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1. Introduction

1. Introduction

v The 3D offsets or parallel surfaces are very widely used in many

applications;
B tool path generation for 3N machining (Mechawa, 1999)

and (Pham,1992),
B pre-process modifications to CAD geometry (Farouki,1985),

(Forsyth, 1995).
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1. Introduction

v' Focal surfaces are known in the field of line congruences (Hagen
and Pottmann. Focal surfaces are used in;

B visualization (Hagen and Pottmann,1991).

B surface interrogation tool in a NC-milling operation (Hagen
and Hahman, 1992).
v" The normal transport surfaces are the generalization of offset
surfaces in 4-dimensional Euclidean space IE* (Frohlich,2013).
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2. Basic Concepts

2. Basic Concepts

We recall definitions and results of (Fréhlich,2013).

Let M be a local surface in IE"*2 given with the regular patch
x(u,v): (u,v) € D C B2

The tangent space T,(M) to M at an arbitrary point p = x(u, v)
of M is spanned by {x,, x, }.

For the coefficients

81 = (Xu, Xu) 8 = (Xus Xv) 822 = (Xv, Xv) (2.1)

the first fundamental form of M is given by

2
ds* = Y gydu'di. (2.2)
ij=1
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2. Basic Concepts

The Gauss equation of the surface M is given by

2 n
Xyiyi = qu,.xuj = Z I—'Z-Xuk + Z CZéN,X, (23)
k=1 a=1
where
cg = (Xyig, Na); c,-? =cf, (2.4)

are the coefficients of the second fundamental form and

VIR VI Y
k ki J li_ O8ij
Ly ;g <8uf Y 8u’> ' (2.5)

Christoffel symbols corresponding to x(u, v).
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2. Basic Concepts

The Weingarten equation of the surface M is given by

2 . n
(No)y = Vi No = = Y e + Y TN, (2.6)
k=1 p=1
where )
=Y et =l @7)
j=1

are the Weingarten forms of M with respect to N,

T = ((No)yis ) TP = =T i =12, (28)
torsion coefficients and
ij 1 822 —8i12 ]
AY == . 2.9
(g )"1:1'2 g [ —81 811 (29)
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2. Basic Concepts

The Gaussian curvature of the surface M is defined by

n N A a2
K — Z K, K, = €112 : (cfp) . (2.10)
a=1

The Gaussian curvature vanishes M is called flat surface.
Observe that
Ky = cilc? — (c2?)2. (2.11)
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2. Basic Concepts

The mean curvature vector field ﬁ of the surface M is defined

by
n
H =Y HN, (2.12)
a=1
where
13 - b+ gy, — 2goct
Ho=5 ). gl = &2 g“z;? 829 - (2.13)

The mean curvature H of M is defined by H = HﬁH

The mean curvature (vector) vanishes M is called minimal.
Observe that T
C,m T ¢

Hy = =

(2.14)
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2. Basic Concepts

The curvature tensor of the normal bundle NM of the surface
M is defined by

5= (1), = (77),+ 5 (777 - 7o),

2
= Y (cnch—cluch) g™1<wp<n
m,n=1

(2.16)
The equality

)4 1 /4

is called the normal sectional curvature with respect to the plane
IT = span {x,, x, }.
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2. Basic Concepts

For the case n = 2 the scalar curvature of its normal bundle is

defined as
1

VE&

which is also called normal curvature of the surface M in [E*.
Observe that

Ky = Sif = —Si3. (2.18)

1
Ky = — ((T¥?) —(T#%) ). 2.19
(1), (1)) 219
We observe that the normal connection D of M is flat if and
only if Ky =0, and by a result of Cartan, this equivalent to the
diagonalisability of all shape operators Ay, of M, which means
that M is a totally umbilical surface in E"+2.
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3. Generalized Focal Surfaces in E° 3.1. Visualization

3. Generalized Focal Surfaces in E3

Given a set of unit vectors E(u, v) one can define a line

congruence:

C(u,v) =x(u,v)+ D(u,v)E(u,v) (3.1)
where D(u, v) is called the signed distence between X (u, v) and
E(u,v).

If E(u,v) = N(u,v), then C is normal congruence.
A focal surface Cg(u, v) is a special normal congruence with
D(u,v) = k; *(u,v) or D(u,v) = ky*(u,v) :

Cr(u,v) = x(u, v)—l—kfl(u, v)N(u,v), =12 (3.2)
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3. Generalized Focal Surfaces in E° 3.1. Visualization

The generalization of this classical concept leads to the
generalized focal surfaces:

y(u,v) = x(u,v)+ F(ki, ka)N(u, v), (3.3)

where N is the unit normal vector of the surface x(u, v) and F is a
real valued function (offset function) in the parameter values u
and v (Hahmann,1999).

Kadri Arslan NORMAL TRANSPORT SURFACES



3. Generalized Focal Surfaces in E° 3.1. Visualization

If the offset function F depends on the principal curvatures k; and
ko of M then one can choose the variable offset function as;

F = kiko, Gaussian curvature,

F = %(kl + k2), mean curvature,

F= k12 + k2, energy functional,

F = |ki| + | k2| , absolute functional,

F =k;,1 <i<2, principal curvature,

F = k% focal points,

No o e b=

F = const., parallel surface.
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. g
3. Generalized Focal Surfaces in E°

The different offset functions listed above can now be used to
interrogate and visualize surfaces with respect to the following
criteria:

B convexity test,

B detection of flat points,

B detection of surface integration,

B visualization of curvature behaviour,

B visualization of technical smoothness,

B visualization of C2 and C3 discontinuities,

B test of technical aspects.

Kadri Arslan NORMAL TRANSPORT SURFACES



3. Generalized Focal Surfaces in E° 3.1. Visualization

In (Ozdemir and ——,2008) the following offset functions are used
to construct general focal surfaces;

a. F = K, Gaussian curvature,

b. F = H, mean curvature,

c. F =K — H, diference of the curvatures,

d. F=H+VH?>—Kor
F = H — v/H? — K principal curvature,

e.
f. F = 4H? — 2K, energy functional,

g. F= ‘H+ VvV H? — K’ +|H—+VH? — K’ . absolute curvature,
h. F = c offset surfaces.
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3. Generalized Focal Surfaces in E3 3.1. Visualization

3.1. Visualization

Translation surfaces in 3-dimensional Euclidean space [E3 are
given with the paremetrization

x(u,v) = (u, v, h(u,v)); h(u,v) = f(u)+g(v).

In (Ozdemir and ——,2008) we give some examples of generalized
focal surfaces of traslation surfaces;
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3. Generalized Focal Surfaces in E3 3.1. Visualization

Example (1)

Consider the paraboloid h(u, v) = u? + v2.
Gaussian and mean curvatures;

4
(4u? +4v2 +1)2°

. 2(1+2v2 +2u?)
(42 +4v2 +1)3
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3. Generalized Focal Surfaces in E3 3.1. Visualization

)
L
AT ;
SO N 1
“-v.\\“‘\\“ﬁ’o’o‘o%'fll"f;!’ ! \ 117

Kadri Arslan NORMAL TRANSPORT SURFACES



3. Generalized Focal Surfaces in E3 3.1. Visualization
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3. Generalized Focal Surfaces in E°
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3. Generalized Focal Surfaces in E3 3.1. Visualization

Example (2)
Consider the cubic function h(u, v) = u® + v3. We can calculate

th Gaussian and mean curvatures;

36uv
(9u* +9v4 +1)2

3(u+9uvt + v + 9wut).
(9u* +9v4 +1)3

H =
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3. Generalized Focal Surfaces in E3 3.1. Visualization
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3. Generalized Focal Surfaces in E°
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4.1 Surf at Normal Bundle
4 mal S s in E*
4 o <

4. Normal Transport Surfaces in E* 44'

4. Normal transport surfaces in E4

The normal transport surface M of M are generalization of offset
surfaces to 4-dimensional Euclidean space IE* (Frshlich, 2013).
Observe that, evolute surfaces and parallel type surfaces in E*
are the special type normal transport surfaces (Krivonosov, 1970),
(Cheshkova, 2001), (Frohlich, 2013).

Parallel type surface are widely used in geometry and mathematical
physics (Frohlich, 2013).
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E*
4.3 Parallel in E*
4.4 Evolute surfaces in E*

4.1 Surfaces with Flat Normal Bundle

4. Normal Transport Surfaces in E*

Definition (1)

ﬂ
Let M be a local surface in E"*2. The mean curvature vector H is

parallel in the normal bundle if and only if
(Fo)y =0, (M), =0, (41)

holds (Frohlich, 2013). Equivalently

(Hu)y = Y Hp TP (4.2)
B=1
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Tra rt Surfaces

4. Normal Transport Surfaces in E*

The following result due to (Frohlich, 2013).

—_—
The mean curvature vector H is called parallel in the normal

—12
bundle if and only if the squared mean curvature H H H of M is a
constant function.
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal port Surfaces in E*

4. Normal Transport Surfaces in E*

Definition (2)

A local surface of E"*? is said to have flat normal bundle if and
only if the orthonormal frame Ny, ...N, of M is of torsion free.

Fact

The existence of flat normal bundle of M is equivalent to say that
normal curvature Ky of M vanishes identically.

The following classification result due to Chen from (Chen, 1972).

Let M be an immersed surface in E"2. If H # 0 is parallel in the
normal bundle then either M is a minimal surface of a hypersphere
of E"*2, or it has flat normal bundle.
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4.1 Surf Flat Normal Bundle

4. Normal Transport Surfaces in E*

4.2 Normal transport Surfaces

Let M and M be two smooth surfaces in Euclidean 4- space E* and
let ¢ : M — M be a diffeomorphism. Then the surface M
enveloping family of normal 2-planes to M is called the normal
transport of M in E* (Frohlich, 2013).

Further, let X be a position (radius) vector of p € M, and X be
the position (radius) vector of the point ¢(p) € M.

Then the mapping ¢ : M — M has the form

X=x+W, WeT,M.

—

where, pp(p) = W(p), W(p) € T;-M is the normal vector to M.
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4.1 Sur ith Flat Normal Bundle
4.2 Normal Transport Surfaces in E*

. s in [E*
4. Normal Transport Surfaces in E* o A

For the case

where f; (i =1,2) are offset functions (Frohlich, 2013).
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4. Normal Transport Surfaces in E*

The tangent space to M at an arbitrary point p = X(u, v) of M is

spanned by
Xy =xy + i (M), +f (N2), + (f)uNr + () uNo, (4.4)
X =x (M), + 6 (Na), + () Ny + () Na. '
Further, using the Weingarten equation (2.6) we get
(Ng)u:—< Xu+C V) Ti2N, (4.5)
(N1), = — (Cl Xu+c2x) + T32 Ny -
(NQ)V = ( Xu+62 XV) T12N2.
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4. Normal Transport Surfaces in E*

So, substituting (4.5) into (4.4) we get

%o = (1— Ackt — hell) x, — (A + Hhel?) x,

S ((B)e— BT M+ (B)o+ ATR) Ny, (4O

% = — (A2 + H2) x, + (1— A — Hc) x,

+ ((A)y — BT M+ ((R)y + A TE) Ny, (4.7)
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4.1 Surfaces with Flat Normal Bundle
4.2 Normal Transport Surfaces in E*
4.3 Parallel sur

i 4
4. Normal Transport Surfaces in [E 4.2 Evolute surfa

Definition (3)

i) The normal transport surface My given with the parametrization
My = %(u,v) = x(u, v) + Hy(u, v) Ny(u,v) + Ho(u, v) No(u, v),

is called normal transport surface of H-type.
ii) The normal transport surface My given with the parametrization

My = X(u,v) = x(u, v) + Ki(u, v) Ni(u,v) + Ka(u,v) Na(u, v),

is called normal transport surface of K-type.
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4.1 Surfac ith Flat Normal Bundle
4.2 Normal Transport Surfaces in E*
4.3 Parallel surfaces in E*
4.4 Evolute surfaces in E*

4. Normal Transport Surfaces in E*

4.3.Parallel surfaces in E4

Definition (4)

The normal transport surface M of M is called parallel surface of
M in [E* if the equality

(Xu No) =0, 1 <i,a <2, (4.8)

holds for all N, € TPLI\/I (Frohlich, 2013).
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4.3 Parallel surfac
4.4 Evolute surf

4. Normal Transport Surfaces in E*

Let M be a parallel surface of M in IE* with non-zero offset
functions f; and f;. Then by use of (4.6) and (4.7) with (4.8) one

can get
0 (s N1) = (R)y — H T
0 = (X% M)=(h) —HT? (4.9)
0 = %Mo) =(h)y+ AT
0 = (X, M) =(h), +ATF?

Differentiating the first two equations and making use of the other
equations shows us

(A)w + AT T = £ (T17),
(A)w +ATET — 6 (T32), =

(4.10)

|
SRS
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4.1 Surfa th Flat Normal Bundle
4.2 Normal Tra urfaces in E*
4.3 Parallel

4.4 Evolute sur

4. Normal Transport Surfaces in E*

Thus a computation of the left hand sides of (4.10) brings

-£{(1%), - (12°),} =0.

So, by the use of (2.19) we can conclude that the normal curvature
Ky of M vanishes identically.
Consequently, we obtain the following result of (Frohlich, 2013).

The normal transport surface M of M is parallel if and only if M
has flat normal bundle.
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4.1 Surfac th Flat Normal Bundle
4.2 Norma ansport Surfaces in E*

4.3 Parallel surfaces in E*

R4
4. Normal Transport Surfaces in [E 4.4 Evolute surfaces in E4

We obtain the following result.

Corollary (1)

The normal transport surface M of M is parallel if and only if the
squared sum of the offset functions is constant, i.e.,

f?(u, v) = const.

2
=l

]

Proof.

From the expressions in (4.9) we get

(A)uh + (R)uf =0,

(f)vh + (f),fh = 0. (4.11)

which completes the proof. Ol
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4.1 Surf: h Flat Nor
4.2 Normal Tr ort Surf

4.3 Parallel surfaces in ]E“‘
4.4 Evolute surfa n E*

4. Normal Transport Surfaces in E*

We give the following examples.

The normal transport surface M of M is given with the patch

X(u,v) = X(u,v) +rcosu Ny(u,v) + rsinu No(u,v),

is a parallel surface of M in E*.
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4.1 Sur ith Flat Normal Bundle
4.2 Normal Transport Surfaces in E4

4.3 Parallel surfaces in ]E“‘

R4
4. Normal Transport Surfaces in [E 4.2 Evolute surfaces in 4

Example (4)

Rotation surfaces are defined by the following parametrization

M : X(s,t) = (r(s)cosscost,r(s)cosssint,

r(s)sinscost, r(s)sinssint)

where r(s) is a real valued non-zero function (Vranceanu, 1977).
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4.1 Surfa vith Flat Normal Bundle
4.2 Normal Transport Surfaces in E*
4.3 Parallel surfaces in E*

R4
4. Normal Transport Surfaces in [E 4.4 Evolute surfaces in E4

Example (Continu

We choose a moving frame {e;, e, e3, &4} (Yoon, 2001):
10
g = ——
! r ot
= (—cosssin t,cosscost, —sinssint, sin s cos t),
10
e Ads
1
= Z(Bcost,Bsin t,Ccost, Csint),
1
e = Z(—Ccost,—Csint,Bcost,Bsint),
es = (—sinssint,sinscost,cosssint, —cosscost),
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4.1 Surfac ith Flat Normal Bundle
4.2 Normal Transport Surfaces in E*
4.3 Parallel surfaces in E*
4.4 Evolute surfaces in E*

4. Normal Transport Surfaces in E*

Example (Continue)

where
A = \/rz(s) +(r'(s))2, B =r'(s)coss—r(s)sins,
C = r(s)sins+r(s)coss.

The Gauss and mean curvatures of M are given by

(r/)2 —

K=Ky = (2 + (r’)z)z.

The normal transport surface M of M is parallel if and only if
r(s) = aelPs), for some constants « # 0 and B.
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4.1 Sur ith Flat Normal Bundle
4.2 Normal Transport Surfaces in E4
4.3 Parallel surfaces in E*

g y
4. Normal Transport Surfaces in [E 4.2 Evolute surfaces in 4

1) Let M be a non-minimal local surface in E* and My its normal

transport surface.
If My is a parallel surface of M in E* then by Theorem 3 M has

vanishing normal curvature.
Furthermore, by the use of (4.11) we get

(H1), Hi + (H2) , H. = 0,
(Hl)le+(H2)vH2 = 0.

Thus, H H H E H2 is a constant function.

—
So, by Theorem 1 we conclude that the mean curvature vector H

of M is parallel in the normal bundle.
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4.1 Surf: h Flat Nor
4.2 Normal Tr ort Surf
4.3 Parallel surfaces in E*
4.4 Evolute surfa n E*

4. Normal Transport Surfaces in E*

Thus, we have proved the following result.

Theorem (4)

Let M be a non-minimal local surface in E*. Then the normal

transport surface My of M in E* is parallel if and only if the mean
—

curvature vector H of M is parallel in the normal bundle.
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4.1 Sur ith Flat Normal Bundle
4.2 Normal Transport Surfaces in E4
4.3 Parallel surfaces in E*
4.4 Evolute surfaces in E*

4. Normal Transport Surfaces in E*

1) Let M be a non-flat local surface in E* and My its normal
transport surface. If M is a parallel surface of M in E* then by
Theorem 3 Mk has vanishing normal curvature. Furthermore, by
the use of (4.11) we get

(K1), K1+ (K2), K2 = 0,
(K1), K1+ (K2), Ko
2
Thus, we conclude that K = Z K{f is a constant function, i.e., M
a=1

has constant Gauss curvature.
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4.1 Surf: h Flat Nor
4.2 Normal Tr ort Surf

4.3 Parallel surfaces in ]E“‘
4.4 Evolute surfa n E*

4. Normal Transport Surfaces in E*

Thus, we have proved the following result.

Let M be a non-flat local surface in E*. Then the normal
transport surface Mk of M in E* is parallel if and only if the
Gaussian curvature of M is a non-zero constant.

Kadri Arslan NORMAL TRANSPORT SURFACES



4.1 Surfac ith Flat Normal Bundle
4.2 Normal Tra rt Surfaces in E*
4.3 Parallel surfaces in E*
4.4 Evolute surfaces in E*

4. Normal Transport Surfaces in E*

4.4 Evolute surfaces in E4

Definition (5)

The normal transport surface M of M is called evolute surface of
M in [E* if the equality

(Xujxy) =0, 1<4,j <2, (4.12)

holds for all x,, € T,M (Cheshkova, 2001).
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al Bundle

4. Normal Transport Surfaces in E*

Let M be a evolute surface of M in IE*. Then by use of (4.6) with
(4.12) we can get

0 = (Xuxy)= (1 ficit-hes )g11- (f1C112+f2C212) &1,

0 = (Xux)=(1-ficit -f2c2 Y g1o- (Act®+hca?) g, (4.13)
0 = (X, xy) -(f1C +hc)?) g+ (1-Acf>-fHc3%) go,

0 = &Kvoxy)=- (fl ’1ha ) g2+ (1-f1C122-f2C222) 2.
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al Bundle

4. Normal Transport Surfaces in E*

From now on we assume that the surface patch x(u, v) satisfies
the metric condition gj» = 0. So the equations in (4.13) turn into

Ac'+hg! = 1,
Ac? +ha? = 1, (4.14)
fici? + ho? = 0.

Consequently by the use of (4.14) with (2.14) we get

fiH1 + HhHy, = 1. (4.15)
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4.1 Sur ith Flat Normal Bundle
4.2 Normal Tra rt Surfaces in E*

4.3 Parallel surfac E*

) 3
4. Normal Transport Surfaces in [E 4.4 Evolute surfaces in 4

So, we obtain the following result.

Theorem (6)

Let M be local suerace in E* with gio = 0. Then the normal
transport surface M in IE* is evolute surface of M if and only if the

first and second mean curvatures Hy, H> satisfies the condition
fiiH + HhHy = 1.
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4.1 Sur ith Flat Normal Bundle
4.2 Normal > r s in E*

4.3 Parallel faces

i B4
4. Normal Transport Surfaces in [E 4.4 Evolute surfaces in 4

M. A. Cheshkova gave the following results;

Let M be local surface in E*. If the normal transport surface M in
E* is evolute surface of M then M has flat normal bundle.

Theorem (8)
The minimal surfaces have no evolutes.
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4. Normal Transport Surfaces in E*

Example (5)

Let M is a translation surface x(u, v) = a(u) + B(v) in E* , then
the translation curves a(u) = (a1(u), a2(v),0,0) and

B(v) = (0,0,B;(v),B,(v)) are pIane curves of mutually
orthogonal 2-planes. The surface M = &(u) 4 B(v) is a translation
surface, and its translation curves @(u), B(v) are the evolutes of
the curves a(u), B(v)

- 1 1
A, = el 3 —mel) =) 4 ;ﬁnﬁ(V)

= x(u,v)+ Klana(u) + Klﬁn,g(v).
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4.1 Surfac ith Flat Normal Bundle
4.2 Normal Tra rt Surfaces in E*
4.3 Parallel surfaces in E*

i B4
4. Normal Transport Surfaces in [E 4.4 Evolute surfaces in 4

Example (Continue)

The tangent space to M at an arbitrary point p = X(u, v) of M is
spanned by

%= (&) mlv),
% = (Kiﬁ)'nﬁ(v).

Consequently, the normal transport surface M of M satisfies the
equality
<§u,-,Xuj> = 0.

Hence, M is the evolute of M (Cheshkova, 2001).
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