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1. Introduction

The Theorem 2 of [8] states that a parallel second order tensor �eld in a
non-�at complex space form is a linear combination (with constant
coe¢ cients) of the underlying Kähler metric and Kähler 2-form. The aim
of this paper is to consider the symmetric part of this result in the
non-Kähler setting provided by locally conformal Kähler (lcK) geometry,
more precisely Vaisman geometries. These are introduced in [9] under the
name of generalized Hopf manifolds or PK -manifolds.
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Our main result, namely Theorem 3.1, asserts that the above statement
holds again in this framework for symmetric and J-skew-symmetric tensor
�elds of (0, 2)-type; here J denotes the complex structure of the given
Hermitian geometry. As application, we obtain a reduction result for a
special type if holomorhic vector �elds in a subclass of Vaisman manifolds,
usually denoted P0K -manifolds and given by the �atness of the local
Kähler metrics of our structure. This reduction result is on nature of
Theorem 3 from [8, p. 789] and states that certain holomorphic vector
�eld is in fact a homothetic one. Another reduction result of this type, but
for conformal Killing vector �elds on a special class of compact Vasiman
manifolds, is the Theorem 3.2 of [5, p. 99]. Recently, the compact lck
manifolds with parallel vector �elds are completely classi�ed in [4].
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2.Vaisman Manifolds

Let (M2n, J, g) be a complex n-dimensional Hermitian manifold and Ω its
fundamental 2-form given by Ω(X ,Y ) = g(X , JY ) for any vector �elds
X ,Y 2 Γ(TM). Recall from [2, p. 1] that (M, J, g ,Ω) is a locally
conformal Kähler manifold (l.c.K) if there exists a closed 1-form
ω 2 Γ(T 01 (M)) such that: dΩ = ω ^Ω. In particular, M is called
strongly non-Kähler if ω is without singularities i.e. ω 6= 0 everywhere;
hence we consider 2c = kωk and u = ω/2c the corresponding 1-form.
Since ω is called the Lee form of M the vector �eld U = u] will be called
the Lee vector �eld. Consider also the unit vector �eld V = JU, the
anti-Lee vector �eld, as well as its dual form v = V [, so:
u(V ) = v(U) = 0, v = �u � J, u = v � J.

(Institute) June, 2015 4 / 19



Our setting is provided by the particular case of strongly non-Kähler l.c.K.
manifolds, called Vaisman manifolds, and given by the parallelism of ω
with respect to the Levi-Civita connection r of g . Hence c is a positive
constant and the Lemma 2 of [6] gives the covariant derivative of V with
respect to any X 2 Γ(TM):

rXV = c [u(X )V � v(X )U � JX ] (2.1)

which yields the dual:

(rX v)Y = c [u(X )v(Y )� u(Y )v(X ) +Ω(X ,Y )] (2.2)

and the curvature:

R(X ,Y )V = c2f[u(X )v(Y )� u(Y )v(X )]U + v(X )Y � v(Y )Xg. (2.3)
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Hence:
R(X ,V )V = c2[u(X )U + v(X )V � X ] (2.4)

and for an unitary X , orthogonal to V we derive the sectional curvature:

K (X ,V ) = c2[u(X )2 � 1]. (2.5)

In particular: K (U,V ) = 0.

The class of Vaisman manifolds was introduced in [9] and their old
notation is that of PK-manifolds. A main subclass of Vaisman manifolds,
denoted P0K , is provided by the �atness of the local Kähler metrics
generated by g and the local exactness of ω; see details in [9]. For these
manifolds it is known the express of the Ricci tensor of g ; with formula
(2.10) of [3, p. 125] one obtains:

Ric = 2c2(n� 1)[g � u 
 u] (2.6)

which means that the triple (M, g ,U) is an eta-Einstein manifold.
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3. Parallel second order tensors in a Vaisman geometry

The purpose of this Section is to prove the main result of the paper:

Theorem (3.1)

Let (M, J, g ,Ω) be a Vaisman manifold.
i) Fix a tensor �eld α 2 Γ(T 02 (M)) which is symmetric and
J-skew-symmetric i.e.:

α(JX ,Y ) + α(X , JY ) = 0 (3.1)

for all X ,Y 2 Γ(TM). If α is parallel with respect to r then it is a
constant multiple of the metric tensor g.
ii) Let the 2-form β 2 V2(M) which is J-skew-symmetric and satis�es:

(rZ β)(X ,Y ) = c [g(X ,Z )β(U,Y )�Ω(X ,Z )β(V ,Y ) (3.2)

�v(X )β(Y , JZ ) + u(X )β(Y ,Z )]

for all X ,Y ,Z 2 Γ(TM). Then β is a constant multiple of the
fundamental form Ω.
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Proof.
i) Applying the Ricci commutation identity [1, p. 14] and
r2
X ,Y α(Z ,W )�r2

X ,Y α(W ,Z ) = 0 for all vector �elds X ,Y ,Z ,W we
obtain the relation (1.1) of [8, p. 787]:

α(R(X ,Y )Z ,W ) + α(Z ,R(X ,Y )W ) = 0 (3.3)

which is fundamental in all papers treating this subject. Replacing
Z = W = V and using (2.3) it results, by the symmetry of α:

v(X )α(Y ,V ) = v(Y )α(X ,V ). (3.4)

With X = V we get:

α(Y ,V ) = v(Y )α(V ,V ). (3.5)
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Proof.
[Proof (continuation)] From the symmetry and J-symmetry of α we have:

α(U,V ) = 0 (3.6)

and then the parallelism of α and formulae (3.5)� (3.6) imply that
α(V ,V ) is a constant. Applying X to (3.5) and using (2.2) we have:

X (α(Y ,V )) = α(rXY ,V ) + α(Y ,rXV )

= X (v(Y ))α(V ,V ) + 2v(Y )α(rXV ,V )

which means that:

cα(Y , u(X )V � v(X )U � JX ) = (rX v)(Y )α(V ,V )

+2cv(Y )α(u(X )V � JX ,V ).
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Proof.
[Proof (continuation)] Due to (3.5) and v � J = u the last term above is
zero. With (2.2) and (3.5) again it results:

�v(X )α(U,Y ) + α(X , JY ) = �u(Y )v(X )α(V ,V ) (3.7)

+Ω(X ,Y )α(V ,V ).

We have a relation similar to (3.5) but in terms of U:

α(Y ,U) = α(Y ,�JV ) = α(JY ,V ) = v(JY )α(V ,V ) (3.8)

= u(Y )α(V ,V )

and then, returning to (3.7) we get:

α(X , JY ) = α(V ,V )Ω(X ,Y ) (3.9)

and a transformation Y ! JY gives the conclusion.
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Proof.
[Proof (continuation)] ii) Let α 2 Γ(T 02 (M)) be given by a relation dual to
that de�ning Ω through g :

α(X ,Y ) := β(JX ,Y ). (3.10)

Hence: α(Y ,X ) = β(JY ,X ) = �β(X , JY ) which by J-skew-symmetry
means β(JX ,Y ) and consequently α is symmetric. Also:

α(JX ,Y ) + α(X , JY ) = �β(X ,Y ) + β(JX , JY )

= �β(X ,Y )� β(J2X ,Y ) = 0.

Finally, (3.2) express the parallelism of α by using the following covariant
derivative of J resulting from Proposition 1 of [6, p. 338]:

(rZ J)X = c [Ω(X ,Z )U + g(X ,Z )V � u(X )JZ � v(X )Z ]. (3.11)

Therefore we apply i) for α and (3.9) is exactly the conclusion:
β(X ,Y ) = α(V ,V )Ω(X ,Y ) with α(V ,V ) = �β(U,V ).
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Remarks (3.2) i) The reduction of a covariant second order tensor �eld to
a multiple of the metric holds generally under the hypothesis of
irreducibility of the holonomy group/algebra, see for example the Theorem
57 of [7. p. 254]. Our result above implies weaker conditions for the l.c.K.
metric in the Vaisman framework.

ii) The parallel forms of compact connected Vaisman manifolds are
completely treated in Theorem 7.7. of [2, p. 78].
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As an application of Theorem 3.1, we obtain the following result which is
similar to Theorem 3 of [8]:

Corollary (3.3)

Let ξ be a holomorphic vector �eld on a Vaisman manifold such that rξJ
is skew-symmetric with respect to g and Lξg is parallel. Then ξ is a
homothetic vector �eld. Moreover, if (M, g , J) is a P0K-manifold then ξ is
a Killing vector �eld.
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Proof.
For the second order covariant tensor �eld α = Lξg we can apply the
previous theorem if the skew-symmetry (3.1) is satis�ed. We have:

α(JX ,Y ) + α(X , JY ) = g(rJX ξ � J(rX ξ),Y ) (3.12)

+g(X ,rJY ξ � J(rY ξ))

and the holomorphic hypothesis LξJ = 0 yields:

α((rξJ)X ,Y ) + α(X , (rξJ)Y ). (3.13)
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Proof.
[Proof (continuation)] Hence the claimed skew-symmetry holds and
consequently:

Lξg = α(V ,V )g (3.14)

is exactly the �rst conclusion regarding ξ. This relation implies LξRic = 0
and in the P0K setting the equation (2.6) gives:

Lξg = Lξ(u 
 u). (3.15)

The right hand side of (3.15) applied to (V ,V ) gives that α(V ,V ) = 0
and then (3.14) gives the second conclusion.
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Examples (3.4)

i) The vector �eld U is a holomorphic ([2, p. 37]) and Killing one in a
Vaisman manifold since it is parallel: rU = 0. Then α := u 
 u is
symmetric and parallel while the condition (3.1) means the Kählerian
setting ω = 0. Indeed, with X = Y , the equation (3.1) reads
u(X )u(JX ) = 0 for all X i.e. u = 0.

ii) By using again [2, p. 37], the vector �eld V is holomorphic and Killing.
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The locally conformal Kähler geometry can be studied in terms of Weyl
structures and their associated Weyl connections conform Theorem 1.4 of
[2, p. 5]. The expression of the Weyl connection of (M, g , J,ω) is formula
(2) of [5, p. 94] which for our notation becomes:

D = r� c(u 
 I + I 
 u � g 
 U) (3.16)

with the Kronecker tensor �eld I . Hence, the symmetric tensor �eld
α 2 Γ(T 02 (M)) is r-parallel if and only if its Weyl derivative is:

DZ α(X ,Y ) = c [2u(Z )α(X ,Y ) (3.17)

+u(X )α(Y ,Z ) + u(Y )α(X ,Z )

�g(X ,Z )α(U,Y )� g(Y ,Z )α(U,X )]

for all vector �elds X ,Y ,Z .
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