$\begin{array}{c} 1. \mbox{ Introduction}\\ 2. \mbox{ Basic Concepts}\\ 3. \mbox{ Generalized Focal Surfaces in \mathbb{H}^3}\\ 4. \mbox{ Normal Transport Surfaces in \mathbb{H}^4}\\ 5. \mbox{ References} \end{array}$

NORMAL TRANSPORT SURFACES IN EUCLIDEAN SPACES

Kadri Arslan

XVIIth International Conference Geometry, Integrability and Quantization June 10-15, 2015 Varna, Bulgaria

Kadri Arslan

NORMAL TRANSPORT SURFACES

1. Introduction

 $\checkmark\,$ The 3D offsets or parallel surfaces are very widely used in many applications;

■ tool path generation for 3N machining (Mechawa, 1999) and (Pham,1992),

■ pre-process modifications to CAD geometry (Farouki,1985), (Forsyth, 1995).

 \checkmark Focal surfaces are known in the field of line congruences (Hagen and Pottmann. Focal surfaces are used in;

■ visualization (Hagen and Pottmann,1991).

■ surface interrogation tool in a NC-milling operation (Hagen and Hahman, 1992).

 \checkmark The normal transport surfaces are the generalization of offset surfaces in 4-dimensional Euclidean space \mathbb{E}^4 (Frohlich,2013).

2. Basic Concepts

We recall definitions and results of (Fröhlich,2013). Let M be a local surface in \mathbb{E}^{n+2} given with the regular patch $x(u, v) : (u, v) \in D \subset \mathbb{E}^2$. The tangent space $T_p(M)$ to M at an arbitrary point p = x(u, v) of M is spanned by $\{x_u, x_v\}$. For the coefficients

$$g_{11} = \langle x_u, x_u \rangle$$
, $g_{12} = \langle x_u, x_v \rangle$, $g_{22} = \langle x_v, x_v \rangle$, (2.1)

the first fundamental form of M is given by

$$ds^{2} = \sum_{i,j=1}^{2} g_{ij} du^{i} du^{j}.$$
 (2.2)

The **Gauss equation** of the surface M is given by

$$x_{u^{i}u^{j}} = \widetilde{\nabla}_{x_{u^{i}}} x_{u^{j}} = \sum_{k=1}^{2} \Gamma_{ij}^{k} x_{u^{k}} + \sum_{\alpha=1}^{n} c_{ij}^{\alpha} N_{\alpha}, \qquad (2.3)$$

where

$$c_{ij}^{\alpha} = \langle x_{u^{i}u^{j}}, N_{\alpha} \rangle; \ c_{ij}^{\alpha} = c_{ji}^{\alpha}, \qquad (2.4)$$

are the coefficients of the second fundamental form and

$$\Gamma_{ij}^{k} = \sum_{l=1}^{2} g^{kl} \left(\frac{\partial g_{jl}}{\partial u^{i}} + \frac{\partial g_{li}}{\partial u^{j}} - \frac{\partial g_{ij}}{\partial u^{l}} \right), \qquad (2.5)$$

Christoffel symbols corresponding to x(u, v).

4 3 b

The **Weingarten equation** of the surface M is given by

$$(N_{\alpha})_{u^{i}} = \widetilde{\nabla}_{x_{u^{i}}} N_{\alpha} = -\sum_{k=1}^{2} c_{\alpha}^{ik} x_{u^{k}} + \sum_{\beta=1}^{n} T_{i}^{\alpha\beta} N_{\beta}, \qquad (2.6)$$

where

$$c_{\alpha}^{ik} = \sum_{j=1}^{2} c_{ij}^{\alpha} g^{jk}; \ c_{\alpha}^{ik} = c_{\alpha}^{ki},$$
 (2.7)

are the **Weingarten forms** of *M* with respect to N_{α}

$$T_{i}^{\alpha\beta} = \left\langle (N_{\alpha})_{u^{i}}, N_{\beta} \right\rangle; T_{i}^{\alpha\beta} = -T_{i}^{\beta\alpha}, i = 1, 2, \qquad (2.8)$$

torsion coefficients and

$$(g^{ij})_{i,j=1,2} = \frac{1}{g} \begin{bmatrix} g_{22} & -g_{12} \\ -g_{21} & g_{11} \end{bmatrix}.$$
 (2.9)

 $\begin{array}{c} 1. \mbox{ Introduction}\\ 2. \mbox{ Basic Concepts}\\ 3. \mbox{ Generalized Focal Surfaces in } \mathbb{E}^{3}\\ 4. \mbox{ Normal Transport Surfaces in } \mathbb{E}^{4}\\ 5. \mbox{ References}\end{array}$

The **Gaussian curvature** of the surface *M* is defined by

$$K = \sum_{\alpha=1}^{n} K_{\alpha}, \quad K_{\alpha} = \frac{c_{11}^{\alpha} c_{22}^{\alpha} - (c_{12}^{\alpha})^{2}}{g}.$$
 (2.10)

The Gaussian curvature vanishes M is called **flat surface**. Observe that

$$K_{\alpha} = c_{\alpha}^{11} c_{\alpha}^{22} - (c_{\alpha}^{12})^2.$$
 (2.11)

< ∃ →

э

The mean curvature vector field \overrightarrow{H} of the surface *M* is defined by

$$\overrightarrow{H} = \sum_{\alpha=1}^{n} H_{\alpha} N_{\alpha}, \qquad (2.12)$$

where

$$H_{\alpha} = \frac{1}{2} \sum_{i,j=1}^{2} g^{ij} c_{ij}^{\alpha} = \frac{g_{22} c_{11}^{\alpha} + g_{11} c_{22}^{\alpha} - 2g_{12} c_{12}^{\alpha}}{2g}, \qquad (2.13)$$

The mean curvature H of M is defined by $H = \|\overrightarrow{H}\|$. The mean curvature (vector) vanishes M is called **minimal**. Observe that

$$H_{\alpha} = \frac{c_{\alpha}^{11} + c_{\alpha}^{22}}{2}.$$
 (2.14)

The **curvature tensor of the normal bundle** NM of the surface M is defined by

$$S_{ij}^{\alpha\beta} = \left(T_{i}^{\alpha\beta}\right)_{u^{j}} - \left(T_{j}^{\alpha\beta}\right)_{u^{i}} + \sum_{\sigma=1}^{n} \left(T_{i}^{\alpha\sigma}T_{j}^{\sigma\beta} - T_{j}^{\alpha\sigma}T_{i}^{\sigma\beta}\right),$$

$$= \sum_{m,n=1}^{2} \left(c_{1m}^{\alpha}c_{n2}^{\beta} - c_{2m}^{\alpha}c_{n1}^{\beta}\right) g^{mn}; 1 \le \alpha, \beta \le n.$$

$$(2.16)$$

The equality

$$S_N^{\alpha\beta} = \frac{1}{\sqrt{g}} S_{12}^{\alpha\beta}, \qquad (2.17)$$

is called the **normal sectional curvature** with respect to the plane $\Pi = span \{x_u, x_v\}.$

- ₹ 🖬 🕨

For the case n = 2 the scalar curvature of its normal bundle is defined as

$$K_N = S_N^{12} = \frac{1}{\sqrt{g}} S_{12}^{12}.$$
 (2.18)

which is also called **normal curvature of the surface** M in \mathbb{E}^4 . Observe that

$$K_{N} = \frac{1}{\sqrt{g}} \left(\left(T_{2}^{12} \right)_{u} - \left(T_{1}^{12} \right)_{v} \right).$$
 (2.19)

We observe that the **normal connection** D of M is flat if and only if $K_N = 0$, and by a result of Cartan, this equivalent to the diagonalisability of all shape operators $A_{N_{\alpha}}$ of M, which means that M is a **totally umbilical** surface in \mathbb{E}^{n+2} .

3.1. Visualization

3. Generalized Focal Surfaces in E^3

Given a set of unit vectors E(u, v) one can define a **line** congruence:

$$C(u, v) = x(u, v) + D(u, v)E(u, v)$$
 (3.1)

where D(u, v) is called the signed distence between X(u, v) and E(u, v). If E(u, v) = N(u, v), then C is normal congruence. A **focal surface** $C_F(u, v)$ is a special normal congruence with $D(u, v) = k_1^{-1}(u, v)$ or $D(u, v) = k_2^{-1}(u, v)$:

$$C_F(u, v) = x(u, v) + k_i^{-1}(u, v) N(u, v), \quad i = 1, 2.$$
 (3.2)

The generalization of this classical concept leads to the **generalized focal surfaces**:

$$y(u, v) = x(u, v) + F(k_1, k_2)N(u, v),$$
 (3.3)

where N is the unit normal vector of the surface x(u, v) and F is a real valued function (offset function) in the parameter values u and v (Hahmann, 1999).

If the offset function F depends on the principal curvatures k_1 and k_2 of M then one can choose the variable offset function as;

1.
$$F = k_1 k_2$$
, Gaussian curvature,

2.
$$F = \frac{1}{2}(k_1 + k_2)$$
, mean curvature,

3.
$$F = k_1^2 + k_2^2$$
, energy functional,

4.
$$\mathit{F} = |\mathit{k}_1| + |\mathit{k}_2|$$
 , absolute functional,

5.
$$F = k_i$$
, $1 \le i \le 2$, principal curvature,

6.
$$F = \frac{1}{k_i}$$
, focal points,

7.
$$F = const.$$
, parallel surface.

- 4 同 6 4 日 6 4 日 6

э

The different offset functions listed above can now be used to interrogate and visualize surfaces with respect to the following criteria:

- convexity test,
- detection of flat points,
- detection of surface integration,
- visualization of curvature behaviour,
- visualization of technical smoothness,
- \blacksquare visualization of C^2 and C^3 discontinuities,
- test of technical aspects.

In (Özdemir and ——,2008) the following offset functions are used to construct general focal surfaces;

a.
$$F = K$$
, Gaussian curvature,

b.
$$F = H$$
, mean curvature,

c.
$$F = K - H$$
, diference of the curvatures,

d.
$$F = H + \sqrt{H^2 - K}$$
, or

e.
$$F = H - \sqrt{H^2 - K}$$
 principal curvature,

f.
$$F = 4H^2 - 2K$$
, energy functional,

g.
$$F = \left| H + \sqrt{H^2 - K} \right| + \left| H - \sqrt{H^2 - K} \right|$$
, absolute curvature,

/⊒ ► < ∃ ►

3)) J

3.1. Visualization

3.1. Visualization

Translation surfaces in 3-dimensional Euclidean space \mathbb{E}^3 are given with the paremetrization

$$x(u, v) = (u, v, h(u, v)); h(u, v) = f(u) + g(v).$$

In (Özdemir and ——,2008) we give some examples of generalized focal surfaces of traslation surfaces;

3.1. Visualization

Example (1)

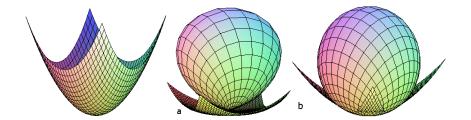
Consider the **paraboloid** $h(u, v) = u^2 + v^2$. Gaussian and mean curvatures;

$$\mathcal{K} = rac{4}{(4u^2+4v^2+1)^2},$$

 $\mathcal{H} = rac{2(1+2v^2+2u^2)}{(4u^2+4v^2+1)^{rac{3}{2}}}.$

▲ 同 ▶ → 三 ▶

3.1. Visualization

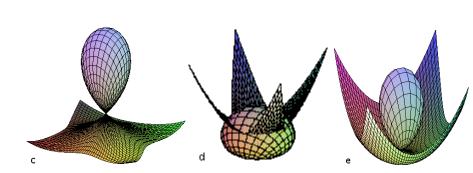


NORMAL TRANSPORT SURFACES

æ

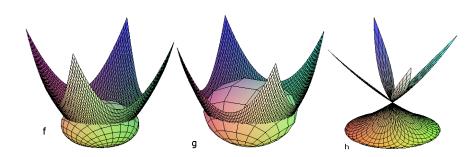
Kadri Arslan

3.1. Visualization



æ

 $\begin{array}{c} 1. \mbox{ Introduction}\\ 2. \mbox{ Basic Concepts}\\ 3. \mbox{ Generalized Focal Surfaces in E^3}\\ 4. \mbox{ Normal Transport Surfaces in E^4}\\ 5. \mbox{ References} \end{array}$



NORMAL TRANSPORT SURFACES

◆□> ◆御> ◆注> ◆注>

æ

3.1. Visualization

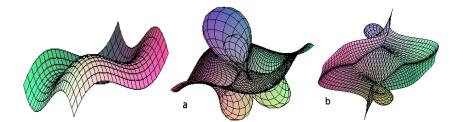
Example (2)

Consider the **cubic function** $h(u, v) = u^3 + v^3$. We can calculate th Gaussian and mean curvatures;

$$K = \frac{36uv}{(9u^4 + 9v^4 + 1)^2},$$
$$H = \frac{3(u + 9uv^4 + v + 9vu^4)}{(9u^4 + 9v4 + 1)^{\frac{3}{2}}}$$

□→ < □→</p>

3.1. Visualization

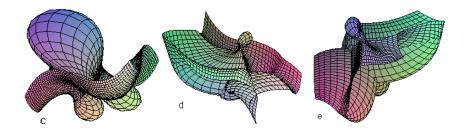


NORMAL TRANSPORT SURFACES

э

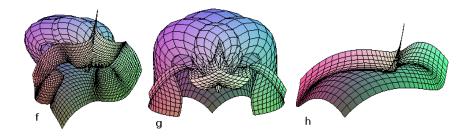
Kadri Arslan

3.1. Visualization



æ

3.1. Visualization



NORMAL TRANSPORT SURFACES

<ロ> <部> < 部> < き> < き> <</p>

э

4.1 Surfaces with Flat Normal Bundle 4.2 Normal Transport Surfaces in E⁴

4.3 Parallel surfaces in \mathbb{E}^4

4.4 Evolute surfaces in 𝔼⁴

4. Normal transport surfaces in E4

The **normal transport surface** \widetilde{M} of M are generalization of offset surfaces to 4-dimensional Euclidean space \mathbb{E}^4 (Fröhlich, 2013). Observe that, **evolute surfaces** and **parallel type surfaces** in \mathbb{E}^4 are the special type normal transport surfaces (Krivonosov, 1970), (Cheshkova, 2001), (Fröhlich, 2013). Parallel type surface are widely used in geometry and mathematical

physics (Fröhlich, 2013).

 $\begin{array}{c} \mbox{1. Introduction}\\ \mbox{2. Basic Concepts}\\ \mbox{3. Generalized Focal Surfaces in \mathbb{E}^3}\\ \mbox{4. Normal Transport Surfaces in \mathbb{E}^4}\\ \mbox{5. References} \end{array}$

4.1 Surfaces with Flat Normal Bundle

- 4.2 Normal Transport Surfaces in E⁴
- 4.3 Parallel surfaces in \mathbb{E}^4
- 4.4 Evolute surfaces in 𝔼⁴

4.1 Surfaces with Flat Normal Bundle

Definition (1)

Let *M* be a local surface in \mathbb{E}^{n+2} . The mean curvature vector \overrightarrow{H} is **parallel in the normal bundle** if and only if

$$(H_{\alpha})_{u}^{\perp} = 0, (H_{\alpha})_{v}^{\perp} = 0, \qquad (4.1)$$

holds (Fröhlich, 2013). Equivalently

$$(H_{\alpha})_{u^{i}} = \sum_{\beta=1}^{n} H_{\beta} T_{i}^{\alpha\beta}.$$
(4.2)

/⊒ ► < ∃ ►

The following result due to (Fröhlich, 2013).

Theorem (1)

Kadri Arslan

The mean curvature vector \overrightarrow{H} is called parallel in the normal bundle if and only if the squared mean curvature $\left\|\overrightarrow{H}\right\|^2$ of M is a constant function.

 $\begin{array}{c} 1. \mbox{ Introduction}\\ 2. \mbox{ Basic Concepts}\\ 3. \mbox{ Generalized Focal Surfaces in \mathbb{E}^4}\\ 4. \mbox{ Normal Transport Surfaces in \mathbb{E}^4}\\ 5. \mbox{ References} \end{array} \qquad \begin{array}{c} 4.1 \mbox{ Surfaces with Flat Normal Bundle}\\ 4.2 \mbox{ Normal Transport Surfaces in \mathbb{E}^4}\\ 4.3 \mbox{ Parallel surfaces in \mathbb{E}^4}\\ 4.4 \mbox{ Evolute surfaces in \mathbb{E}^4}\\ \end{array}$

Definition (2)

A local surface of \mathbb{E}^{n+2} is said to have **flat normal bundle** if and only if the orthonormal frame $N_1, ..., N_n$ of M is of torsion free.

Fact

The existence of flat normal bundle of M is equivalent to say that normal curvature K_N of M vanishes identically.

The following classification result due to Chen from (Chen, 1972).

Theorem (2)

Let M be an immersed surface in \mathbb{E}^{n+2} . If $\overrightarrow{H} \neq 0$ is parallel in the normal bundle then either M is a minimal surface of a hypersphere of \mathbb{E}^{n+2} , or it has flat normal bundle.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{c} 1. \mbox{ Introduction}\\ 2. \mbox{ Basic Concepts}\\ 3. \mbox{ Generalized Focal Surfaces in \mathbb{E}^3}\\ \textbf{4. Normal Transport Surfaces in \mathbf{E}^4}\\ 5. \mbox{ References} \end{array}$

4.1 Surfaces with Flat Normal Bundle 4.2 Normal Transport Surfaces in \mathbb{E}^4 4.3 Parallel surfaces in \mathbb{E}^4 4.4 Evolute surfaces in \mathbb{E}^4

4.2 Normal transport Surfaces

Let M and \widetilde{M} be two smooth surfaces in Euclidean 4-space \mathbb{E}^4 and let $\varphi: M \to \widetilde{M}$ be a diffeomorphism. Then the surface \widetilde{M} enveloping family of normal 2-planes to M is called the **normal transport** of M in \mathbb{E}^4 (Fröhlich, 2013). Further, let \overrightarrow{x} be a position (radius) vector of $p \in M$, and \widetilde{x} be the position (radius) vector of the point $\varphi(p) \in \widetilde{M}$. Then the mapping $\varphi: M \to \widetilde{M}$ has the form

$$\widetilde{x} = x + \overrightarrow{w}, \quad \overrightarrow{w} \in T_p^{\perp} M.$$

where, $\overrightarrow{p\varphi(p)} = \overrightarrow{w}(p)$, $\overrightarrow{w}(p) \in T_p^{\perp}M$ is the normal vector to M.

 $\begin{array}{c} 1. \mbox{ Introduction} \\ 2. \mbox{ Basic Concepts} \\ 3. \mbox{ Generalized Focal Surfaces in \mathbb{E}^3} \\ 4. \mbox{ Normal Transport Surfaces in \mathbb{E}^4} \\ 5. \mbox{ References} \end{array} \qquad \begin{array}{c} 4.1 \mbox{ Surfaces with Flat Normal Bundle} \\ 4.2 \mbox{ Normal Transport Surfaces in \mathbb{E}^4} \\ 4.4 \mbox{ Evolute surfaces in \mathbb{E}^4} \end{array}$

For the case

$$\overrightarrow{w}(p) = \sum_{i=1}^{2} f_i(u, v) N_i(u, v),$$

the normal transport surface M of M given by

$$\widetilde{M}:\widetilde{x}(u,v)=x(u,v)+\sum_{i=1}^{2}f_{i}(u,v)N_{i}(u,v), \qquad (4.3)$$

where f_i (i = 1, 2) are offset functions (Fröhlich, 2013).

◆ 同 ▶ → (目 ▶

The tangent space to \widetilde{M} at an arbitrary point $p = \widetilde{x}(u, v)$ of \widetilde{M} is spanned by

$$\begin{aligned} \widetilde{x}_{u} &= x_{u} + f_{1} \left(N_{1} \right)_{u} + f_{2} \left(N_{2} \right)_{u} + (f_{1})_{u} N_{1} + (f_{2})_{u} N_{2}, \\ \widetilde{x}_{v} &= x_{v} + f_{1} \left(N_{1} \right)_{v} + f_{2} \left(N_{2} \right)_{v} + (f_{1})_{v} N_{1} + (f_{2})_{v} N_{2}. \end{aligned}$$

$$(4.4)$$

Further, using the Weingarten equation (2.6) we get

$$\begin{aligned} (N_1)_u &= -\left(c_1^{11}x_u + c_1^{12}x_v\right) + T_1^{12}N_2 \\ (N_2)_u &= -\left(c_2^{11}x_u + c_2^{12}x_v\right) - T_1^{12}N_1 \\ (N_1)_v &= -\left(c_1^{21}x_u + c_1^{22}x_v\right) + T_2^{12}N_2 \\ (N_2)_v &= -\left(c_2^{21}x_u + c_2^{22}x_v\right) - T_2^{12}N_2. \end{aligned}$$

$$(4.5)$$

So, substituting (4.5) into (4.4) we get

$$\widetilde{x}_{u} = \left(1 - f_{1}c_{1}^{11} - f_{2}c_{2}^{11}\right)x_{u} - \left(f_{1}c_{1}^{12} + f_{2}c_{2}^{12}\right)x_{v} \\ + \left(\left(f_{1}\right)_{u} - f_{2}T_{1}^{12}\right)N_{1} + \left(\left(f_{2}\right)_{u} + f_{1}T_{1}^{12}\right)N_{2},$$
(4.6)

$$\widetilde{x}_{\nu} = -(f_1c_1^{21} + f_2c_2^{21})x_u + (1 - f_1c_1^{22} - f_2c_2^{22})x_v + ((f_1)_{\nu} - f_2T_2^{12})N_1 + ((f_2)_{\nu} + f_1T_2^{12})N_2.$$
(4.7)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

 1. Introduction

 2. Basic Concepts

 3. Generalized Focal Surfaces in E⁴

 4. Normal Transport Surfaces in E⁴

 5. References

Definition (3)

i) The normal transport surface M_H given with the parametrization

$$\widetilde{M}_{H}:\widetilde{x}(u,v)=x(u,v)+H_{1}(u,v)\ N_{1}(u,v)+H_{2}(u,v)\ N_{2}(u,v),$$

is called **normal transport surface of** *H***-type**. ii) The normal transport surface \widetilde{M}_K given with the parametrization

$$\widetilde{M}_{\mathcal{K}}:\widetilde{x}(u,v)=x(u,v)+K_1(u,v)\ N_1(u,v)+K_2(u,v)\ N_2(u,v),$$

is called normal transport surface of K-type.

/⊒ ► < ∃ ►

4.1 Surfaces with Flat Normal Bundle 4.2 Normal Transport Surfaces in ℝ⁴ 4.3 Parallel surfaces in ℝ⁴ 4.4 Evolute surfaces in ℝ⁴

4.3. Parallel surfaces in E4

Definition (4)

The normal transport surface \widetilde{M} of M is called **parallel surface** of M in \mathbb{E}^4 if the equality

$$\langle \widetilde{x}_{u_i}, N_{\alpha} \rangle = 0, \ 1 \le i, \alpha \le 2,$$
 (4.8)

holds for all $N_{\alpha} \in T_{\rho}^{\perp} M$ (Fröhlich, 2013).

1. Introduction
 2. Basic Concepts
 3. Generalized Focal Surfaces in E⁴
 4. Normal Transport Surfaces in E⁴
 4.3 Parallel surfaces in E⁴
 4.4 Evolute surfaces in E⁴

Let \widetilde{M} be a parallel surface of M in \mathbb{E}^4 with non-zero offset functions f_1 and f_2 . Then by use of (4.6) and (4.7) with (4.8) one can get

$$\begin{array}{rcl}
0 &=& \langle \widetilde{x}_{u}, N_{1} \rangle = (f_{1})_{u} - f_{2} T_{1}^{12}, \\
0 &=& \langle \widetilde{x}_{v}, N_{1} \rangle = (f_{1})_{v} - f_{2} T_{2}^{12}, \\
0 &=& \langle \widetilde{x}_{u}, N_{2} \rangle = (f_{2})_{u} + f_{1} T_{1}^{12}, \\
0 &=& \langle \widetilde{x}_{v}, N_{2} \rangle = (f_{2})_{v} + f_{1} T_{2}^{12}.
\end{array}$$
(4.9)

Differentiating the first two equations and making use of the other equations shows us

$$(f_1)_{uv} + f_1 T_2^{12} T_1^{12} - f_2 (T_1^{12})_v = 0,$$

$$(f_1)_{vu} + f_1 T_1^{12} T_2^{12} - f_2 (T_2^{12})_u = 0.$$

$$(4.10)$$

Thus a computation of the left hand sides of (4.10) brings

$$-f_{2}\left\{\left(T_{1}^{12}\right)_{v}-\left(T_{2}^{12}\right)_{u}\right\}=0.$$

So, by the use of (2.19) we can conclude that the normal curvature K_N of M vanishes identically.

Consequently, we obtain the following result of (Fröhlich, 2013).

Theorem (3)

The normal transport surface \tilde{M} of M is parallel if and only if M has flat normal bundle.

 1. Introduction

 2. Basic Concepts

 3. Generalized Focal Surfaces in E⁴

 4. Normal Transport Surfaces in E⁴

 5. References

We obtain the following result.

Corollary (1)

The normal transport surface \tilde{M} of M is parallel if and only if the squared sum of the offset functions is constant, i.e.,

$$\sum_{i=1}^2 f_i^2(u,v) = const.$$

Proof.

From the expressions in (4.9) we get

which completes the proof.

We give the following examples.

Example (3)

The normal transport surface M of M is given with the patch

$$\widetilde{X}(u, v) = X(u, v) + r \cos u \ N_1(u, v) + r \sin u \ N_2(u, v),$$

is a parallel surface of M in \mathbb{E}^4 .

 1. Introduction

 2. Basic Concepts

 3. Generalized Focal Surfaces in E⁴

 4. Normal Transport Surfaces in E⁴

 5. References

Example (4)

Rotation surfaces are defined by the following parametrization

$$M : X(s, t) = (r(s) \cos s \cos t, r(s) \cos s \sin t,$$
$$r(s) \sin s \cos t, r(s) \sin s \sin t)$$

where r(s) is a real valued non-zero function (Vranceanu, 1977).

- **→** → **→**

 1. Introduction

 2. Basic Concepts

 3. Generalized Focal Surfaces in E³

 4. Normal Transport Surfaces in E⁴

 5. References

Example (Continue)

We choose a moving frame $\{e_1, e_2, e_3, e_4\}$ (Yoon, 2001):

$$\begin{array}{lll} e_1 & = & \displaystyle \frac{1}{r} \frac{\partial}{\partial t} \\ & = & (-\cos s \sin t, \cos s \cos t, -\sin s \sin t, \sin s \cos t), \\ e_2 & = & \displaystyle \frac{1}{A} \frac{\partial}{\partial s} \\ & = & \displaystyle \frac{1}{A} (B \cos t, B \sin t, C \cos t, C \sin t), \\ e_3 & = & \displaystyle \frac{1}{A} (-C \cos t, -C \sin t, B \cos t, B \sin t), \\ e_4 & = & (-\sin s \sin t, \sin s \cos t, \cos s \sin t, -\cos s \cos t), \end{array}$$

▲ 同 ▶ → 三 ▶

 1. Introduction

 2. Basic Concepts

 3. Generalized Focal Surfaces in E⁴

 4.1 Surfaces with Flat Norm

 4.2 Normal Transport Surfaces in E⁴

 5. References

Example (Continue)

where

$$A = \sqrt{r^2(s) + (r'(s))^2}, \quad B = r'(s)\cos s - r(s)\sin s,$$

$$C = r'(s)\sin s + r(s)\cos s.$$

The Gauss and mean curvatures of M are given by

$$K = K_N = \frac{(r')^2 - rr''}{(r^2 + (r')^2)^2}.$$

The normal transport surface \widetilde{M} of M is parallel if and only if $r(s) = \alpha e^{(\beta s)}$, for some constants $\alpha \neq 0$ and β .

▲ 同 ▶ → 三 ▶

I) Let M be a non-minimal local surface in \mathbb{E}^4 and \widetilde{M}_H its normal transport surface.

If \widetilde{M}_H is a parallel surface of M in \mathbb{E}^4 then by Theorem 3 M has vanishing normal curvature.

Furthermore, by the use of (4.11) we get

$$(H_1)_u H_1 + (H_2)_u H_2 = 0, (H_1)_v H_1 + (H_2)_v H_2 = 0.$$

Thus,
$$\left\| \overrightarrow{H} \right\|^2 = \sum_{\alpha=1}^2 H_{\alpha}^2$$
 is a constant function.

So, by Theorem 1 we conclude that the mean curvature vector \dot{H} of M is parallel in the normal bundle.

1. Introduction
 2. Basic Concepts
 3. Generalized Focal Surfaces in E⁴
 4. Normal Transport Surfaces in E⁴
 5. References
 4.1 Surfaces with Flat Normal Bundle
 4.2 Normal Transport Surfaces in E⁴
 4.3 Parallel surfaces in E⁴
 4.4 Evolute surfaces in E⁴

Thus, we have proved the following result.

Theorem (4)

Let M be a non-minimal local surface in \mathbb{E}^4 . Then the normal transport surface \widetilde{M}_H of M in \mathbb{E}^4 is parallel if and only if the mean curvature vector \overrightarrow{H} of M is parallel in the normal bundle.

II) Let M be a non-flat local surface in \mathbb{E}^4 and \widetilde{M}_K its normal transport surface. If \widetilde{M}_K is a parallel surface of M in \mathbb{E}^4 then by Theorem 3 \widetilde{M}_K has vanishing normal curvature. Furthermore, by the use of (4.11) we get

$$(K_1)_u K_1 + (K_2)_u K_2 = 0, (K_1)_v K_1 + (K_2)_v K_2 = 0.$$

Thus, we conclude that $K = \sum_{\alpha=1}^{2} K_{\alpha}^{2}$ is a constant function, i.e., *M* has constant Gauss curvature.

 1. Introduction

 2. Basic Concepts

 3. Generalized Focal Surfaces in E³

 4. Normal Transport Surfaces in E⁴

 5. References

Thus, we have proved the following result.

Theorem (5)

Let M be a non-flat local surface in \mathbb{E}^4 . Then the normal transport surface \widetilde{M}_K of M in \mathbb{E}^4 is parallel if and only if the Gaussian curvature of M is a non-zero constant.

1. Introduction
 2. Basic Concepts
 3. Generalized Focal Surfaces in E³
 4. Normal Transport Surfaces in E⁴
 5. References

4.1 Surfaces with Flat Normal Bundle

- 4.2 Normal Transport Surfaces in E⁴
- 4.3 Parallel surfaces in ℡'
- 4.4 Evolute surfaces in \mathbb{E}^4

4.4 Evolute surfaces in E4

Definition (5)

The normal transport surface \widetilde{M} of M is called **evolute surface** of M in \mathbb{E}^4 if the equality

$$\langle \widetilde{x}_{u_i}, x_{u_j} \rangle = 0, \ 1 \leq i, j \leq 2,$$
 (4.12)

holds for all $x_{u_i} \in T_p M$ (Cheshkova, 2001).

Let \widetilde{M} be a evolute surface of M in \mathbb{E}^4 . Then by use of (4.6) with (4.12) we can get

/⊒ ► < ∃ ►

From now on we assume that the surface patch x(u, v) satisfies the metric condition $g_{12} = 0$. So the equations in (4.13) turn into

$$f_1 c_1^{11} + f_2 c_2^{11} = 1,$$

$$f_1 c_1^{22} + f_2 c_2^{22} = 1,$$

$$f_1 c_1^{12} + f_2 c_2^{12} = 0.$$
(4.14)

Consequently by the use of (4.14) with (2.14) we get

$$f_1 H_1 + f_2 H_2 = 1. \tag{4.15}$$

So, we obtain the following result.

Theorem (6)

Let M be local surface in \mathbb{E}^4 with $g_{12} = 0$. Then the normal transport surface \widetilde{M} in \mathbb{E}^4 is evolute surface of M if and only if the first and second mean curvatures H_1 , H_2 satisfies the condition $f_1H_1 + f_2H_2 = 1$.

M. A. Cheshkova gave the following results;

Theorem (7)

Let M be local surface in \mathbb{E}^4 . If the normal transport surface \widetilde{M} in \mathbb{E}^4 is evolute surface of M then M has flat normal bundle.

Theorem (8)

The minimal surfaces have no evolutes.

Example (5)

Let M is a translation surface $x(u, v) = \alpha(u) + \beta(v)$ in \mathbb{E}^4 , then the translation curves $\alpha(u) = (\alpha_1(u), \alpha_2(u), 0, 0)$ and $\beta(v) = (0, 0, \beta_1(v), \beta_2(v))$ are plane curves of mutually orthogonal 2-planes. The surface $\widetilde{M} = \widetilde{\alpha}(u) + \widetilde{\beta}(v)$ is a translation surface, and its translation curves $\widetilde{\alpha}(u), \ \widetilde{\beta}(v)$ are the evolutes of the curves $\alpha(u), \ \beta(v)$

$$\begin{aligned} \tilde{\kappa}(u,v) &= \alpha(u) + \frac{1}{\kappa_{\alpha}}n_{\alpha}(u) + \beta(v) + \frac{1}{\kappa_{\beta}}n_{\beta}(v) \\ &= x(u,v) + \frac{1}{\kappa_{\alpha}}n_{\alpha}(u) + \frac{1}{\kappa_{\beta}}n_{\beta}(v). \end{aligned}$$

/⊒ ► < ∃ ►

Example (Continue)

The tangent space to \widetilde{M} at an arbitrary point $p = \widetilde{x}(u, v)$ of \widetilde{M} is spanned by

$$\widetilde{x}_{u} = \left(\frac{1}{\kappa_{\alpha}}\right)' n_{\alpha}(u),$$

 $\widetilde{x}_{v} = \left(\frac{1}{\kappa_{\beta}}\right)' n_{\beta}(v).$

Consequently, the normal transport surface \tilde{M} of M satisfies the equality

$$\langle \widetilde{x}_{u_i}, x_{u_j} \rangle = 0.$$

Hence, \widetilde{M} is the evolute of M (Cheshkova, 2001).

Introduction
 Basic Concepts
 Generalized Focal Surfaces in E³
 Normal Transport Surfaces in E⁴
 References

5.References

- K. Arslan, B.K. Bayram, B. Bulca, Y.H. Kim, C. Murathan and G. Öztürk, *Vranceanu surfaces with pointwise 1-type gauss map*, Indian J. Pura Appl. Math. 42(2011), 41-51.
- K. Arslan, B.K. Bayram, B. Bulca and G. Öztürk, Normal Transport Surfaces in Euclidean 4-space E⁴, Arxiv:1412.3274.
- B.-Y. Chen, *Surfaces with parallel mean curvature vector*, Bull. Amer. Math. Soc. 78(1972), 709–710.
- M. A. Cheshkova, *Evolute surfaces in* \mathbb{E}^4 , Mathematical Notes, Vol. 70(2001), 870–872.
- R. T. Farouki, Exact Offset Procedures for Simple Solids, Computer Aided Geometric Design, 2(1985), 257-279.

- M. Forsyth. *Shelling and offsetting bodies*, Proceedings of the third ACM symposium on Solid modeling and applications, Salt Lake City, Utah, United States, 373-381, May 17-19, 1995.
- S. Fröhlich, *Surfaces-in-Euclidean-Space*, www.scribd.com/doc, 2013.
- S. Hahmann. Visualization techniques for surface analysis, in
 C. Bajaj (ed.): Advanced techniques, John Viley, 1999.
- H. Hagen and S. Hahmann. Generalized Focal Surfaces: A New Method for Surface Interrogation, Proceeding, Visualization'92, Boston-1992, 70-16.
- H. Hagen and S. Hahmann. *Visualization of curvature behavior of free-form curves and surfaces*, CAD 27(1995), 545-552.

- 4 同 ト 4 ヨ ト 4 ヨ ト

- H. Hagen, H. Pottmann. *A Divivier, Visualization Functions on Surface*, Journal of Visualization and Animation, 2(1991), 52-58.
- L.N. Krivonosov. Parallel and Normal Correspondence of two-dimensional Surfaces in the four-dimensional Euclidean Space \mathbb{E}^4 , Amer. Math. Soc. Transl. 92(1970), 139-150.
- T. Maekawa. An Overview of Offset Curves and Surfaces, Computer Aided Design Vol. 31(1999), 165-173.
- B. Özdemir and K. Arslan. On generalized focal surfaces in E³, Rev. Bull. Calcutta Math. Soc. 16 (2008), 23–32.

- B. Pham. *Offset curves and surfaces: a brief survey*, Computer-Aided Design 24(1992), 223–229.
- G. Vranceanu, *Surfaces de Rotation Dans* 𝔼⁴. Rev. Roumaine Math. Pures Appl. 22(1977), 857-862.
- D.W. Yoon, Rotation Surfaces with Finite Type Gauss Map in E⁴. Indian J. pura appl.Math. 32(2001), no.12, 1803-1808.