Error Analysis in an Iterative Algorithm for the Solution of the Regulator Equations for Distributed Parameter Systems

Eugenio Aulisa

Hansameenu Wijenayaka and David Gilliam

XVIIth International Conference Geometry, Integrability and Quantization

June 5-10, 2015 Varna, Bulgaria

2 β -Iterative Scheme

Statement of Problem

• Consider a MIMO plant modeled by a linear system $z_t(t) = Az(t) + B_{in}u(t) + B_dd(t),$ $z(0) = z_0,$ y(t) = Cz(t).

We are given

- y_r a signal to be tracked,
- *d* a disturbance to be rejected.
- z(t) is the state variable in the infinite dimensional Hilbert space ²
- Problem:

Find the time dependent controller u(t) such that y = Cz(t) satisfies

$$\lim_{t\to\infty}\|y_r(t)-y(t)\|=0.$$

Statement of Problem Cont'd.

- A is an unbounded sectorial operator with dense domain $\mathcal{D}(A)$.
- A generates an exponentially stable analytic semigroup e^{At} in \mathcal{Z}

$$\|e^{At}\| < Me^{-at}$$
 $a > 0$ and $M > 1$.

•
$$B_{\text{in}} \in \mathcal{L}(\mathbb{R}^k, \mathbb{Z})$$
, and $B_{\text{d}} \in \mathcal{L}(\mathbb{R}^m, \mathbb{Z})$.

 C is unbounded but is relatively bounded by a fractional power of (−A). There exists s ∈ (0,2) s.t.

$$C \in \mathcal{L}(\mathcal{H}^{s}, \mathbb{R}^{k}), \text{ where } \mathcal{H}^{s} = \mathcal{D}((-A)^{s/2}).$$

• Without loss of generality, by rescaling, we assume

$$-CA^{-1}B_{\rm in}=I.$$

Dynamic Controller (DC)

• DC

For given $y_r(t)$ and d(t)find \overline{z} , $\overline{\gamma}(t)$ and \overline{z}_0 satisfying $\overline{z}_t = A\overline{z} + B_{in}\overline{\gamma}(t) + B_d d(t)$, $\overline{z}(0) = \overline{z}_0$, such that $C\overline{z}(t) = y_r(t)$, $\forall t \ge 0$.

• In the closed loop system, we set $u(t) = \overline{\gamma}(t)$, and expect $\lim_{t \to \infty} \|Cz(t) - C\overline{z}(t)\| = 0$,

for any initial data z_0 .

Why the Dynamic Controller?

- In the classical geometric method $y_r(t)$ and d(t) are generated by a finite dimensional exogenous system (exosystem)
- In this case we obtain a system of two functional equations called the Regulation Equations
- Solvability of the Regulator Problem is equivalent to the solvability of the Regulator Equations
- Solving the Regulator Equations is not easy.
- The Exosystem might be non-linear.
- The Exosystem might be infinite dimensional.
- The plant could be non-linear.

 $\begin{array}{c} \mbox{Statement of Problem and Dynamic Controller} \\ \beta\mbox{-lterative Scheme} \\ \mbox{Error Estimates} \\ \mbox{Numerical Example} \end{array}$

Regularized Dynamic Controller RDC

• We can rewrite the DC as

$$(I + B_{\text{in}}CA^{-1})\overline{z}_t = A\overline{z}(t) + B_{\text{in}}y_r(t) + (I + B_{\text{in}}CA^{-1})B_{\text{d}}d(t).$$

• For
$$0 we set,$$

 $(I+(1-\beta)B_{\mathrm{in}}CA^{-1})\overline{z}_t^1 = A\overline{z}^1(t) + B_{\mathrm{in}}y_r(t) + (I+B_{\mathrm{in}}CA^{-1})B_{\mathrm{d}}d(t).$

Regularized Dynamic Controller RDC, The Equivalent Form

$$\overline{z}_{t}^{1} = A_{\beta}\overline{z}^{1}(t) + \frac{1}{\beta}B_{in}y_{r}(t) + F d(t),$$

where $A_{\beta} = \left(A - \frac{(1-\beta)}{\beta}B_{in}C\right), \quad F = (I + B_{in}CA^{-1})B_{d}.$
The control can be aposteriori evaluated as

$$\overline{\gamma}^{1}(t) = y_{r}(t) - (1-\beta)CA^{-1}(\overline{z}_{t}^{1}) + CA^{-1}B_{d}d(t).$$

Corollary (Lassi Paunonen)

For $\delta = \frac{1-\beta}{\beta}$ sufficiently close to 0 (thus for β sufficiently close to 1) $A_{\beta} = A - \delta B_{in}C$ generates an exponentially stable semigroup.

General Form of RDC

 We solve the following RDC in each iteration i = 1, 2, ..., for given target y_r(t) and disturbance D(t).

$$\overline{z}_t^i = A_{\beta}\overline{z}^i(t) + \frac{1}{\beta}B_{\rm in}\mathcal{Y}_r(t) + F\mathcal{D}(t).$$

• Then $\overline{\gamma}^{i}(t)$ can be written in following explicit form.

$$\overline{\gamma}^{i}(t) = \mathfrak{Y}_{r}(t) - (1-\beta)CA^{-1}(\overline{z}_{t}^{i}) + CA^{-1}B_{\mathrm{in}}\mathfrak{D}(t).$$

β -iterative scheme

Find approximate values for $\overline{z}(t)$ and $\overline{\gamma}(t)$ by seeking $\overline{z}_n(t) = \sum_{j=1}^n \overline{z}^j(t), \quad \overline{\gamma}_n(t) = \sum_{j=1}^n \overline{\gamma}^j(t)$ with $\overline{z}_n(t) \xrightarrow{n \to \infty} \overline{z}(t)$ and $\overline{\gamma}_n(t) \xrightarrow{n \to \infty} \overline{\gamma}(t)$.

$$E_{1}(t) = y_{r}(t) - C(\overline{z}^{1}(t)),$$

and for $i = 2, 3, ..., n,$
$$E_{i}(t) = E_{i-1}(t) - C(\overline{z}^{i}(t))$$

β -Iterative Algorithm

- Iteration 0: Solve Set Point control problem for z
 ⁰(x) for tracking y_r(0) and rejecting d(0).
- Iteration 1: Solve RDC for $\overline{z}^1(x)$ by setting $\mathcal{Y}_r(t) = y_r(t)$ and $\mathcal{D}(t) = d(t)$ with the I.C. $\overline{z}^1(x, 0) = \overline{z}^0(x)$.
- Iteration i > 1: Solve RDC for $\overline{z}^i(x)$ by setting $\mathcal{Y}_r(t) = E_{i-1}(t)$ and $\mathcal{D}(t) = 0$ with the I.C. $\overline{z}^i(x, 0) = 0$.

Error as a convolution integral.

Let us define

$$\begin{split} \mathcal{K}(t) &= -CA_{\beta}^{-1}e^{A_{\beta}t}\frac{1}{\beta}B_{\text{in}} \text{ and} \\ \mathcal{K}_{d}(t) &= -CA_{\beta}^{-1}e^{A_{\beta}t}(I+B_{\text{in}}CA^{-1})B_{\text{d}}, \end{split}$$

• It can be shown that the first iteration error is given by

$$E_1(t) = y_r(t) - C(\overline{z}^1(t)) = K * y'_r(t) + K_d * d'(t).$$

• and the error at the *i*th-iteration is given by

$$E_i(t) = E_{i-1}(t) - C(\overline{z}^i) = K * E'_{i-1}(t)$$
 for $i = 2, \cdots, n$.

Theorem

Assume $y_r, d \in C_b^n[0,\infty)$ and let β_0 s.t. A_β generates an exponentially stable analytic semigroup in \mathcal{Z} for $\beta \in (\beta_0, 1)$. Then for any T > 0 we have $E_n(t) = \mathcal{E}_{1,T,n}(t) + \mathcal{E}_{2,T,n}(t)$ where $\limsup |\mathcal{E}_{1,T,n}(t)| = 0$ and $t \rightarrow \infty$ $\sup |\mathcal{E}_{2,T,n}(t)|$ $t \in [T,\infty)$ $\leq D^{n}(\sup_{t=1} |y_{r}^{(n)}(t)| + \beta \|B_{in}\|^{-1} \|B_{d}\| \sup_{t=1} |d^{(n)}(t)|),$ $t \in [T,\infty)$ $t \in [T,\infty)$

where $D(A, B_{in}, C, \beta)$ is a constant.

Example 1: 1D Heat Equation with no disturbance

• We consider the control system defined on $0 \le x \le 1$ for $t \ge 0$ given by

$$\frac{\partial z(t)}{\partial t} = Az(t) + B_{in}u(t),$$

$$z(0,t) = 0, \frac{\partial z}{\partial x}(1,t) = 0,$$

$$z(x,0) = 0,$$

$$y(t) = Cz(t), y_r(t) = \cos(t)$$

• In this case we define the operator $A = \frac{d^2}{dx^2}$ with domain $\mathcal{D}(A) = \{\varphi \in H^2(0,1) : \varphi(0) = 0, \quad \varphi'(1) = 0\}$ in the Hilbert state space $\mathcal{Z} = L^2(0,1)$.

•
$$Cz(t) = z(0.75, t)$$
.

•
$$B_{\text{in}}u(t) = \frac{1}{|I_1|}\chi_{I_1}u(t).$$

•
$$I_1 = (0.5 - \delta, 0.5 + \delta).$$

• We set $\delta = 0.05$.

Continuous dependence with respect to β for the eigenvalues of

Figure 1 : Eigenvalues λ_1 , λ_2 , λ_3 , and λ_4 for β varying from 1 to 0.01.

eugenio.aulisa@ttu.edu

16/ 32

For $\beta = 0.27$, the plot of $e_1(\text{green}), e_2(\text{blue})$ and $e_3(\text{red})$.

Figure 2 : The first three iteration errors.

$0 \le t \le 20$	Error
$\ e_1\ _{\infty}$	$1.15 imes10^{-1}$
$\ e_2\ _{\infty}$	$4.37 imes10^{-2}$
$\ e_3\ _{\infty}$	$4.36 imes10^{-2}$
$20 \le t \le 35$	Error
$\ e_1\ _{\infty}$	$1.15 imes10^{-1}$
$\ e_2\ _{\infty}$	$1.32 imes 10^{-2}$
$\ e_3\ _{\infty}$	$1.52 imes10^{-3}$
$35 \le t \le 50$	Error
$\ e_1\ _{\infty}$	$1.15 imes10^{-1}$
$\ e_2\ _{\infty}$	$1.32 imes 10^{-2}$
$\ e_3\ _{\infty}$	$1.52 imes 10^{-3}$

 $D\sim 0.1$

eugenio.aulisa@ttu.edu

Figure 3 : y_r and C(z).

Example 2: 1D Heat Equation with nonlinear Exosystem

We consider the control system defined on $0 \le x \le 1$ for $t \ge 0$ given by

$$\begin{aligned} \frac{\partial z(t)}{\partial t} &= Az(t) + B_{\text{in}}u(t) + B_{\text{d}}d(t), \\ z(0,t) &= 0, \frac{\partial z}{\partial x}(1,t) = 0, \\ z(x,0) &= 0, \\ y(t) &= Cz(t) = z(1,t). \end{aligned}$$

In this case we define the operator $A = \frac{d^2}{dx^2}$ with domain $\mathcal{D}(A) = \{\varphi \in H^2(0,1) : \varphi(0) = 0, \ \varphi'(1) = 0\}$ in the Hilbert state space $\mathcal{Z} = L^2(0,1)$.

In our specific numerical example we have set

$$I_1 = \{ x : 0 \le x < 1/4 \}, \\ I_2 = \{ x : 1/4 \le x \le 1/2 \},$$

The reference signal y_r and the disturbance d are given by the solution of

$$\ddot{\omega} + \dot{\omega} - \omega + \omega^3 = 0,$$

s.t

for the I.C $\omega(0) = 0, \dot{\omega}(0) = 1.7, \quad y_r(t) = \omega(t) \longrightarrow 1 \text{ as } t \to \infty,$

 $\text{for the I.C } \omega(0)=1, \ \dot{\omega}(0)=1, \quad d(t)=\omega(t), \longrightarrow -1 \text{ as } t \to \infty.$

Figure 4 : The reference y_r and disturbance d.

For $\beta = 0.1$, the plot of $e_1(\text{green}), e_2(\text{blue})$ and $e_3(\text{red})$.

For $\beta = 0.1$

Figure 6 : y_r and C(z)

Example 3: Thermal regulation of a Navier-Stokes Flow

$$\rho(\mathbf{v} \cdot \nabla)\mathbf{v} - \nabla \cdot \left[\mu(\nabla \mathbf{v} + (\nabla \mathbf{v})^{T})\right] + \nabla p = 0, \quad \nabla \cdot \mathbf{v} = 0,$$

$$\frac{\partial T}{\partial t} = \alpha \Delta T - \mathbf{v} \cdot \nabla T + B_{in}u + B_{d}d, \quad y(t) = CT(t),$$

$$y_{r}(t) = a + b\sin(\omega_{1}t), \quad d(t) = c + d\sin(\omega_{2}t)$$

$$\mathbf{v}(x, 0) = 0, p(x, 0) = 0, T(x, 0) = 0.$$

$$\mathbf{v} = 0 \text{ on } \Gamma_{w},$$

$$\mathbf{v} = \begin{pmatrix} f(s) \\ 0 \end{pmatrix}, \quad T = 0 \text{ on } \Gamma_{1},$$

$$-\alpha \nabla T \cdot \mathbf{n} = 0 \text{ on } \Gamma_{2} \cup \Gamma_{w},$$

$$\tau = 0 \text{ on } \Gamma_{2}.$$

Here,

$$\mathcal{A} = \alpha \Delta - \mathbf{v} \cdot \nabla, \ \ \mathcal{D}(\mathcal{A}) = \left\{ \varphi \in \mathcal{H}^2(\Omega) : \varphi \big|_{\Gamma_1} = \mathbf{0}, -\alpha \nabla \varphi \cdot \mathbf{n} \big|_{\Gamma_2 \cup \Gamma_w} = \mathbf{0} \right\}$$

in the Hilbert state space $\mathcal{Z} = L^2(\Omega)$.

$$CT(t) = \frac{1}{|S_3|} \int_{S_3} T ds,$$

$$B_{in}u(t) = rac{1}{|S_1|}\chi_{S_1}u(t), \ \ B_dd(t) = rac{1}{|S_2|}\chi_{S_2}d(t).$$

Figure 7 : The Velocity Profile.

For $\beta = 0.1$

Figure 8 : The first three iteration errors.

 $D \sim 0.3$

$0 \le t \le 100$	Error
$\ e_1\ _{\infty}$	$9.51 imes10^{-1}$
$\ e_2\ _{\infty}$	$5.94 imes10^{-1}$
$\ e_3\ _{\infty}$	$4.72 imes10^{-1}$
$\ e_4\ _{\infty}$	$5.63 imes10^{-1}$
$100 \le t \le 200$	Error
0,	1
€1 ∞	9.49×10^{-1}
$\ e_1\ _{\infty}$	$\begin{array}{c} 9.49 \times 10^{-1} \\ \hline 2.86 \times 10^{-1} \end{array}$
$\ e_1\ _{\infty}$ $\ e_2\ _{\infty}$ $\ e_3\ _{\infty}$	$\begin{array}{c} 9.49 \times 10^{-1} \\ \hline 2.86 \times 10^{-1} \\ \hline 9.86 \times 10^{-2} \end{array}$

Figure 9 : y_r and the measured output of the closed loop system CT.

Future Work

- \bullet Obtain error estimates of the $\beta\mbox{-iterative}$ method for control systems with
 - unbounded B
 - nonlinear state
- Build c++ PDE toolbox for solving Regulator Problem using the β-iterative method

References

- E. Aulisa, D. S. Gilliam, and T. W. Pathiranage. Analysis of the error in an iterative algorithm for solution of the regulator equations for linear distributed parameter control systems. Preprint, Texas Tech University, 2015.
- E. Aulisa, D. Gilliam, A Practical Guide to Geometric Regulation for Distributed Parameter Systems, CRC Press, Taylor & Francis Group, July 2015
- E. Aulisa, D.S. Gilliam, A Numerical Algorithm for Set-Point Regulation of Non-linear Parabolic Control Systems, International Journal of Numerical Analysis and Modeling.
- E. Aulisa, J. A. Burns and D.S. Gilliam, An example of thermal regulation of a two dimensional non-isothermal in-compressible flow, 51st IEEE conference on Decision and Control 2013.

Thank You