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.. Outline

...1 History of Geometric flow, De Rios flow and Hashimoto
transformation and Schrödinger equations

...2 Integrability(Bi-Hamiltonian equations)

...3 Natural framing of Bishop, generalization to sphere

...4 Cartan Structure equation on the flow in Symmetric spaces

...5 definition of parallel frame in symmetric spaces, example:
sphere

...6 Local and Non-local Schrödinger Equation on Hermitian
symmetric spaces,
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.. Example of geometric curve flows

.
Motion of vortex filament(Hasimoto 1972, De Rios, 1918(Student
of Levi Civita))
..

......

γ⃗t = T⃗ ∧ T⃗x = κB⃗

Then the dynamical variable

u = κe i
∫
τdx ,

satisfy

−iut = uxx +
1

2
|u|2u, NLSE .

Here T := γx is the x−flow direction and γt is t−flow direction
and γ is a flow of curves swapping a surface in R3.
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.. Change of framing along curve

.
(Langer, Perline) and (Doliwa, Santini)
..

......

Hasimoto transformation given by So(2) rotation of N⃗, B⃗ through
angle θ = −

∫
τdx in normal plane, yields frame {T⃗ , n⃗, b⃗} :T⃗
n⃗

b⃗

 =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)


T⃗

N⃗

B⃗


called Parallel frame or Natural frame and transport equation
becomesT⃗

n⃗

b⃗


x

=

 0 κcos(θ) κsin(θ)
−κcos(θ) 0 0
−κsin(θ) 0 0

T⃗
n⃗

b⃗
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The Natural frame satisfies Transport eq.T⃗
n⃗

b⃗


x

=

 0 Re(u) Im(u)
−Re(u) 0 0
−Im(u) 0 0

T⃗
n⃗

b⃗

 ,

with u := κe iθ = κ cos(θ) + iκ sin(θ)
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.. Drivation of NLS equation

Take the Lax pair

Φx = UΦ, Φt = VΦ

in which Φ =
(
T⃗ n⃗ b⃗

)T
∈ SO(3), is the natural frame. Let

V =

 0 Re(w∥) Im(w∥)
−Re(w) 0 w⊥
−Im(w∥) −w⊥ 0

 = ω(Dt), (1)

U =

 0 Re(u) Im(u)
−Re(u) 0 0
−Im(u) 0 0

 = ω(Dx) (2)

in which ω is so(3)−Cartan connection applied to vector fields Dx

and Dt .
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Drivation of NLS equation(Hashimoto,
1972,Sanders-Wang-Beffa 2003 )

Let also
γx = T ,

γt = h∥T⃗ + Re(h⊥)⃗n + Im(h⊥)b⃗

compatibility condition
γxt = γtx

for flow direction then yield the following equations for h∥,w
⊥ in

terms of h⊥:
h∥ = iD−1

x Re(ūh⊥)

w∥ = I(h⊥), I = Dx + iuD−1
x Re(ū.)
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.. Continue:Drivation of NLS equation

Compatibility condition
(
T⃗ n⃗ b⃗

)T

xt
=

(
T⃗ n⃗ b⃗

)T

tx
for the

frame gives:

Vx − Ut + [U,V ] = 0, Called Zero curvature equation

which yields following equation for ut in term of w∥ :

ut = H(w∥), H = Dx − iuD−1
x Im(ū.)

The Hamiltonian H and Symplectic operator J are compatible. So
R = HJ gives mKdV/NLS(To be found later on) recursion
operator.
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.. Continue:Drivation of mKdV and NLS equation

The Hamiltonian operator H and Symplectic operator are
symmetric under x−translation and phase rotation on u. So if we
take h⊥ = iu then we get NLS equation:

ut = iuxx + 1/2|u|2u

Notice that in this case clearly h∥ = 0 and so

γt = h∥T⃗ + Re(h⊥)⃗n + Im(h⊥)b⃗ = −Im(u)⃗n + Re(u)b⃗ = T⃗ ∧ Tx

and if h⊥ = ux then we get mKdV equation:

ut = uxxx + 3/2|u|2u.

and so the flow equation is given as

γt = h∥T⃗ + Re(h⊥)⃗n + Im(h⊥)b⃗

= ∇γxγx + (1 +
1

2
i)|∇γxγx |2γx
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.. Algebraic characterization of parallel frames:Bishop(AMM)

Stabilizere group of T⃗ consists of So(2) rotations in normal plane
at each point along the curve γ. Indeed So(2) ⊂ SO(3) is the
gauge group of frame bundle and(

0 a⃗
−a⃗t A

)
︸ ︷︷ ︸

∈so(3)

=

(
0 0⃗

−0⃗t A

)
︸ ︷︷ ︸

∈so(2)

+

(
0 a⃗

−a⃗t 0

)
︸ ︷︷ ︸

so(2)⊥

The action of infinitesimal rotation so(2) preserves class of frames
(T⃗ , 0, 0)T adapted to γ.
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.. Properties of parallel connection matrix

The matrix belongs to the perp space so(2)⊥ of infinitesimal
stabilizer group so(2) ⊂ so(3). and is preserved by infinitesimal
rigid (x-independent) rotations so(2)1 0 0

0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)


with θ constant and soT⃗

n⃗

b⃗

 7→

T⃗
n⃗1
b⃗1

 =

 T⃗

cos(θ)⃗n + sin(θ)b⃗

− sin(θ)⃗n + cos(θ)b⃗

 (3)

u
.here7→ e−iθu (4)

That is, u is U(1) covariant.
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.. Generalization

Here we have already considered R3 = Euc(3)/So(3) as flat
Riemannian symmetric spaces in which Euc(3) is isometry group
and So(3) is the gauge group of frame bundle or as is seen as
isotropy group at origin.
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Generalization to simplest compact Symmetric space:
sphere

Take M = Sn = SO(n + 1)/SO(n) Then the Cartan Matrix
ω(Dx) ∈ so(n) ⊂ so(n + 1) will be given by0 0 0

0 0 u
0 −uT 0

 , u ∈ Rn − 1

In this case the Cartan subspace of this symmetric space which 1
dim is given by

e :=

 0 1 0
−1 0 0
0 0 0


Then the Cartan matrix lies in complement of the

Cso(n)(ee) =

0 1 0
0 0 0
0 0 so(n − 1)

 = so(n − 1).

Non-local and local Non-linear Schrödinger Equation from Geometric Curve flows in Low dimensional Hermittian Symmetric spaces



.....
.
....
.
....
.
....
.

.. Klein geometries, Riemannian symmetric space

.

......

M = G/H, G = semisimple Lie group

H = Lie subgroup invariant under an involutive automorphism

View G as a principal H−bundle over M : Local trivialization:

ψ : U ⊂ M → G ≈ U × H

is a section of bundle over coordinate chart.

.

......

Ω = Maurer-Cartan form on G : Flat connection 1−form

Ωψ = pull back of Ω to U ⊂ M by ψ

dΩψ +
1

2
[Ωψ,Ωψ] = 0 : Zero curvature equation
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.. Frame bundle structure

.
Coframe and Connection
..

......

Ωψ = e + ω, g− valued 1−form on M
e : TxM → m = ToM = g/h, ω : TxM → h = Lie(H)

.
Zero-curvature equation
..

......

dΩψ + 1
2 [Ωψ,Ωψ] = 0 : ”Zero curvature equation” leads to

”Cartan structure equations”:

de + [ω, e] = 0 (∗)
dω + 1

2 [ω, ω] = −1
2 [e, e] (∗∗)

Note here that g = m⊕ h in which the following bracket relation
holds:

[m,m] ⊂ h, [h,m] ⊂ m, [h, h] ⊂ h
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Cartan subspace in symmetric space and highly
non-singular elelemnts of it

Take a Cartan subspace a in m. Then take an element e ∈ a such
that the centralizer of it in h is of maximal dimension. Notaion:

h∥ := Ch(e), m∥ := Cm(e)

and consider their complements in g w.r.t Killing form call them
h⊥, m⊥ so that m = m∥ ⊕m⊥, h = h∥ ⊕ h⊥ Important:
ad(e) : m⊥ 7−→ h⊥ is invertible and Bracket relation:

[m∥,m∥] ⊆ h∥, [m∥, h∥] ⊆ m∥, [h∥, h∥] ⊆ h∥, (5)

[h∥,m⊥] ⊆ m⊥, [h∥, h⊥] ⊆ h⊥, (6)

[m∥,m⊥] ⊆ h⊥, [m∥, h⊥] ⊆ m⊥, (7)

while the remaining Lie brackets

[m⊥,m⊥], [h⊥, h⊥], [m⊥, h⊥] (8)

obey the general relations .
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.. H-Parallel frame and Curve flows

.

......

γ : R 7−→ M = G/H
ex = γx⌋e =
frame components of tangent vector along γ, ex ∈ m.
ωx = γx⌋ω =
components of connection in tangent direction ωx ∈ h

.
Cartan subspace
..

......

fixed an element ex in any maximal abelian subspace a ⊂ m
Choose ωx ∈ h⊥,

.

......

above choices yields framing along γ via ”transition equation”

∇x = −ad(ωx)e

generalizes parallel framing of space curves in
Re3 = Euc(3)/So(3).
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Example of Riemannian symplectic space of symplectic
gauge groups: Sp(n + 1)/Sp(1)× SP(n) and
SU(2n)/Sp(n)(Anco-A.-J. Phys A.2012)

.
Matrix connection ωx : Sp(n + 1)/Sp(1)× SP(n)–Quaternionic
version!
..

......

ωx =

u 0 0
0 −u u
0 −ut 0

 ∈ h⊥.

Covariants of γ : sp(1)× sp(n − 1)

.
Matrix connection for SU(2n)/Sp(n)
..

......

ωx =

(
0 u

−ut 0

)
∈ h⊥.

Covariants of γ : sp(1)× sp(n − 1)
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.. Hermitian symmetric space SU(n + 1)/U(n)

elements of h,m(
−tr(C) 0

0 C

)
:= (C) ∈ h = u(n), C ∈ u(n)(

0 a
−at

)
:= (a) ∈ m = Cn, a ∈ Cn

choice of ex of Cartan subspace a. the space is of rank 1. so there
is only one choice:

ex = (1, 0) ∈ m = Cn, 0 ∈ Cn−1

The perp and parallel subspaces:
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.. perp and parallel subspace

((
−1

2 tr(C∥) 0
0 C∥

))
:= (C∥) ∈ h∥ ⊂ h, C∥ ∈ u(n − 1)((

ic⊥ c⊥
−c⊥ 0

))
:= (ic⊥, c) ∈ h⊥ ⊂ h, c ∈ Cn−1, c⊥ ∈ R

(a∥) := ((a∥, 0)) ∈ m∥ ⊂ m, a∥ ∈ R
(ia⊥, a⊥) := ((ia⊥, a⊥)) ∈ m⊥ ⊂ m, a ∈ Cn−1, a⊥ ∈ R
ex = (1, 0) = (1) ∈ m∥
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.. Flow direction

Flow directions:

e =
1
√
χ
(1, 0) ∈ R⊕ Cn−1 ≃ m∥, χ = const. (9)

u = (iu,u) ∈ iR⊕ Cn−1 ≃ h⊥, (10)

h∥ = (h∥) ∈ R ≃ m∥, (11)

h⊥ = (ih⊥,h⊥) ∈ R⊕ Cn−1 ≃ m⊥, (12)

ϖ∥ = (Θ) ∈ u(n − 1) ≃ h∥, (13)

ϖ⊥ = (iw,w) ∈ iR⊕ Cn−1 ≃ h⊥, (14)

as well as

h⊥ = (ih⊥,h⊥) = ad(e)h⊥ =
1
√
χ
(−2ih⊥,−h⊥) ∈ iR⊕Cn−1 ≃ h⊥

(15)
hence

h⊥ = −√
χ
1

2
h⊥, h⊥ = −√

χh⊥
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Local NLS system:Let The J0 = (iI ) ∈ h∥ be u1 subalegbras of
h∥ = u(n − 1). then let

(ih⊥,h⊥) = h⊥ := ad(J0)u = (0, iλu), λ = const. = −1

2
(n−1)−1

Hence putting
h⊥ = 0, h⊥ = λiu

in the adapted flow equations Then NLS type equation is derived as

1

λχ
iut = i|u|2

1

λχ
ut = iuxx + iu[(u2 + |u|2)− iux ]
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.. Hermittian symmetric space of SP(2)/U(2)

choose ex = iI = i(E11 + E22). The parallel and perp
representation of m and h is given by(

iIm(a11) iIm(a12)
iIm(a12) iIm(a22)

)
∈ m∥,

(
Re(a11) Re(a12)
Re(a12) Re(a22)

)
∈ m⊥

(16)(
0 Re(c12)

−Re(c12) 0

)
∈ h∥ = u(1),

(
c11 iIm(c12)

iIm(c12) c22

)
∈ h⊥

(17)

in which c11, c22 ∈ iR
Now take the matrix

J0 :=

(
0 1
−1 0

)
generator of h⊥. Then we wanted to displite all parallel and perp
subspace into invariant and complex variable.
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.. flow direction

e =
1
√
χ
(1, 0) ∈ R⊕ C ≃ m∥, χ =??? (18)

u = (u,u) ∈ R⊕ C ≃ h⊥, (19)

and

h∥ = (h∥,h∥) ∈ R⊕ C ≃ m∥, (20)

h⊥ = (h⊥,h⊥) ∈ R⊕ C ≃ m⊥, (21)

ϖ∥ = (Θ) ∈ u(1) ≃ h∥, (22)

ϖ⊥ = (w,w) ∈ R⊕ C ≃ h⊥, (23)

as well as

h⊥ = (h,h) = ad(e)h⊥ =
1
√
χ
(2h⊥, 2ih⊥) ∈ R⊕ C ≃ h⊥ (24)
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.. Non-local NLS

ut = u|u|2 + Re(ūxD
−1
x (uu)) (25)

ut = i
(1
4
uxx +

1

2
u|u|2 ++u2u+ uxD

−1
x (uu) + 2u|D−1

x (uu)|2
)
(26)
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.. Thank you
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More

.. U(1)-covariant

 0 κ1 κ2
−κ1 0 0
−κ2 0 0

T⃗
n⃗1
b⃗1

 =

T⃗
n⃗1
b⃗1


x

=

 Re(u)⃗n + Im(u)b⃗(
cos(θ)Re(u)− sin(θ)Im(u)

)
T⃗(

sin(θ)Re(u)− cos(θ)Im(u
)
)T⃗


Hence we can drive that

Re(u1) := κ1 = cos(θ)Re(u) + sin(θ)Im(u) = Re(e−iθu) (27)

Im(u1) := κ2 = − sin(θ)Re(u) + cos(θ)Im(u) = Im(e−iθu) (28)

Thus
u1 = e−iθu

Back to .main .
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