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1. Introduction

X The 3D o¤sets or parallel surfaces are very widely used in many
applications;

� tool path generation for 3N machining (Mechawa, 1999)
and (Pham,1992),

� pre-process modi�cations to CAD geometry (Farouki,1985),
(Forsyth, 1995).
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X Focal surfaces are known in the �eld of line congruences (Hagen
and Pottmann. Focal surfaces are used in;

� visualization (Hagen and Pottmann,1991).
� surface interrogation tool in a NC-milling operation (Hagen

and Hahman, 1992).
X The normal transport surfaces are the generalization of o¤set
surfaces in 4-dimensional Euclidean space E4 (Frohlich,2013).
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2. Basic Concepts

We recall de�nitions and results of (Fröhlich,2013).
Let M be a local surface in En+2 given with the regular patch
x(u, v) : (u, v) 2 D � E2.
The tangent space Tp(M) to M at an arbitrary point p = x(u, v)
of M is spanned by fxu , xv g.
For the coe¢ cients

g11 = hxu , xui , g12 = hxu , xv i , g22 = hxv , xv i , (2.1)

the �rst fundamental form of M is given by

ds2 =
2

∑
i ,j=1

gijduiduj . (2.2)
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The Gauss equation of the surface M is given by

xu iu j = erxui
xu j =

2

∑
k=1

Γkijxuk +
n

∑
α=1

cα
ijNα, (2.3)

where
cα
ij = hxu iu j ,Nαi ; cα

ij = c
α
ji , (2.4)

are the coe¢ cients of the second fundamental form and

Γkij =
2

∑
l=1

g kl
�

∂gjl
∂ui

+
∂gli
∂uj

� ∂gij
∂ul

�
, (2.5)

Christo¤el symbols corresponding to x(u, v).
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The Weingarten equation of the surface M is given by

(Nα)u i = erxui
Nα = �

2

∑
k=1

c ikα xuk +
n

∑
β=1

T αβ
i Nβ, (2.6)

where

c ikα =
2

∑
j=1

cα
ij g

jk ; c ikα = ckiα , (2.7)

are the Weingarten forms of M with respect to Nα

T αβ
i =



(Nα)u i ,Nβ

�
;T αβ

i = �T βα
i , i = 1, 2, (2.8)

torsion coe¢ cients and�
g ij
�
i ,j=1,2 =

1
g

�
g22 �g12
�g21 g11

�
. (2.9)
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The Gaussian curvature of the surface M is de�ned by

K =
n

∑
α=1

Kα, Kα =
cα
11c

α
22 � (cα

12)
2

g
. (2.10)

The Gaussian curvature vanishes M is called �at surface.
Observe that

Kα = c11α c
22
α � (c12α )

2. (2.11)
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The mean curvature vector �eld
�!
H of the surface M is de�ned

by
�!
H =

n

∑
α=1

HαNα, (2.12)

where

Hα =
1
2

2

∑
i ,j=1

g ijcα
ij =

g22cα
11 + g11c

α
22 � 2g12cα

12

2g
, (2.13)

The mean curvature H of M is de�ned by H =
�!H  .

The mean curvature (vector) vanishes M is called minimal.
Observe that

Hα =
c11α + c22α

2
. (2.14)
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The curvature tensor of the normal bundle NM of the surface
M is de�ned by

Sαβ
ij =

�
T αβ
i

�
u j
�
�
T αβ
j

�
u i
+

n

∑
σ=1

�
T ασ
i T

σβ
j � T ασ

j T
σβ
i

�
,

=
2

∑
m,n=1

�
cα
1mc

β
n2 � cα

2mc
β
n1

�
gmn; 1 � α, β � n.

(2.16)
The equality

Sαβ
N =

1p
g
Sαβ
12 , (2.17)

is called the normal sectional curvature with respect to the plane
Π = span fxu , xv g.
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For the case n = 2 the scalar curvature of its normal bundle is
de�ned as

KN = S
12
N =

1p
g
S1212 . (2.18)

which is also called normal curvature of the surface M in E4.
Observe that

KN =
1p
g

��
T 122

�
u �

�
T 121

�
v

�
. (2.19)

We observe that the normal connection D of M is �at if and
only if KN = 0, and by a result of Cartan, this equivalent to the
diagonalisability of all shape operators ANα of M, which means
that M is a totally umbilical surface in En+2.
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3.1. Visualization

3. Generalized Focal Surfaces in E 3

Given a set of unit vectors E (u, v) one can de�ne a line
congruence:

C (u, v) = x(u, v) +D(u, v)E (u, v) (3.1)

where D(u, v) is called the signed distence between X (u, v) and
E (u, v).
If E (u, v) = N(u, v), then C is normal congruence.
A focal surface CF (u, v) is a special normal congruence with
D(u, v) = k�11 (u, v) or D(u, v) = k�12 (u, v) :

CF (u, v) = x(u, v) + k
�1
i (u, v)N(u, v), i = 1, 2. (3.2)
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3.1. Visualization

The generalization of this classical concept leads to the
generalized focal surfaces:

y(u, v) = x(u, v) + F (k1, k2)N(u, v), (3.3)

where N is the unit normal vector of the surface x(u, v) and F is a
real valued function (o¤set function) in the parameter values u
and v (Hahmann,1999).
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3.1. Visualization

If the o¤set function F depends on the principal curvatures k1 and
k2 of M then one can choose the variable o¤set function as;

1. F = k1k2, Gaussian curvature,

2. F = 1
2 (k1 + k2), mean curvature,

3. F = k21 + k
2
2 , energy functional,

4. F = jk1j+ jk2j , absolute functional,
5. F = ki , 1 � i � 2, principal curvature,
6. F = 1

ki
, focal points,

7. F = const., parallel surface.
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3.1. Visualization

The di¤erent o¤set functions listed above can now be used to
interrogate and visualize surfaces with respect to the following
criteria:

� convexity test,
� detection of �at points,
� detection of surface integration,
� visualization of curvature behaviour,
� visualization of technical smoothness,
� visualization of C 2 and C 3 discontinuities,
� test of technical aspects.
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3.1. Visualization

In (Özdemir and � � ,2008) the following o¤set functions are used
to construct general focal surfaces;

a. F = K , Gaussian curvature,

b. F = H, mean curvature,

c. F = K �H, diference of the curvatures,
d. F = H +

p
H2 �K ,or

e. F = H �
p
H2 �K principal curvature,

f. F = 4H2 � 2K , energy functional,
g. F =

���H +pH2 �K ���+ ���H �pH2 �K ��� , absolute curvature,
h. F = c o¤set surfaces.
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3.1. Visualization

3.1. Visualization

Translation surfaces in 3-dimensional Euclidean space E3 are
given with the paremetrization

x(u, v) = (u, v , h(u, v)); h(u, v) = f (u) + g(v).

In (Özdemir and � � ,2008) we give some examples of generalized
focal surfaces of traslation surfaces;
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3.1. Visualization

Example (1)

Consider the paraboloid h(u, v) = u2 + v2.
Gaussian and mean curvatures;

K =
4

(4u2 + 4v2 + 1)2
,

H =
2(1+ 2v2 + 2u2)

(4u2 + 4v2 + 1)
3
2
.
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3.1. Visualization

Example (2)

Consider the cubic function h(u, v) = u3 + v3. We can calculate
th Gaussian and mean curvatures;

K =
36uv

(9u4 + 9v4 + 1)2
,

H =
3(u + 9uv4 + v + 9vu4).

(9u4 + 9v4+ 1)
3
2
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E4

4.3 Parallel surfaces in E4

4.4 Evolute surfaces in E4

4. Normal transport surfaces in E4

The normal transport surface eM of M are generalization of o¤set
surfaces to 4-dimensional Euclidean space E4 (Fröhlich, 2013).
Observe that, evolute surfaces and parallel type surfaces in E4

are the special type normal transport surfaces (Krivonosov, 1970),
(Cheshkova, 2001), (Fröhlich, 2013).
Parallel type surface are widely used in geometry and mathematical
physics (Fröhlich, 2013).
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E4

4.3 Parallel surfaces in E4
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4.1 Surfaces with Flat Normal Bundle

De�nition (1)

Let M be a local surface in En+2. The mean curvature vector
�!
H is

parallel in the normal bundle if and only if

(Hα)
?
u = 0, (Hα)

?
v = 0, (4.1)

holds (Fröhlich, 2013). Equivalently

(Hα)u i =
n

∑
β=1

HβT
αβ
i . (4.2)
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E4

4.3 Parallel surfaces in E4

4.4 Evolute surfaces in E4

The following result due to (Fröhlich, 2013).

Theorem (1)

The mean curvature vector
�!
H is called parallel in the normal

bundle if and only if the squared mean curvature
�!H 2of M is a

constant function.
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E4

4.3 Parallel surfaces in E4
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De�nition (2)

A local surface of En+2 is said to have �at normal bundle if and
only if the orthonormal frame N1, ...Nn of M is of torsion free.

Fact
The existence of �at normal bundle of M is equivalent to say that
normal curvature KN of M vanishes identically.

The following classi�cation result due to Chen from (Chen, 1972).

Theorem (2)

Let M be an immersed surface in En+2. If
�!
H 6= 0 is parallel in the

normal bundle then either M is a minimal surface of a hypersphere
of En+2, or it has �at normal bundle.
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4.2 Normal transport Surfaces

Let M and eM be two smooth surfaces in Euclidean 4-space E4 and
let ϕ : M ! eM be a di¤eomorphism. Then the surface eM
enveloping family of normal 2-planes to M is called the normal
transport of M in E4 (Fröhlich, 2013).
Further, let �!x be a position (radius) vector of p 2 M, and ex be
the position (radius) vector of the point ϕ(p) 2 eM.
Then the mapping ϕ : M ! eM has the form

ex = x +�!w , �!w 2 T?p M.

where,
���!
pϕ(p) = �!w (p), �!w (p) 2 T?p M is the normal vector to M.
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For the case
�!w (p) =

2

∑
i=1
fi (u, v)Ni (u, v),

the normal transport surface eM of M given by

eM : ex(u, v) = x(u, v) + 2

∑
i=1
fi (u, v)Ni (u, v), (4.3)

where fi (i = 1, 2) are o¤set functions (Fröhlich, 2013).
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The tangent space to eM at an arbitrary point p = ex(u, v) of eM is
spanned by

exu = xu + f1 (N1)u + f2 (N2)u + (f1)uN1 + (f2)uN2,exv = xv + f1 (N1)v + f2 (N2)v + (f1)vN1 + (f2)vN2. (4.4)

Further, using the Weingarten equation (2.6) we get

(N1)u = �
�
c111 xu + c

12
1 xv

�
+ T 121 N2

(N2)u = �
�
c112 xu + c

12
2 xv

�
� T 121 N1

(N1)v = �
�
c211 xu + c

22
1 xv

�
+ T 122 N2

(N2)v = �
�
c212 xu + c

22
2 xv

�
� T 122 N2.

(4.5)
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So, substituting (4.5) into (4.4) we get

exu = �1� f1c111 � f2c112 � xu � �f1c121 + f2c122 � xv
+
�
(f1)u � f2T 121

�
N1 +

�
(f2)u + f1T 121

�
N2,

(4.6)

exv = � �f1c211 + f2c212 � xu + �1� f1c221 � f2c222 � xv
+
�
(f1)v � f2T 122

�
N1 +

�
(f2)v + f1T 122

�
N2.

(4.7)
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De�nition (3)

i) The normal transport surface eMH given with the parametrizationeMH : ex(u, v) = x(u, v) +H1(u, v) N1(u, v) +H2(u, v) N2(u, v),
is called normal transport surface of H-type.
ii) The normal transport surface eMK given with the parametrizationeMK : ex(u, v) = x(u, v) +K1(u, v) N1(u, v) +K2(u, v) N2(u, v),
is called normal transport surface of K -type.
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4.3.Parallel surfaces in E4

De�nition (4)

The normal transport surface eM of M is called parallel surface of
M in E4 if the equality

hexui ,Nαi = 0, 1 � i , α � 2, (4.8)

holds for all Nα 2 T?p M (Fröhlich, 2013).
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E4

4.3 Parallel surfaces in E4

4.4 Evolute surfaces in E4

Let eM be a parallel surface of M in E4 with non-zero o¤set
functions f1 and f2. Then by use of (4.6) and (4.7) with (4.8) one
can get

0 = hexu ,N1i = (f1)u � f2T 121 ,
0 = hexv ,N1i = (f1)v � f2T 122 , (4.9)

0 = hexu ,N2i = (f2)u + f1T 121 ,
0 = hexv ,N2i = (f2)v + f1T 122 .

Di¤erentiating the �rst two equations and making use of the other
equations shows us

(f1)uv + f1T 122 T
12
1 � f2

�
T 121

�
v = 0, (4.10)

(f1)vu + f1T 121 T
12
2 � f2

�
T 122

�
u = 0.
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Thus a computation of the left hand sides of (4.10) brings

�f2
��
T 121

�
v �

�
T 122

�
u

	
= 0.

So, by the use of (2.19) we can conclude that the normal curvature
KN of M vanishes identically.
Consequently, we obtain the following result of (Fröhlich, 2013).

Theorem (3)

The normal transport surface eM of M is parallel if and only if M
has �at normal bundle.
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We obtain the following result.

Corollary (1)

The normal transport surface eM of M is parallel if and only if the
squared sum of the o¤set functions is constant, i.e.,

2

∑
i=1
f 2i (u, v) = const.

Proof.

From the expressions in (4.9) we get

(f1)u f1 + (f2)u f2 = 0,
(f1)v f1 + (f2)v f2 = 0.

(4.11)

which completes the proof.

Kadri Arslan NORMAL TRANSPORT SURFACES



1. Introduction
2. Basic Concepts

3. Generalized Focal Surfaces in E3

4. Normal Transport Surfaces in E4

5. References
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We give the following examples.

Example (3)

The normal transport surface eM of M is given with the patch

eX (u, v) = X (u, v) + r cos u N1(u, v) + r sin u N2(u, v),
is a parallel surface of M in E4.
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Example (4)

Rotation surfaces are de�ned by the following parametrization

M : X (s, t) = (r(s) cos s cos t, r(s) cos s sin t,

r(s) sin s cos t, r(s) sin s sin t)

where r(s) is a real valued non-zero function (Vranceanu, 1977).
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Example (Continue)

We choose a moving frame fe1, e2, e3, e4g (Yoon, 2001):

e1 =
1
r

∂

∂t
= (� cos s sin t, cos s cos t,� sin s sin t, sin s cos t),

e2 =
1
A

∂

∂s

=
1
A
(B cos t,B sin t,C cos t,C sin t),

e3 =
1
A
(�C cos t,�C sin t,B cos t,B sin t),

e4 = (� sin s sin t, sin s cos t, cos s sin t,� cos s cos t),
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Example (Continue)

where

A =
q
r2(s) + (r 0(s))2, B = r 0(s) cos s � r(s) sin s,

C = r 0(s) sin s + r(s) cos s.

The Gauss and mean curvatures of M are given by

K = KN =
(r 0)2 � rr 00

(r2 + (r 0)2)2
.

The normal transport surface eM of M is parallel if and only if
r(s) = αe(βs), for some constants α 6= 0 and β.
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I) Let M be a non-minimal local surface in E4 and eMH its normal
transport surface.
If eMH is a parallel surface of M in E4 then by Theorem 3 M has
vanishing normal curvature.
Furthermore, by the use of (4.11) we get

(H1)u H1 + (H2)u H2 = 0,

(H1)v H1 + (H2)v H2 = 0.

Thus,
�!H 2 = 2

∑
α=1

H2α is a constant function.

So, by Theorem 1 we conclude that the mean curvature vector
�!
H

of M is parallel in the normal bundle.
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Thus, we have proved the following result.

Theorem (4)

Let M be a non-minimal local surface in E4. Then the normal
transport surface eMH of M in E4 is parallel if and only if the mean
curvature vector

�!
H of M is parallel in the normal bundle.
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II) Let M be a non-�at local surface in E4 and eMK its normal
transport surface. If eMK is a parallel surface of M in E4 then by
Theorem 3 eMK has vanishing normal curvature. Furthermore, by
the use of (4.11) we get

(K1)u K1 + (K2)u K2 = 0,

(K1)v K1 + (K2)v K2 = 0.

Thus, we conclude that K =
2

∑
α=1

K 2α is a constant function, i.e., M

has constant Gauss curvature.
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Thus, we have proved the following result.

Theorem (5)

Let M be a non-�at local surface in E4. Then the normal
transport surface eMK of M in E4 is parallel if and only if the
Gaussian curvature of M is a non-zero constant.

Kadri Arslan NORMAL TRANSPORT SURFACES



1. Introduction
2. Basic Concepts

3. Generalized Focal Surfaces in E3

4. Normal Transport Surfaces in E4

5. References

4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E4

4.3 Parallel surfaces in E4

4.4 Evolute surfaces in E4

4.4 Evolute surfaces in E4

De�nition (5)

The normal transport surface eM of M is called evolute surface of
M in E4 if the equality
exui , xuj � = 0, 1 � i , j � 2, (4.12)

holds for all xuj 2 TpM (Cheshkova, 2001).
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Let eM be a evolute surface of M in E4. Then by use of (4.6) with
(4.12) we can get

0 = hexu , xui= �1-f1c111 -f2c112 � g11- �f1c121 +f2c122 � g21,
0 = hexu , xv i= �1-f1c111 -f2c112 � g12- �f1c121 +f2c122 � g22, (4.13)
0 = hexv , xui=- �f1c121 +f2c122 � g11+ �1-f1c221 -f2c222 � g21,
0 = hexv , xv i=- �f1c121 +f2c122 � g12+ �1-f1c221 -f2c222 � g22.
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From now on we assume that the surface patch x(u, v) satis�es
the metric condition g12 = 0. So the equations in (4.13) turn into

f1c111 + f2c
11
2 = 1,

f1c221 + f2c
22
2 = 1, (4.14)

f1c121 + f2c
12
2 = 0.

Consequently by the use of (4.14) with (2.14) we get

f1H1 + f2H2 = 1. (4.15)
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So, we obtain the following result.

Theorem (6)

Let M be local surface in E4 with g12 = 0. Then the normal
transport surface eM in E4 is evolute surface of M if and only if the
�rst and second mean curvatures H1, H2 satis�es the condition
f1H1 + f2H2 = 1.
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M. A. Cheshkova gave the following results;

Theorem (7)

Let M be local surface in E4. If the normal transport surface eM in
E4 is evolute surface of M then M has �at normal bundle.

Theorem (8)

The minimal surfaces have no evolutes.
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Example (5)

Let M is a translation surface x(u, v) = α(u) + β(v) in E4 , then
the translation curves α(u) = (α1(u), α2(u), 0, 0) and
β(v) = (0, 0, β1(v), β2(v)) are plane curves of mutually
orthogonal 2-planes. The surface eM = eα(u) + eβ(v) is a translation
surface, and its translation curves eα(u), eβ(v) are the evolutes of
the curves α(u), β(v)

ex(u, v) = α(u) +
1
κα
nα(u) + β(v) +

1
κβ
nβ(v)

= x(u, v) +
1
κα
nα(u) +

1
κβ
nβ(v).
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Example (Continue)

The tangent space to eM at an arbitrary point p = ex(u, v) of eM is
spanned by exu = � 1

κα

�0
nα(u),

exv = � 1
κβ

�0
nβ(v).

Consequently, the normal transport surface eM of M satis�es the
equality 
exui , xuj � = 0.
Hence, eM is the evolute of M (Cheshkova, 2001).
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