + gA? gives no effective 2-form on A(M). Nevertheless
Theorem ?? presents a 2-form on A(M) that is related to the
boundary restriction of the canonical pre-symplectic form o on
A(X) for a four-manifold X that cobord M.

Things being so we compare them with the pre-symplectic space
(A°(X), o8| A° (X)) over a 4-manifold X that cobords M.
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Theorem

A pre-symplectic structure on the space of irreducible connections
A(X) is given by the 2-form

O-A(a,b)_ 1 fTr[(ab—ba)FA 2iﬁgfTr[(ab—ba)A],a,beTAﬂ(X]
(36)

Corollary

Let A'(X) = {Ae AX); Fa=0, }.
Then (ﬂb(X), Wl 7v(x) ) is a pre-symplectic manifold with

wa(a,b) = Tr[(ab ba)Al, abeTaA(X) (37)

243

Tosiaki Kori
Pre-symplectic structure on the space of connections



Corollary

Let Go(X) be the group of gauge transformations on X that are
identity on the boundary M.

Let M*(X) = A°(X)/Go(X), be the moduli space of flat connections
on X. Then the closed 2-form w| 4« descends to a closed 2-form

on M’(X) , hence (Mb(X), w) is a pre-symplectic manifold .
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We study the space of connections on a 3-manifold M by looking
at the space of connections on a 4-manifold X that cobord M;
oX =M.
M: a 3-manifold ,
P : a principal G—bundle over M
A a connectionover P,
e Extension of M,P, A
4 X: an oriented 4-manifold with boundary 0X = M ,
AP — X: a G-bundle with connection A
such that (PIM, AIM) = (P A).

rx : AX) — AM); restriction map to the boundary (38)
rx(A) = AM,  Ae A(X).
The tangent map of ryx at A € A(X) is
pxa : TaA(X) = QL (X LieG) — TaAM) = Qg ;(M, LieG),
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G(X) : group of Lil-gauge transformations on X
2

G(M) : group of L2-gauge transformations on M .
G = G(M) is divided into denumerable sectors labeled by the
mapping degree

_ 1 1,3
degf = 24ﬂszTr(dff )>. (39)

deg@ f) = deg(f) + deg@). (40)

Go(X) = {g € G(X); gM = ldgm) } = kerfrx : G(X) — G(M) }
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If X is simply connected then, for a f € G(M) ,

If € G(X) such that f = fIM < degf=0.

Thus we have the following exact sequence:
1— Go(X) — G(X) = MG — 1, (41)

here
OY'G ={ge G(M); degg = 0).
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On a 3-manifold any principal bundle has a trivialization.

Fix a trivialization

so that a sun)-connection is identified with a su(n)-valued 1-form.
We define the 3-dimensional Chern-Simons function:

CS3)(A) = 8_71rz fM Tr(AF - %A3), A e A(M).

For any extension A € A(X) of Ae A(M) ; AIM = A, we have

1
LTr[Fﬁ]:LTr[AFA—éAﬂ.

Proposition
For A e A(M) and g € G(M), we have

CSp)(9- A) = CS3)(A) + degg. (42)
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X': 4-manifold that cobord M; X = M.

A(X) : the space of connections over the trivial bundle X x G.
A'(X) = {Ae AX); Fa =0} : the space of flat connections on X.
A(M) = {Ae AM); Fa =0} : the space of flat connections on
M.

rx : A'(X) — A°(M), restriction to the boundary
rx(A) = Alwm.

We show that

o rIx: AX)— AYM)={AecA(M); CSg(A) =0}isa
surjective submersion.

Then we can show easily that « vanishes on ﬂg(M), that is,
(ﬂg(M), w) is pre-symplectic ( needs a long discussion ).
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eWe shall look at the range of rx : A’(X) — A’(M),
( independent of the cobording 4-manifold X. )

f TrA3 =0,
M

there is a A € A’(X) that extends A ; rx(A) = A,

Lemma
Aec A (M). If
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Proof Let X be the universal covering of X and M be the subset of
X that lies over M. Let fa be the parallel transformation by A along
the paths starting from mg € M. It defines a smooth map on the
covering space M; f = fa € Map(M, G), such that f1df = A.
Then the degree of f is equal to

1 3
degf = me TrA” = CS3)(A). (43)

If the integral vanishes then degf = 0 and there is a f € G(X) that
extends f. Therefore A = f~1df € A°(X) gives a flat extension of A
over X such that ryx(A) = A.
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For A € A’(M) and a € TAA"(M), we have
(dCS3) a—if Tr(AZa)—if dTr(Aa) =0 (44)
33) AS T 871'2 M a 871'2 M e

Hence CSg) is constant on every connected component of A (M).

Definition
For each k € Z we define

AM) = {A e A(M); fM TrAd = k}. (45)

We call A?(M) the k-sector of the flat connections.

ﬂi(M) is invariant under the action of
QY'G = {g € G(M); degg = 0} .

Tosiaki Kori
Pre-symplectic structure on the space of connections



For any 4-manifold X with the boundary M we have the following
properties:

The image of rx is precisely ﬂ(b)(M) .
da(LieG(M)) € TAAY(M).

The action of the group of gauge transformations G(M) on
ﬂg(M) is infinitesimally symplectic.

Tosiaki Kori
Pre-symplectic structure on the space of connections



Proof
It follows from the above discussion that any A € ﬂg(M) is the

boundary restriction of a A € A”(X). Conversely let A = ry(A) for a

A € A’ (X). Then
fTrA3=fTrA4=O,
M X

and A € AY(M). Thus, for any 4-manifold X that cobord M the
image of rx is precisely ﬂ{’)(M). The propperties 2 and 3 are
restatement of the facts

daé € TAﬂb(M), Lgpe w = 0.
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Lemma

Let X be a 4-manifold with 90X = M then
° rx Iis asubmersion.

(AY(M), w) is a pre-symplectic manifold.
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We must show
dwa = ka =0,

forany A € ﬂg(M). Let X be a 4-manifold with boundary X = M
and let P be a G—bundle over X with a connection A such that
A =TrxA.

Leta,b,ce TA?{"(M). px.A being surjective, there are

ab,ce TAﬂb(X) that extend a, b, c respectively. Then we have

a@bc) = —q f Tri(ab— ba)q]
M
= —qf Tr[(daab—adab — daba + bdaa)c
X
+ (ab-ba)dac] =0 (46)
because of dya = 0, etc.. O
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Let M’(X) be as was introduced in 1.3 the moduli space of flat
connections over X. Because of Theorem ?? M’(X) is endowed
with the pre-symplectic structure

o-[SA](a, b) = —qu Tr[(ab- ba)A], (47)

for A € A'(X) and &, b € TAA"(X), where A = rx(A) and a = px(a),
b = px(b). The right hand side is the pre-symplectic form on
ﬂg(M) that coincides with wa(a, b) .
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We have evidently rx(g- A) = rx(A) for g € Go . Hence it induces
the map
fx 1 M(X) — A" (M). (48)

Proposition

Tx gives a diffeomorphism of M’(X) to ﬂ'é(M).

Fx : MP(X) — AY(M)

gives an isomorphism of pre-symplectic manifolds;

(M(X), o) = (AYM), w). (49)
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