Parallel second order tensors on Vaisman manifolds

Cornelia Livia Bejan & Mircea Crasmareanu

"Gh. Asachi" Technical University & " Al. I. Cuza" University

June, 2015

June, 2015

1 / 19

The Theorem 2 of [8] states that a parallel second order tensor field in a non-flat complex space form is a linear combination (with constant coefficients) of the underlying Kähler metric and Kähler 2-form. The aim of this paper is to consider the symmetric part of this result in the non-Kähler setting provided by locally conformal Kähler (IcK) geometry, more precisely Vaisman geometries. These are introduced in [9] under the name of *generalized Hopf manifolds* or *PK*-manifolds.

Our main result, namely Theorem 3.1, asserts that the above statement holds again in this framework for symmetric and J-skew-symmetric tensor fields of (0, 2)-type; here J denotes the complex structure of the given Hermitian geometry. As application, we obtain a reduction result for a special type if holomorhic vector fields in a subclass of Vaisman manifolds, usually denoted P_0K -manifolds and given by the flatness of the local Kähler metrics of our structure. This reduction result is on nature of Theorem 3 from [8, p. 789] and states that certain holomorphic vector field is in fact a homothetic one. Another reduction result of this type, but for conformal Killing vector fields on a special class of compact Vasiman manifolds, is the Theorem 3.2 of [5, p. 99]. Recently, the compact lck manifolds with parallel vector fields are completely classified in [4].

Let (M^{2n}, J, g) be a complex *n*-dimensional Hermitian manifold and Ω its fundamental 2-form given by $\Omega(X, Y) = g(X, JY)$ for any vector fields $X, Y \in \Gamma(TM)$. Recall from [2, p. 1] that (M, J, g, Ω) is a *locally* conformal Kähler manifold (I.c.K) if there exists a closed 1-form $\omega \in \Gamma(T_1^0(M))$ such that: $d\Omega = \omega \wedge \Omega$. In particular, M is called strongly non-Kähler if ω is without singularities i.e. $\omega \neq 0$ everywhere; hence we consider $2c = \|\omega\|$ and $u = \omega/2c$ the corresponding 1-form. Since ω is called *the Lee form* of *M* the vector field $U = u^{\sharp}$ will be called the Lee vector field. Consider also the unit vector field V = JU, the anti-Lee vector field, as well as its dual form $v = V^{\flat}$, so: $u(V) = v(U) = 0, v = -u \circ J, u = v \circ J.$

イロト イヨト イヨト イヨト

Our setting is provided by the particular case of strongly non-Kähler I.c.K. manifolds, called *Vaisman manifolds*, and given by the parallelism of ω with respect to the Levi-Civita connection ∇ of g. Hence c is a positive constant and the Lemma 2 of [6] gives the covariant derivative of V with respect to any $X \in \Gamma(TM)$:

$$\nabla_X V = c[u(X)V - v(X)U - JX]$$
(2.1)

which yields the dual:

$$(\nabla_X v)Y = c[u(X)v(Y) - u(Y)v(X) + \Omega(X,Y)]$$
(2.2)

and the curvature:

$$R(X,Y)V = c^{2}\{[u(X)v(Y) - u(Y)v(X)]U + v(X)Y - v(Y)X\}.$$
 (2.3)

Hence:

$$R(X, V)V = c^{2}[u(X)U + v(X)V - X]$$
(2.4)

and for an unitary X, orthogonal to V we derive the sectional curvature:

$$K(X, V) = c^2[u(X)^2 - 1].$$
 (2.5)

In particular: K(U, V) = 0.

The class of Vaisman manifolds was introduced in [9] and their old notation is that of *PK-manifolds*. A main subclass of Vaisman manifolds, denoted P_0K , is provided by the flatness of the local Kähler metrics generated by g and the local exactness of ω ; see details in [9]. For these manifolds it is known the express of the Ricci tensor of g; with formula (2.10) of [3, p. 125] one obtains:

$$Ric = 2c^{2}(n-1)[g-u \otimes u]$$
(2.6)

which means that the triple (M, g, U) is an *eta-Einstein manifold*.

3. Parallel second order tensors in a Vaisman geometry

The purpose of this Section is to prove the main result of the paper:

Theorem (3.1)

Let (M, J, g, Ω) be a Vaisman manifold. i) Fix a tensor field $\alpha \in \Gamma(T_2^0(M))$ which is symmetric and J-skew-symmetric i.e.:

$$\alpha(JX, Y) + \alpha(X, JY) = 0 \tag{3.1}$$

for all X, $Y \in \Gamma(TM)$. If α is parallel with respect to ∇ then it is a constant multiple of the metric tensor g. ii) Let the 2-form $\beta \in \bigwedge^2(M)$ which is J-skew-symmetric and satisfies:

$$(\nabla_{Z}\beta)(X,Y) = c[g(X,Z)\beta(U,Y) - \Omega(X,Z)\beta(V,Y) \quad (3.2) \\ -v(X)\beta(Y,JZ) + u(X)\beta(Y,Z)]$$

for all X, Y, $Z \in \Gamma(TM)$. Then β is a constant multiple of the fundamental form Ω .

i) Applying the Ricci commutation identity [1, p. 14] and $\nabla^2_{X,Y}\alpha(Z, W) - \nabla^2_{X,Y}\alpha(W, Z) = 0$ for all vector fields X, Y, Z, W we obtain the relation (1.1) of [8, p. 787]:

$$\alpha(R(X, Y)Z, W) + \alpha(Z, R(X, Y)W) = 0$$
(3.3)

which is fundamental in all papers treating this subject. Replacing Z = W = V and using (2.3) it results, by the symmetry of α :

$$v(X)\alpha(Y,V) = v(Y)\alpha(X,V).$$
(3.4)

With X = V we get:

$$\alpha(Y, V) = v(Y)\alpha(V, V). \tag{3.5}$$

[Proof (continuation)] From the symmetry and J-symmetry of α we have:

$$\alpha(U, V) = 0 \tag{3.6}$$

and then the parallelism of α and formulae (3.5) - (3.6) imply that $\alpha(V, V)$ is a constant. Applying X to (3.5) and using (2.2) we have:

$$X(\alpha(Y, V)) = \alpha(\nabla_X Y, V) + \alpha(Y, \nabla_X V)$$

= $X(v(Y))\alpha(V, V) + 2v(Y)\alpha(\nabla_X V, V)$

which means that:

$$c\alpha(Y, u(X)V - v(X)U - JX) = (\nabla_X v)(Y)\alpha(V, V) + 2cv(Y)\alpha(u(X)V - JX, V).$$

[Proof (continuation)] Due to (3.5) and $v \circ J = u$ the last term above is zero. With (2.2) and (3.5) again it results:

$$-v(X)\alpha(U,Y) + \alpha(X,JY) = -u(Y)v(X)\alpha(V,V)$$
(3.7)
+ $\Omega(X,Y)\alpha(V,V).$

We have a relation similar to (3.5) but in terms of U:

$$\alpha(Y, U) = \alpha(Y, -JV) = \alpha(JY, V) = v(JY)\alpha(V, V) \quad (3.8)$$
$$= u(Y)\alpha(V, V)$$

and then, returning to (3.7) we get:

$$\alpha(X, JY) = \alpha(V, V)\Omega(X, Y)$$
(3.9)

and a transformation $Y \rightarrow JY$ gives the conclusion.

[Proof (continuation)] ii) Let $\alpha \in \Gamma(T_2^0(M))$ be given by a relation dual to that defining Ω through g:

$$\alpha(X, Y) := \beta(JX, Y). \tag{3.10}$$

Hence: $\alpha(Y, X) = \beta(JY, X) = -\beta(X, JY)$ which by J-skew-symmetry means $\beta(JX, Y)$ and consequently α is symmetric. Also:

$$\begin{aligned} \alpha(JX,Y) + \alpha(X,JY) &= -\beta(X,Y) + \beta(JX,JY) \\ &= -\beta(X,Y) - \beta(J^2X,Y) = 0. \end{aligned}$$

Finally, (3.2) express the parallelism of α by using the following covariant derivative of *J* resulting from Proposition 1 of [6, p. 338]:

$$(\nabla_Z J)X = c[\Omega(X, Z)U + g(X, Z)V - u(X)JZ - v(X)Z]. \quad (3.11)$$

Therefore we apply i) for α and (3.9) is exactly the conclusion: $\beta(X, Y) = \alpha(V, V)\Omega(X, Y)$ with $\alpha(V, V) = -\beta(U, V)$.

(Institute)

Remarks (3.2) i) The reduction of a covariant second order tensor field to a multiple of the metric holds generally under the hypothesis of irreducibility of the holonomy group/algebra, see for example the Theorem 57 of [7. p. 254]. Our result above implies weaker conditions for the l.c.K. metric in the Vaisman framework.

ii) The parallel forms of compact connected Vaisman manifolds are completely treated in Theorem 7.7. of [2, p. 78].

As an application of Theorem 3.1, we obtain the following result which is similar to Theorem 3 of [8]:

Corollary (3.3)

Let ξ be a holomorphic vector field on a Vaisman manifold such that $\nabla_{\xi}J$ is skew-symmetric with respect to g and $\mathcal{L}_{\xi}g$ is parallel. Then ξ is a homothetic vector field. Moreover, if (M, g, J) is a P_0K -manifold then ξ is a Killing vector field.

For the second order covariant tensor field $\alpha = \mathcal{L}_{\xi}g$ we can apply the previous theorem if the skew-symmetry (3.1) is satisfied. We have:

$$\alpha(JX, Y) + \alpha(X, JY) = g(\nabla_{JX}\xi - J(\nabla_X\xi), Y)$$

+g(X, \nabla_{JY}\xi - J(\nabla_Y\xi)) (3.12)

and the holomorphic hypothesis $\mathcal{L}_{\xi}J=0$ yields:

$$\alpha((\nabla_{\xi}J)X,Y) + \alpha(X,(\nabla_{\xi}J)Y). \tag{3.13}$$

[Proof (continuation)] Hence the claimed skew-symmetry holds and consequently:

$$\mathcal{L}_{\xi}g = \alpha(V, V)g \tag{3.14}$$

is exactly the first conclusion regarding ξ . This relation implies $\mathcal{L}_{\xi}Ric = 0$ and in the P_0K setting the equation (2.6) gives:

$$\mathcal{L}_{\xi}g = \mathcal{L}_{\xi}(u \otimes u). \tag{3.15}$$

The right hand side of (3.15) applied to (V, V) gives that $\alpha(V, V) = 0$ and then (3.14) gives the second conclusion.

Examples (3.4)

i) The vector field U is a holomorphic ([2, p. 37]) and Killing one in a Vaisman manifold since it is parallel: $\nabla U = 0$. Then $\alpha := u \otimes u$ is symmetric and parallel while the condition (3.1) means the Kählerian setting $\omega = 0$. Indeed, with X = Y, the equation (3.1) reads u(X)u(JX) = 0 for all X i.e. u = 0.

ii) By using again [2, p. 37], the vector field V is holomorphic and Killing.

The locally conformal Kähler geometry can be studied in terms of Weyl structures and their associated Weyl connections conform Theorem 1.4 of [2, p. 5]. The expression of the Weyl connection of (M, g, J, ω) is formula (2) of [5, p. 94] which for our notation becomes:

$$D = \nabla - c(u \otimes I + I \otimes u - g \otimes U)$$
(3.16)

with the Kronecker tensor field *I*. Hence, the symmetric tensor field $\alpha \in \Gamma(T_2^0(M))$ is ∇ -parallel if and only if its Weyl derivative is:

$$D_{Z}\alpha(X,Y) = c[2u(Z)\alpha(X,Y) \qquad (3.17)$$

+ $u(X)\alpha(Y,Z) + u(Y)\alpha(X,Z)$
- $g(X,Z)\alpha(U,Y) - g(Y,Z)\alpha(U,X)]$

for all vector fields X, Y, Z.

REFERENCES

- [1] B. Chow; P. Lu; L. Ni, *Hamilton's Ricci flow*, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI; Science Press, New York, 2006. MR2274812 (2008a:53068)
- [2] S. Dragomir; L. Ornea, *Locally conformal Kähler geometry*, Progress in Mathematics, 155, Birkhäuser Boston, Inc., Boston, MA, 1998. MR1481969 (99a:53081)
- [3] S. Ianus; K. Matsumoto; L. Ornea, Complex hypersurfaces of a generalized Hopf manifold, Publ. Inst. Math. (Beograd) (N.S.), 42(56)(1987), 123-129. MR0937459 (89f:53079)
- [4] A. Moroianu, Compact IcK manifolds with parallel vector fields, arXiv 1502.01882.

- [5] A. Moroianu; L. Ornea, *Transformations of locally conformally Kähler manifolds*, Manuscripta Math., 130(2009), no. 1, 93-100.
 MR2533768 (2010f:53046)
- [6] N. Papaghiuc, Some remarks on CR-submanifolds of a locally conformal Kaehler manifold with parallel Lee form, Publ. Math. Debrecen, 43(1993), no. 3-4, 337-341. MR1269961 (95b:53072)
- [7] P. Petersen, *Riemannian geometry*, Second edition. Graduate Texts in Mathematics, 171. Springer, New York, 2006. MR2243772 (2007a:53001)
- [8] R. Sharma, Second order parallel tensor in real and complex space forms, Internat. J. Math. Math. Sci., 12(1989), no. 4, 787-790. MR 1024982 (91f:53035)

- [9] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. (6), 12(1979), no. 2, 263-284. MR0557668 (81e:53053)
- [10] Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to tangent bundles - a classification, Bull. tokyo Gakugei Univ. (4), 40 (1988), 1-29.