Non-local and local Non-linear SchrOdinger Equation from Geometric Curve flows in Low dimensional Hermittian Symmetric spaces

Esmaeel Asadi Joint with Stephen Anco and A.M.G. Ahmed

Institute for Advance studies in Basic science, Zanjan, Iran

June 7, 2015

Outline

- History of Geometric flow, De Rios flow and Hashimoto transformation and Schrödinger equations
- Integrability(Bi-Hamiltonian equations)
- Satural framing of Bishop, generalization to sphere
- **6** Cartan Structure equation on the flow in Symmetric spaces
- definition of parallel frame in symmetric spaces, example: sphere
- Local and Non-local Schrödinger Equation on Hermitian symmetric spaces,

Motion of vortex filament(Hasimoto 1972, De Rios, 1918(Student of Levi Civita))

$$\vec{\gamma}_t = \vec{T} \wedge \vec{T}_x = \kappa \vec{B}$$

Then the dynamical variable

$$u = \kappa e^{i \int \tau dx},$$

satisfy

$$-iu_t = u_{xx} + \frac{1}{2}|u|^2u, \quad \text{NLSE}.$$

Here $T := \gamma_x$ is the *x*-flow direction and γ_t is *t*-flow direction and γ is a flow of curves swapping a surface in \mathbb{R}^3 .

(Langer, Perline) and (Doliwa, Santini)

Hasimoto transformation given by So(2) rotation of \vec{N}, \vec{B} through angle $\theta = -\int \tau dx$ in normal plane, yields frame $\{\vec{T}, \vec{n}, \vec{b}\}$:

$$\begin{pmatrix} \vec{T} \\ \vec{n} \\ \vec{b} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \vec{T} \\ \vec{N} \\ \vec{B} \end{pmatrix}$$

called Parallel frame or Natural frame and transport equation becomes

$$\begin{pmatrix} \vec{T} \\ \vec{n} \\ \vec{b} \end{pmatrix}_{x} = \begin{pmatrix} 0 & \kappa \cos(\theta) & \kappa \sin(\theta) \\ -\kappa \cos(\theta) & 0 & 0 \\ -\kappa \sin(\theta) & 0 & 0 \end{pmatrix} \begin{pmatrix} \vec{T} \\ \vec{n} \\ \vec{b} \end{pmatrix}$$

Non-local and local Non-linear Schrödinger Equation from Geometer

< A >

The Natural frame satisfies Transport eq.

$$\begin{pmatrix} \vec{T} \\ \vec{n} \\ \vec{b} \end{pmatrix}_{\times} = \begin{pmatrix} 0 & Re(u) & Im(u) \\ -Re(u) & 0 & 0 \\ -Im(u) & 0 & 0 \end{pmatrix} \begin{pmatrix} \vec{T} \\ \vec{n} \\ \vec{b} \end{pmatrix},$$

with $u := \kappa e^{i\theta} = \kappa \cos(\theta) + i\kappa \sin(\theta)$

< 🗇 ►

Drivation of NLS equation

Take the Lax pair

$$\Phi_x = U\Phi, \quad \Phi_t = V\Phi$$

in which $\Phi = \begin{pmatrix} \vec{T} & \vec{n} & \vec{b} \end{pmatrix}^T \in SO(3)$, is the natural frame. Let

$$V = \begin{pmatrix} 0 & Re(w^{\parallel}) & Im(w^{\parallel}) \\ -Re(w) & 0 & w_{\perp} \\ -Im(w^{\parallel}) & -w_{\perp} & 0 \end{pmatrix} = \omega(D_t), \quad (1)$$
$$U = \begin{pmatrix} 0 & Re(u) & Im(u) \\ -Re(u) & 0 & 0 \\ -Im(u) & 0 & 0 \end{pmatrix} = \omega(D_x) \quad (2)$$

in which ω is $\mathfrak{so}(3)$ -Cartan connection applied to vector fields D_x and D_t .

Drivation of NLS equation(Hashimoto, 1972,Sanders-Wang-Beffa 2003)

Let also

$$\gamma_{\mathsf{x}} = \mathsf{T},$$

 $\gamma_{\mathsf{t}} = \mathsf{h}_{\parallel} \vec{\mathsf{T}} + \mathsf{Re}(\mathsf{h}_{\perp}) \vec{\mathsf{n}} + \mathsf{Im}(\mathsf{h}_{\perp}) \vec{\mathsf{b}}$

compatibility condition

$$\gamma_{xt} = \gamma_{tx}$$

for flow direction then yield the following equations for h_{\parallel}, w^{\perp} in terms of h_{\perp} :

$$egin{aligned} h_{\parallel} &= i D_x^{-1} Re(ar{u} h_{\perp}) \ w^{\parallel} &= \mathcal{I}(h_{\perp}), \quad \mathcal{I} &= D_x + i u D_x^{-1} Re(ar{u}.) \end{aligned}$$

Non-local and local Non-linear Schrödinger Equation from Geome

Continue: Drivation of NLS equation

Compatibility condition $(\vec{T} \quad \vec{n} \quad \vec{b})_{xt}^T = (\vec{T} \quad \vec{n} \quad \vec{b})_{tx}^T$ for the frame gives:

 $V_x - U_t + [U, V] = 0, \quad \text{Called Zero curvature equation}$

which yields following equation for u_t in term of w^{\parallel} :

$$u_t = \mathcal{H}(w^{\parallel}), \quad \mathcal{H} = D_x - iuD_x^{-1}Im(\bar{u}.)$$

The Hamiltonian \mathcal{H} and Symplectic operator \mathcal{J} are compatible. So $\mathcal{R} = \mathcal{H}\mathcal{J}$ gives mKdV/NLS(To be found later on) recursion operator.

< (P) >

Continue: Drivation of mKdV and NLS equation

The Hamiltonian operator \mathcal{H} and Symplectic operator are symmetric under *x*-translation and phase rotation on *u*. So if we take $h_{\perp} = iu$ then we get NLS equation:

$$u_t = iu_{xx} + 1/2|u|^2 u$$

Notice that in this case clearly $h_{\parallel} = 0$ and so

$$\gamma_t = h_{\parallel} \vec{T} + Re(h_{\perp}) \vec{n} + Im(h_{\perp}) \vec{b} = -Im(u) \vec{n} + Re(u) \vec{b} = \vec{T} \wedge T_x$$

and if $h_{\perp} = u_x$ then we get mKdV equation:

$$u_t = u_{xxx} + 3/2|u|^2 u_x$$

and so the flow equation is given as

$$egin{aligned} &\gamma_t = h_{\parallel} ec{T} + \textit{Re}(h_{\perp})ec{n} + \textit{Im}(h_{\perp})ec{b} \ &=
abla_{\gamma_x} \gamma_x + (1 + rac{1}{2} ec{\imath}) |
abla_{\gamma_x} \gamma_x|^2 \gamma_x \end{aligned}$$

Non-local and local Non-linear Schrödinger Equation from Geometry

Algebraic characterization of parallel frames:Bishop(AMM)

Stabilizere group of \vec{T} consists of So(2) rotations in normal plane at each point along the curve γ . Indeed $So(2) \subset SO(3)$ is the gauge group of frame bundle and

$$\underbrace{\begin{pmatrix} 0 & \vec{a} \\ -\vec{a}^t & A \end{pmatrix}}_{\in \mathfrak{so}(3)} = \underbrace{\begin{pmatrix} 0 & \vec{0} \\ -\vec{0}^t & A \end{pmatrix}}_{\in \mathfrak{so}(2)} + \underbrace{\begin{pmatrix} 0 & \vec{a} \\ -\vec{a}^t & 0 \end{pmatrix}}_{\mathfrak{so}(2)^{\perp}}$$

The action of infinitesimal rotation $\mathfrak{so}(2)$ preserves class of frames $(\vec{T}, 0, 0)^T$ adapted to γ .

Properties of parallel connection matrix

The matrix belongs to the perp space $\mathfrak{so}(2)^{\perp}$ of infinitesimal stabilizer group $\mathfrak{so}(2) \subset \mathfrak{so}(3)$. and is preserved by infinitesimal rigid (*x*-independent) rotations $\mathfrak{so}(2)$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

with θ constant and so

$$\begin{pmatrix} \vec{T} \\ \vec{n} \\ \vec{b} \end{pmatrix} \mapsto \begin{pmatrix} \vec{T} \\ \vec{n}_1 \\ \vec{b}_1 \end{pmatrix} = \begin{pmatrix} \vec{T} \\ \cos(\theta)\vec{n} + \sin(\theta)\vec{b} \\ -\sin(\theta)\vec{n} + \cos(\theta)\vec{b} \end{pmatrix}$$
(3)
$$u \stackrel{\text{here}}{\mapsto} e^{-i\theta}u \qquad (4)$$

That is, u is U(1) covariant.

Generalization

Here we have already considered $R^3 = Euc(3)/So(3)$ as flat Riemannian symmetric spaces in which Euc(3) is isometry group and So(3) is the gauge group of frame bundle or as is seen as isotropy group at origin.

Generalization to simplest compact Symmetric space: sphere

Take
$$M = S^n = SO(n+1)/SO(n)$$
 Then the Cartan Matrix
 $\omega(D_x) \in \mathfrak{so}(n) \subset \mathfrak{so}(n+1)$ will be given by
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \mathbf{u} \\ 0 & -\mathbf{u}^T & 0 \end{pmatrix}, \quad \mathbf{u} \in \mathbb{R}^n - 1$$

In this case the Cartan subspace of this symmetric space which 1 dim is given by

$$e := \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Then the Cartan matrix lies in complement of the

$$C_{\mathfrak{so}(n)}(ee) = egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & \mathfrak{so}(n-1) \end{pmatrix} = \mathfrak{so}(n-1).$$

Non-local and local Non-linear Schrödinger Equation from Geometry

Klein geometries, Riemannian symmetric space

M = G/H, G = semisimple Lie group

H = Lie subgroup invariant under an involutive automorphism

View G as a principal H-bundle over M: Local trivialization:

 $\psi: U \subset M \to G \approx U \times H$

is a section of bundle over coordinate chart.

$$\begin{split} \Omega &= \text{Maurer-Cartan form on } \mathcal{G} : \text{Flat connection } 1-\text{form} \\ \Omega_{\psi} &= \text{pull back of } \Omega \text{ to } \mathcal{U} \subset \mathcal{M} \text{ by } \psi \\ \mathcal{d}\Omega_{\psi} + \frac{1}{2}[\Omega_{\psi}, \Omega_{\psi}] = 0 : \quad \text{Zero curvature equation} \end{split}$$

Non-local and local Non-linear Schrödinger Equation from Geome

Coframe and Connection

$$\begin{array}{ll} \Omega_{\psi} = e + \omega, & \mathfrak{g} - \text{valued } 1 - \text{form on } M \\ e : T_{x}M \to \mathfrak{m} = T_{o}M = \mathfrak{g}/\mathfrak{h}, & \omega : T_{x}M \to \mathfrak{h} = Lie(H) \end{array}$$

Zero-curvature equation

 $d\Omega_{\psi} + \frac{1}{2}[\Omega_{\psi}, \Omega_{\psi}] = 0$: "Zero curvature equation" leads to "Cartan structure equations":

$$de + [\omega, e] = 0 \qquad (*) \ d\omega + rac{1}{2}[\omega, \omega] = -rac{1}{2}[e, e] \qquad (**)$$

Note here that $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}$ in which the following bracket relation holds:

$$[\mathfrak{m},\mathfrak{m}]\subset\mathfrak{h},\quad [\mathfrak{h},\mathfrak{m}]\subset\mathfrak{m},\quad [\mathfrak{h},\mathfrak{h}]\subset\mathfrak{h}$$

Cartan subspace in symmetric space and highly non-singular elelemnts of it

Take a Cartan subspace \mathfrak{a} in \mathfrak{m} . Then take an element $e \in \mathfrak{a}$ such that the centralizer of it in \mathfrak{h} is of maximal dimension. Notaion:

$$\mathfrak{h}_{\parallel}:=\mathit{C}_{\mathfrak{h}}(e), \quad \mathfrak{m}_{\parallel}:=\mathit{C}_{\mathfrak{m}}(e)$$

and consider their complements in \mathfrak{g} w.r.t Killing form call them \mathfrak{h}_{\perp} , \mathfrak{m}_{\perp} so that $\mathfrak{m} = \mathfrak{m}_{\parallel} \oplus \mathfrak{m}_{\perp}$, $\mathfrak{h} = \mathfrak{h}_{\parallel} \oplus \mathfrak{h}_{\perp}$ Important: $ad(e) : \mathfrak{m}_{\perp} \longmapsto \mathfrak{h}_{\perp}$ is invertible and Bracket relation:

$$[\mathfrak{m}_{\parallel},\mathfrak{m}_{\parallel}] \subseteq \mathfrak{h}_{\parallel}, \quad [\mathfrak{m}_{\parallel},\mathfrak{h}_{\parallel}] \subseteq \mathfrak{m}_{\parallel}, \quad [\mathfrak{h}_{\parallel},\mathfrak{h}_{\parallel}] \subseteq \mathfrak{h}_{\parallel}, \tag{5}$$

$$[\mathfrak{h}_{\parallel},\mathfrak{m}_{\perp}]\subseteq\mathfrak{m}_{\perp},\quad [\mathfrak{h}_{\parallel},\mathfrak{h}_{\perp}]\subseteq\mathfrak{h}_{\perp},\tag{6}$$

$$[\mathfrak{m}_{\parallel},\mathfrak{m}_{\perp}]\subseteq\mathfrak{h}_{\perp},\quad [\mathfrak{m}_{\parallel},\mathfrak{h}_{\perp}]\subseteq\mathfrak{m}_{\perp},\tag{7}$$

while the remaining Lie brackets

$$[\mathfrak{m}_{\perp},\mathfrak{m}_{\perp}], [\mathfrak{h}_{\perp},\mathfrak{h}_{\perp}], [\mathfrak{m}_{\perp},\mathfrak{h}_{\perp}]$$
 (8)

obey the general relations .

Non-local and local Non-linear Schrödinger Equation from Geometry

H-Parallel frame and Curve flows

$$\begin{array}{l} \gamma: \mathbb{R} \longmapsto \mathcal{M} = \mathcal{G}/\mathcal{H} \\ e_x = \gamma_x \rfloor e = \\ \text{frame components of tangent vector along } \gamma, \qquad e_x \in \mathfrak{m}. \\ \omega_x = \gamma_x \rfloor \omega = \\ \text{components of connection in tangent direction} \qquad \omega_x \in \mathfrak{h} \end{array}$$

Cartan subspace

fixed an element e_x in any maximal abelian subspace $\mathfrak{a} \subset \mathfrak{m}$ Choose $\omega_x \in \mathfrak{h}_{\perp}$,

above choices yields framing along γ via "transition equation"

$$\nabla_{\mathsf{x}} = -\mathrm{ad}(\omega_{\mathsf{x}})\mathsf{e}$$

generalizes parallel framing of space curves in $\operatorname{Re}^3 = \operatorname{Euc}(3)/\operatorname{So}(3).$

Non-local and local Non-linear Schrödinger Equation from Geome

Example of Riemannian symplectic space of symplectic gauge groups: $Sp(n+1)/Sp(1) \times SP(n)$ and SU(2n)/Sp(n)(Anco-A.-J. Phys A.2012)

Matrix connection ω_x : $Sp(n+1)/Sp(1) \times SP(n)$ -Quaternionic version!

$$\omega_{\mathsf{x}} = \begin{pmatrix} \mathsf{u} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathsf{u} & \mathbf{u} \\ \mathbf{0} & -\overline{\mathbf{u}}^t & \mathbf{0} \end{pmatrix} \in \mathfrak{h}_{\perp}.$$

Covariants of $\gamma:\mathfrak{sp}(1) imes\mathfrak{sp}(n-1)$

Matrix connection for SU(2n)/Sp(n)

$$\omega_{x} = \begin{pmatrix} \mathbf{0} & \mathbf{u} \\ -\overline{\mathbf{u}}^{t} & \mathbf{0} \end{pmatrix} \in \mathfrak{h}_{\perp}.$$

Covariants of $\gamma : \mathfrak{sp}(1) \times \mathfrak{sp}(n-1)$

Non-local and local Non-linear Schrödinger Equation from Geometer

elements of $\mathfrak{h},\mathfrak{m}$

$$\begin{pmatrix} -tr(\mathbf{C}) & 0\\ 0 & \mathbf{C} \end{pmatrix} := (\mathbf{C}) \in \mathfrak{h} = \mathfrak{u}(n), \quad \mathbf{C} \in \mathfrak{u}(n)$$
$$\begin{pmatrix} 0 & \mathbf{a}\\ -\overline{\mathbf{a}}^{t} \end{pmatrix} := (\mathbf{a}) \in \mathfrak{m} = C^{n}, \quad \mathbf{a} \in C^{n}$$

choice of e_x of Cartan subspace \mathfrak{a} . the space is of rank 1. so there is only one choice:

$$e_{x}=(1,0)\in \mathfrak{m}=\mathbb{C}^{n}, \hspace{1em} 0\in \mathbb{C}^{n-1}$$

The perp and parallel subspaces:

perp and parallel subspace

$$\begin{pmatrix} \begin{pmatrix} -\frac{1}{2}tr(\mathbf{C}_{\parallel}) & 0\\ 0 & \mathbf{C}_{\parallel} \end{pmatrix} \end{pmatrix} := (\mathbf{C}_{\parallel}) \in \mathfrak{h}_{\parallel} \subset \mathfrak{h}, \quad \mathbf{C}_{\parallel} \in \mathfrak{u}(n-1) \\ \begin{pmatrix} (\mathrm{ic}_{\perp} & \mathbf{c}_{\perp})\\ -\overline{\mathbf{c}}_{\perp} & 0 \end{pmatrix} \end{pmatrix} := (\mathrm{ic}_{\perp}, \mathbf{c}) \in \mathfrak{h}_{\perp} \subset \mathfrak{h}, \quad \mathbf{c} \in \mathbb{C}^{n-1}, \quad \mathrm{c}_{\perp} \in \mathbb{R} \\ (\mathrm{a}_{\parallel}) := ((\mathrm{a}_{\parallel}, 0)) \in \mathfrak{m}_{\parallel} \subset \mathfrak{m}, \quad \mathrm{a}_{\parallel} \in \mathbb{R} \\ (\mathrm{ia}_{\perp}, \mathbf{a}_{\perp}) := ((\mathrm{ia}_{\perp}, \mathbf{a}_{\perp})) \in \mathfrak{m}_{\perp} \subset \mathfrak{m}, \quad \mathbf{a} \in \mathbb{C}^{n-1}, \quad \mathrm{a}_{\perp} \in \mathbb{R} \\ e_{\mathbf{x}} = (1, 0) = (1) \in \mathfrak{m}_{\parallel}$$

Non-local and local Non-linear Schrödinger Equation from Geom

< 🗇 ►

Flow direction

Flow directions:

$$\mathbf{e} = \frac{1}{\sqrt{\chi}}(1,0) \in \mathbb{R} \oplus \mathbb{C}^{n-1} \simeq \mathfrak{m}_{\parallel}, \quad \chi = const.$$
(9)

$$u = (\mathrm{iu}, \mathbf{u}) \in \mathrm{i}\mathbb{R} \oplus \mathbb{C}^{n-1} \simeq \mathfrak{h}_{\perp}, \tag{10}$$

$$h_{\parallel} = (\mathrm{h}_{\parallel}) \in \mathbb{R} \simeq \mathfrak{m}_{\parallel},$$
 (11)

$$h_{\perp} = (\mathrm{ih}_{\perp}, \mathbf{h}_{\perp}) \in \mathbb{R} \oplus \mathbb{C}^{n-1} \simeq \mathfrak{m}_{\perp}, \qquad (12)$$

$$\varpi^{\parallel} = (\Theta) \in \mathfrak{u}(n-1) \simeq \mathfrak{h}_{\parallel},$$
(13)

$$\boldsymbol{\varpi}^{\perp} = (\mathrm{iw}, \mathbf{w}) \in \mathrm{i}\mathbb{R} \oplus \mathbb{C}^{n-1} \simeq \mathfrak{h}_{\perp}, \tag{14}$$

as well as

$$h^{\perp} = (\mathrm{ih}^{\perp}, \mathbf{h}^{\perp}) = \mathrm{ad}(\mathrm{e})h_{\perp} = \frac{1}{\sqrt{\chi}}(-2\mathrm{ih}_{\perp}, -\mathbf{h}_{\perp}) \in \mathrm{i}\mathbb{R} \oplus \mathbb{C}^{n-1} \simeq \mathfrak{h}_{\perp}$$
(15)

hence

$$\mathbf{h}_{\perp} = -\sqrt{\chi} \frac{1}{2} \mathbf{h}^{\perp}, \quad \mathbf{h}_{\perp} = -\sqrt{\chi} \mathbf{h}^{\perp}$$

Non-local and local Non-linear Schrödinger Equation from Geometry

Local NLS system:Let The $J_0 = (iI) \in \mathfrak{h}_{\parallel}$ be \mathfrak{u}_1 subalegbras of $\mathfrak{h}_{\parallel} = \mathfrak{u}(n-1)$. then let

$$(\mathrm{ih}^{\perp},\mathbf{h}^{\perp})=\mathbf{h}^{\perp}:=\mathrm{ad}(J_0)u=(0,\mathrm{i}\lambda\mathbf{u}),\quad\lambda=\mathit{const.}=-rac{1}{2}(\mathit{n}-1){-1}$$

Hence putting

$$\mathbf{h}^{\perp} = \mathbf{0}, \quad \mathbf{h}^{\perp} = \lambda \mathbf{i} \mathbf{u}$$

in the adapted flow equations Then NLS type equation is derived as

$$\begin{aligned} &\frac{1}{\lambda\chi} \mathrm{iu}_t = \mathrm{i} |\mathbf{u}|^2 \\ &\frac{1}{\lambda\chi} \mathbf{u}_t = \mathrm{i} \mathbf{u}_{xx} + \mathrm{i} \mathbf{u} [(\mathrm{u}^2 + |\mathbf{u}|^2) - \mathrm{iu}_x] \end{aligned}$$

Non-local and local Non-linear Schrödinger Equation from Geome

< 17 >

Hermittian symmetric space of SP(2)/U(2)

choose $e_x = iI = i(E_{11} + E_{22})$. The parallel and perp representation of \mathfrak{m} and \mathfrak{h} is given by

$$\begin{pmatrix} \mathrm{i} Im(a_{11}) & \mathrm{i} Im(a_{12}) \\ \mathrm{i} Im(a_{12}) & \mathrm{i} Im(a_{22}) \end{pmatrix} \in \mathfrak{m}_{\parallel}, \quad \begin{pmatrix} Re(a_{11}) & Re(a_{12}) \\ Re(a_{12}) & Re(a_{22}) \end{pmatrix} \in \mathfrak{m}_{\perp}$$

$$\begin{pmatrix} 0 & Re(c_{12}) \\ -Re(c_{12}) & 0 \end{pmatrix} \in \mathfrak{h}_{\parallel} = \mathfrak{u}(1), \quad \begin{pmatrix} c_{11} & \mathrm{i} Im(c_{12}) \\ \mathrm{i} Im(c_{12}) & c_{22} \end{pmatrix} \in \mathfrak{h}_{\perp}$$

$$(17)$$

in which $c_{11}, c_{22} \in i\mathbb{R}$ Now take the matrix

$$J_0 := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

generator of \mathfrak{h}_{\perp} . Then we wanted to displite all parallel and perp subspace into invariant and complex variable.

Non-local and local Non-linear Schrödinger Equation from Geometer

flow direction

$$e = \frac{1}{\sqrt{\chi}}(1,0) \in \mathbb{R} \oplus \mathbb{C} \simeq \mathfrak{m}_{\parallel}, \quad \chi = ???$$
 (18)

$$u = (u, \mathbf{u}) \in \mathbb{R} \oplus \mathbb{C} \simeq \mathfrak{h}_{\perp},$$
 (19)

and

$$h_{\parallel} = (h_{\parallel}, \mathbf{h}_{\parallel}) \in \mathbb{R} \oplus \mathbb{C} \simeq \mathfrak{m}_{\parallel}, \qquad (20)$$

$$h_{\perp} = (\mathbf{h}_{\perp}, \mathbf{h}_{\perp}) \in \mathbb{R} \oplus \mathbb{C} \simeq \mathfrak{m}_{\perp}, \qquad (21)$$

$$\varpi^{\parallel} = (\Theta) \in \mathfrak{u}(1) \simeq \mathfrak{h}_{\parallel},$$
(22)

$$\boldsymbol{\varpi}^{\perp} = (\mathbf{w}, \mathbf{w}) \in \mathbb{R} \oplus \mathbb{C} \simeq \mathfrak{h}_{\perp}, \tag{23}$$

as well as

$$h^{\perp} = (\mathbf{h}, \mathbf{h}) = \mathrm{ad}(\mathbf{e})h_{\perp} = \frac{1}{\sqrt{\chi}}(2\mathbf{h}_{\perp}, 2\mathbf{i}\mathbf{h}_{\perp}) \in \mathbb{R} \oplus \mathbb{C} \simeq \mathfrak{h}_{\perp}$$
 (24)

Non-local and local Non-linear Schrödinger Equation from Geometry

< 67 ►

$$u_{t} = u|\mathbf{u}|^{2} + Re(\bar{\mathbf{u}}_{x}D_{x}^{-1}(u\mathbf{u}))$$
(25)
$$u_{t} = i(\frac{1}{4}u_{xx} + \frac{1}{2}u|\mathbf{u}|^{2} + u^{2}u + u_{x}D_{x}^{-1}(u\mathbf{u}) + 2u|D_{x}^{-1}(u\mathbf{u})|^{2})$$
(26)

Non-local and local Non-linear Schrödinger Equation from Geometry

Thank you

< 🗗 >

Non-local and local Non-linear Schrödinger Equation from Geometry

More

U(1)-covariant

$$\begin{pmatrix} 0 & \kappa_1 & \kappa_2 \\ -\kappa_1 & 0 & 0 \\ -\kappa_2 & 0 & 0 \end{pmatrix} \begin{pmatrix} \vec{T} \\ \vec{n}_1 \\ \vec{b}_1 \end{pmatrix} = \begin{pmatrix} \vec{T} \\ \vec{n}_1 \\ \vec{b}_1 \end{pmatrix}_{\times} = \begin{pmatrix} Re(u)\vec{n} + Im(u)\vec{b} \\ (\cos(\theta)Re(u) - \sin(\theta)Im(u))\vec{T} \\ (\sin(\theta)Re(u) - \cos(\theta)Im(u))\vec{T} \end{pmatrix}$$

Hence we can drive that

$$Re(u_1) := \kappa_1 = \cos(\theta)Re(u) + \sin(\theta)Im(u) = Re(e^{-i\theta}u)$$
(27)
$$Im(u_1) := \kappa_2 = -\sin(\theta)Re(u) + \cos(\theta)Im(u) = Im(e^{-i\theta}u)$$
(28)

Thus

$$u_1 = e^{-i\theta}u$$

Back to main.

< 🗇 ►