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1. Introduction

Let M a submanifold of a (n+ d)-dimensional Euclidean space
En+d . Denote by R the curvature tensor of the Vander
Waerden-Bortoletti connection r of M and h is the second
fundamental form of M in En+d .
The submanifold M is called semi-parallel (or semi-symmetric
(Ferus, 1980)) if R � h = 0 (Decruyenaere et. al, 1994). This
notion is an extrinsic analogue for semi-symmetric spaces, i.e.
Riemannian manifolds for which R � R = 0 and a direct
generalization of parallel submanifolds, i.e. submanifolds for which
rh = 0.
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2. Basic Concepts

Let M be a smooth surface in n-dimensional Euclidean space En

given with the surface patch X (u, v) : (u, v) 2 D � E2. The
tangent space to M at an arbitrary point p = X (u, v) of M span
fXu ,Xv g. In the chart (u, v) the coe¢ cients of the �rst
fundamental form of M are given by

E = hXu ,Xui ,F = hXu ,Xv i ,G = hXv ,Xv i ,

where h, i is the Euclidean inner product. We assume that
W 2 = EG � F 2 6= 0, i.e. the surface patch X (u, v) is regular. For
each p 2 M, consider the decomposition TpEn = TpM � T?p M
where T?p M is the orthogonal component of the tangent plane
TpM in En, that is the normal space of M at p.
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Let χ(M) and χ?(M) be the space of the smooth vector �elds
tangent and normal to M respectively. Denote by r and er the
Levi-Civita connections on M and En, respectively. Given any
vector �elds Xi and Xj tangent to M consider the second
fundamental map h : χ(M)� χ(M)! χ?(M);

h(Xi ,Xj ) = erXiXj �rXiXj ; 1 � i , j � 2. (2.1)

This map is well-de�ned, symmetric and bilinear.
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For any normal vector �eld Nα 1 � α � n� 2 of M, recall the
shape operator A : χ?(M)� χ(M)! χ(M);

ANαXi = � erNαXi +DXiNα; 1 � i � 2.
where D denotes the normal connection of M in En (Chen,
1973).This operator is bilinear, self-adjoint and satis�es the
following equation:

hANαXi ,Xj i = hh(Xi ,Xj ),Nαi , 1 � i , j � 2. (2.2)

The equation (2.1) is called Gaussian formula, and

h(Xi ,Xj ) =
n�2
∑
α=1
hα
ijNα, 1 � i , j � 2 (2.3)

where hα
ij are the coe¢ cients of the second fundamental form

h (Chen, 1973). If h = 0 then M is called totally geodesic. M is
totally umbilical if all shape operators are proportional to the
identity map.
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If we de�ne a covariant di¤erentiation rh of the second
fundamental form h on the direct sum of the tangent bundle and
normal bundle TM � T?M of M by

(rXih)(Xj ,Xk ) = DXih(Xj ,Xk )� h(rXiXj ,Xk )� h(Xj ,rXiXk )
(2.4)

for any vector �elds Xi ,Xj ,Xk tangent to M. Then we have the
Codazzi equation

(rXih)(Xj ,Xk ) = (rXjh)(Xi ,Xk ) (2.5)

where r is called the Vander Waerden-Bortoletti connection of M
(Chen, 1973).

Betül BULCA SEMIPARALLEL SURFACES



1. Introduction
2. Basic Concepts

3. Semiparallel Surfaces
4. Some Results for Semiparallel Surfaces in E4

5. References

We denote R and R the curvature tensors associated with r and
D respectively;

R(Xi ,Xj )Xk = rXirXjXk �rXjrXiXk �r[Xi ,Xj ]Xk ,(2.6)
R?(Xi ,Xj )Nα = h(Xi ,ANαXj )� h(Xj ,ANαXi ). (2.7)

The equation of Gauss and Ricci are given respectively by

hR(Xi ,Xj )Xk ,Xl i = hh(Xi ,Xl ), h(Xj ,Xk )i (2.8)

� hh(Xi ,Xk ), h(Xj ,Xl )i ,D
R?(Xi ,Xj )Nα,Nβ

E
=

D
[ANα ,ANβ

]Xi ,Xj
E

(2.9)

for the vector �elds Xi ,Xj ,Xk tangent to M and Nα,Nβ normal to
M (Chen, 1973).
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Let us Xi ^ Xj denote the endomorphism
Xk �! hXj ,Xk iXi � hXi ,Xk iXj . Then the curvature tensor R of
M is given by the equation

R(Xi ,Xj )Xk =
n�2
∑
α=1

(ANαXi ^ ANαXj )Xk .

It is easy to show that

R(Xi ,Xj )Xk = K (Xi ^ Xj )Xk . (2.10)

where K is the Gaussian curvature of M de�ned by

K = hh(X1,X1), h(X2,X2)i � kh(X1,X2)k2 (2.11)

(see, Guadalupe and Rodriguez, 1983).
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The normal curvature KN of M is de�ned by (see, Decruyenaere
et. al, 1993)

KN =

(
n�2
∑

1=α<β

D
R?(X1,X2)Nα,Nβ

E2)1/2

. (2.12)

We observe that the normal connection D of M is �at if and only
if KN = 0, and by a result of Cartan, this equivalent to the
diagonalisability of all shape operators ANα of M, M is of �at
normal connection in En.
Further, the mean curvature vector

�!
H of M is de�ned by

�!
H =

1
2

n�2
∑
α=1

tr(ANα)Nα. (2.13)
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3. Semiparallel Surfaces

Let M a smooth surface in n-dimensional Euclidean space En. Let
r be the connection of Vander Waerden-Bortoletti of M. Denote
the tensors r by R . Then the product tensor R � h of the
curvature tensor R with the second fundamental form h is de�ned
by

(R(Xi ,Xj ) � h)(Xk ,Xl ) = rXi (rXjh(Xk ,Xl ))�rXj (rXih(Xk ,Xl ))

�r[Xi ,Xj ]h(Xk ,Xl )

for all Xi ,Xj ,Xk ,Xl tangent to M.
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3. Semiparallel Surfaces

The surface M is said to be semi-parallel if R � h = 0, i.e.
R(Xi ,Xj ) � h = 0 ((Deprez, 1985), (Lumiste, 1988), (Deszcz,
1992), (Özgür et. all, 2002)). It is easy to see that

(R(Xi ,Xj ) � h)(Xk ,Xl ) = R?(Xi ,Xj )h(Xk ,Xl ) (3.1)

-h(R(Xi ,Xj )Xk ,Xl )-h(Xk ,R(Xi ,Xj )Xl ).
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First, we sketched the proof of the following result.

Lemma (Deprez, 1985)

Let M � En a smooth surface given with the patch X (u, v). Then
the following equalities are hold;

(R (X1,X2) � h)(X1,X1) =

 
n�2
∑
α=1

hα
11(h

α
22-h

α
11)+2K

!
h(X1,X2)

+
n�2
∑
α=1

hα
11h

α
12(h(X1,X1)-h(X2,X2)),

(R (X1,X2) � h)(X1,X2) =

 
n�2
∑
α=1

hα
12(h

α
22-h

α
11)

!
h(X1,X2) (3.2)

+(
n�2
∑
α=1

hα
12h

α
12-K )(h(X1,X1)-h(X2,X2)),
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Lemma (Cont.)

(R (X1,X2) � h)(X2,X2) =

 
n�2
∑
α=1

hα
22(h

α
22 � hα

11)� 2K
!
h(X1,X2)

+
n�2
∑
α=1

hα
22h

α
12(h(X1,X1)� h(X2,X2)).
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Proof.

Substituting (2.3) and (2.2) into (2.7) we get

R?(X1,X2)Nα = hα
12(h(X1,X1)� h(X2,X2)) (3.3)

+(hα
22 � hα

11)h(X1,X2).

Further, by the use of (2.10) we get

R(X1,X2)X1 = �KX2 (3.4)

R(X1,X2)X2 = KX1.

So, substituting (3.3) and (3.4) into (3.1) we get the result.
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Semi-parallel surfaces in En are classi�ed by J. Deprez (Deprez,
1985):

Theorem
Let M a surface in n-dimensional Euclidean space En. Then M is
semi-parallel if and only if locally;
i) M is equivalent to a 2-sphere, or
ii) M has trivial normal connection, or
iii) M is an isotropic surface in E5 � En satisfying kHk2 = 3K .
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

4.1. Semiparallel tensor product surfaces in E4

In the following section, we will consider the tensor product
immersions, actually surfaces in E4, which are obtained from two
Euclidean plane curves. We recall de�nitions and results of
(Decruyenaere et. all, 1993).
Let c1 : R ! E2 and c2 : R ! E2 be two Euclidean curves. Put
c1(t) = (γ(t), δ(t)) and c2(s) = (α(s), β(s)). Then their tensor
product surface is given by patch

f = c1 
 c2 : R2 ! E4

f (t, s) = (α(s)γ(t), β(s)γ(t), α(s)δ(t), β(s)δ(t)). (4.1.1)

(see (Mihai et. all, 1994-1995), (Decruyenaere et. all, 1994),
(Arslan and Murathan, 1994)).
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

If we take c1 as an unit plane circle centered at 0 and
c2(s) = (α(s), β(s)) is an Euclidean plane curve. Then the surface
patch becomes

M : f (t, s) = (α(s) cos t, β(s) cos t, α(s) sin t, β(s) sin t). (4.1.2)

An orthonormal tangent basis and normal space of M is given by

X1 =
1
kc2k

∂f
∂t
,X2 =

1
kc 02k

∂f
∂s

N1 =
1
kc 02k

(�β0(s) cos t, β0(s) cot s, α0(s) sin t,�α0(s) sin t),

N2 =
1
kc2k

(�β(s) sin t, β(s) sin t, α(s) cos t,�α(s) cos t).
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

By covariant di¤erentiation with respect to X1 and X2 a
straightforward calculation gives

r̃X1X1 = �a(s)X2 + b(s)N1,
r̃X2X2 = c(s)N1, (4.1.3)

r̃X2X1 = b(s)N2,

r̃X1X2 = a(s)X1 � b(s)N2,

and

r̃X1N1 = �b(s)X1 � a(s)N2,
r̃X1N2 = b(s)X2 + a(s)N1, (4.1.4)

r̃X2N1 = �c(s)X2,
r̃X2N2 = �b(s)X1,
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

where

a(s) =
α(s)α0(s) + β(s)β0(s)

kc2(s)k2kc 02k
,

b(s) =
α(s)β0(s)� β(s)α0(s)

kc2(s)k2kc 02k
, (4.1.5)

c(s) =
α0(s)β00(s)� α00(s)β0(s)

kc 02k3
.

are the di¤erentiable functions.
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

By the use of (4.1.4) with (2.1) we get the following result.

Remark
We have suppose that c2 is not a straight line passing through the
origin. In other case M is a plane (Guadalupe and Rodriguez,
1983).

Lemma
Let f = c1 
 c2 be tensor product immersion of a plane circle c1
centered at 0 with any Euclidean planar curve c2(s) = (α(s), β(s))
then the shape operator matrices are

AN1 =
�
b(s) 0
0 c(s)

�
, AN2 =

�
0 �b(s)
�b(s) 0

�
. (4.1.6)
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Thus by the use of (2.7) together with (2.11) and (2.12) we get
the following result.

Proposition

Let M a tensor product surface given with the surface patch
(4.1.2). Then the Gaussian curvature K coincides with the normal
curvature KN of M. That is ;

K = KN = b(s) (c(s)� b(s)) . (4.1.7)
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

By the use of (4.1.5) with (4.1.7) we get the following result.

Corollary

Let M a tensor product surface given with the surface patch
(4.1.2). If M has vanishing Gaussian curvature then c2 is a
logarithmic spiral given with the parametrization

α(s) = eλs cos s, β(s) = eλs sin s
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Theorem (Bulca and Arslan, 2014b)

Let M a tensor product surface in E4 given with the surface patch
(4.1.2). If M is semi-parallel then it has �at normal connection in
E4.

Proof. Let M be a tensor product surface in E4 given with the
patch (4.1.2). Then by the use of (4.1.3) with (4.1.6) we get

h111 = b(s), h112 = h
1
21 = 0, h

1
22 = c(s), (4.1.8)

h211 = 0, h212 = h
2
21 = �b(s), h222 = 0.

and

h(X1,X2) = �b(s)N2 (4.1.9)

h(X1,X1)� h(X2,X2) = (b(s)� c(s))N1.
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Proof. [Cont] Further, substituting (4.1.8) and (4.1.9) into (3.2)
and after some computation one can get

(R(X1,X2) � h)(X1,X1) = �b(s) (b(s) (c(s)� b(s)) + 2K )N2
(R(X1,X2) � h)(X1,X2) =

�
b2(s)�K

�
(b(s)� c(s))N1

(R(X1,X2) � h)(X2,X2) = �b(s) (c(s) (c(s)� b(s))� 2K )N2

Suppose that, M is semi-parallel then by de�nition
(R(X1,X2) � h)(Xi ,Xj ) = 0, (1 � i , j � 2). So, we get

b(s) (b(s) (c(s)� b(s)) + 2K ) = 0,�
b2(s)�K

�
(b(s)� c(s)) = 0, (4.1.10)

b(s) (c(s) (c(s)� b(s))� 2K ) = 0.
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Proof [Cont.] So, substituting K = b(s) (c(s)� b(s)) into
previous equation we obtain

b2(s) (c(s)� b(s)) = 0,

b(s) (b(s)� c(s)) (2b(s)� c(s)) = 0, (4.1.11)

b(s) (c(s)� b(s)) (2b(s)� c(s)) = 0,

So, two possible cases occur; either b(s) = 0 or b(s) = c(s). For
the �rst case c2 is a straight line passing through the origin and
the surface M becomes a plane. So we don�t consider this case.
Hence, b(s) = c(s) which means that R? = 0 by (3.3) and
(4.1.8). This is equivalent to say that M has vanishing normal
curvature KN . So, M has �at normal connection in E4. �
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

Rotation surfaces were studied in (Vranceanu, 1977) by Vranceanu
as surfaces in E4 which are de�ned by the following
parametrization;

X (u, v) = (r(v) cos v cos u, r(v) cos v sin u, (4.2.1)

r(v) sin v cos u, r(v) sin v sin u)

where r(v) is a real valued non-zero function.
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

We choose a moving frame fX1,X2,N1,N2g such that X1,X2 are
tangent to M and N1,N2 are normal to M as given the following
(see (Yoon, 2001)):

X1 =
∂

r(v)∂u
= (- cos v sin u, cos v cos u, - sin v sin u, sin v cos u),

X2 =
∂

A∂v
=
1
A
(B(v) cos u,B(v) sin u,C (v) cos u,C (v) sin u),

N1 =
1
A
(�C (v) cos u,�C (v) sin u,B(v) cos u,B(v) sin u),

N2 = (� sin v sin u, sin v cos u, cos v sin u,� cos v cos u)
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

where

A(v) =
q
r2(v) + (r 0)2(v),

B(v) = r 0(v) cos v � r(v) sin v ,
C (v) = r 0(v) sin v + r(v) cos v .
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Furthermore, by covariant di¤erentiation with respect to X1 and
X2 a straightforward calculation gives:erX1X1 = �a(v)k(v)X2 + a(v)N1,erX2X2 = b(v)N1, (4.2.2)erX2X1 = �a(v)N2,

Betül BULCA SEMIPARALLEL SURFACES



1. Introduction
2. Basic Concepts

3. Semiparallel Surfaces
4. Some Results for Semiparallel Surfaces in E4

5. References

4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

where

k(v) =
r 0(v)
r(v)

,

a(v) =
1p

r2(v) + (r 0)2(v)
, (4.2.3)

b(v) =
2(r 0(v))2 � r(v)r 00(v) + r2(v)

(r2(v) + (r 0)2(v))3/2

are di¤erentiable functions.
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Thus by the use of (2.7) together with (2.11) and (2.12) we get
the following result.

Proposition

Let M a Vranceanu surface given with the surface patch (4.2.1).
Then the Gaussian curvature K of M is ;

K = KN = a(v)b(v)� a2(v). (4.2.4)
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Corollary (Bulca and Arslan, 2014a)

Let M a Vranceanu surface given with the surface patch (4.2.1). If
M is semi-parallel then M is a �at surface satisfying r(v) = c1ec2v .
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Proof.
Suppose the Vranceanu surface M is semi-parallel then by the use
of (3.2) with (4.2.2) we get

(R(X1,X2) � h)(X1,X1) =
�
3a2(v) (a(v)-b(v))

�
N2

(R(X1,X2) � h)(X1,X2) = (a(v) (a(v)-b(v)) (2a(v)-b(v)))N1
(R(X1,X2) � h)(X2,X2) = a(v)

�
3a(v)b(v)-2a(v)2-b(v)2

�
N2.

Suppose that, M is semi-parallel then by (3.1)
(R(X1,X2) � h)(Xi ,Xj ) = 0, (1 � i , j � 2). Which implies that
a(v)� b(v) = 0. So, by (4.2.4) K = KN = 0. Further, from
(4.2.3) we get the result.
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4.3. Semiparallel Meridian surfaces in E4

In this section, we will consider the meridian surfaces in E4 which
is �rst de�ned by Ganchev and Milousheva (Ganchev and
Milousheva, 2010). The meridian surfaces are one-parameter
systems of meridians of the standard rotational hypersurface in E4.
Let fe1, e2, e3, e4g be the standard orthonormal frame in E4, and
S2(1) be a 2-dimensional sphere in E3 = spanfe1, e2, e3g,
centered at the origin O. We consider a smooth curve
C : r = r(v), v 2 J, J � R on S2(1), parameterized by the
arc-length (

(r 0)2(v) = 1). We denote t = r 0 and consider the
moving frame �eld ft(v), n(v), r(v)g of the curve C on S2(1).
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With respect to this orthonormal frame �eld the following Frenet
formulas hold good:

r 0 = t;

t 0 = κ n� r ;
n0 = �κ t,

where κ is the spherical curvature of C .
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Let f = f (u), g = g(u) be smooth functions, de�ned in an
interval I � R, such that

(f 0)2(u) + (g 0)2(u) = 1, u 2 I . (4.3.1)

In (Ganchev and Milousheva, 2010) Ganchev and Milousheva
constructed a surface M2 in E4 in the following way:

M2 : X (u, v) = f (u) r(v) + g(u) e4, u 2 I , v 2 J. (4.3.2)
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The surface M2 lies on the rotational hypersurface M3 in E4

obtained by the rotation of the meridian curve
α : u ! (f (u), g(u)) around the Oe4-axis in E4. Since M2

consists of meridians of M3, we call M2 a meridian surface
(Ganchev and Milousheva, 2010). If we denote by κα the curvature
of meridian curve α, i.e.,

κα = f 0(u)g 00(u)� f 00(u)g(u) =
�f 00(u)p
1� f 02(u)

. (4.3.3)
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

We consider the following orthonormal moving frame �elds,
X1,X2,N1,N2 on the meridian surface M2 such that X1,X2 are
tangent to M2 and N1,N2 are normal to M2. The tangent and
normal space of M2 is spanned by the vector �elds:

X1 = ∂X
∂u , X2 = 1

f
∂X
∂v ,

N1 = n(v), N2 = �g 0(u) r(v) + f 0(u) e4.
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By a direct computation we have the components of the second
fundamental forms as;

h111 = h
1
12 = h

1
21 = 0, h122 =

κ
f ,

h211 = κα h212 = h
2
21 = 0, h222 =

g 0

f .
(4.3.4)
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Lemma

Let M be meridian surface in E4 given with the parametrization
(4.3.2) then the shape operator matrices are

AN1 =
�
0 0
0 κ

f

�
,AN2 =

�
κα 0
0 g 0

f

�
and hence K = καg 0

f and KN = 0, which implies that the meridian
surface M2 is totally umbilical surface in E4.
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In (Ganchev and Milousheva, 2009) Ganchev and Milousheva
constructed three main classes of meridian surfaces:
I. κ = 0; i.e. the curve C is a great circle on S2(1). In this case
N1 = const. and M2 is a planar surface lying in the constant
3-dimensional space spanned by fX1,X2,N2g. Particularly, if in
addition κα = 0, i.e. the meridian curve is a part of a straight line,
then M2 is a developable surface in the 3-dimensional space
spanned by fX1,X2,N2g.
II. κα = 0, i.e. the meridian curve is a part of a straight line. In
such case M2 is a developable ruled surface. If in addition
κ = const., i.e. C is a circle on S2(1), then M2 is a developable
ruled surface in a 3-dimensional space. If κ 6= const.,i.e. C is not a
circle on S2(1), then M2 is a developable ruled surface in E4.
III. κακ 6= 0, i.e. C is not a circle on S2(1) and α is not a straight
line. In this general case the parametric lines of M2 given by
(4.3.2) are orthogonal and asymptotic.
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We proved the following Theorem (Bulca and Arslan, 2015)

Theorem

Let M2 be a meridian surface in E4 given with the parametrization
(4.3.2). Then M2 is semi-parallel if and only if one of the
following holds:
i) M2 is a developable ruled surface in E3 or E4 which considered
in Case II of the classi�cation above,
ii) the curve C is a circle on S2(1) with non-zero constant
spherical curvature and the meridian curve is determined by

f (u) = �
p
u2 � 2au + 2b;

g(u) = �
p
2b� a2 ln

�
u � a�

p
u2 � 2au + 2b

�
,

where a = const, b = const. In this case M2 is a planar surface
lying in 3-dimensional space spanned by fX1,X2,N2g.
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4

4.3. Semiparallel Meridian surfaces in E4

Proof. Let M2 be a meridian surface in E4 given with the
parametrization (4.3.2). Then by the use of (2.3) with (4.3.4) we
see that

h(X1,X2) = 0, (4.3.5)

h(X1,X1)� h(X2,X2) = �κ

f
N1 +

�
κα �

g 0

f

�
N2.

Further, substituting (4.3.5) and (4.3.4) into (3.2) and after some
computation one can get

(R(X1,X2) � h)(X1,X1) = 0,

(R(X1,X2) � h)(X1,X2) = �K
�
�κ

f
N1 +

�
κα �

g 0

f

�
N2

�
,

(R(X1,X2) � h)(X2,X2) = 0.
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Proof [Cont.] Suppose that, M2 is semi-parallel then by de�nition

(R(X1,X2) � h)(Xi ,Xj ) = 0, 1 � i , j � 2,

is satis�ed. So, we get

K
�
�κ

f
N1 +

�
κα �

g 0

f

�
N2

�
= 0.

Hence, two possible cases occur; K = 0 or κ = 0 and κα � g 0

f = 0.
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4.1. Semiparallel tensor product surfaces in E4

4.2. Semiparallel Vranceanu surfaces in E4
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Proof [Cont.] For the �rst case κα = 0, i.e. the meridian curve is
a part of a straight line. In such case M2 is a developable ruled
surface given in the Case II. For the second case κ = 0 means that
the curve c is a great circle on S2(1). In this case M2 lies in the
3-dimensional space spanned by fX1,X2,N2g . Further, using
(4.3.3) the equation κα � g 0

f = 0 can be rewritten in the form

f (u)f 00(u)� (f 0(u))2 + 1 = 0,

which has the solution

f (u) = �
p
u2 � 2au + 2b. (4.3.6)
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Proof [Cont.] Consequently, by substituting (4.3.6) into (4.3.1)
one can get

g(u) = �
p
2b� a2 ln

�
u � a�

p
u2 � 2au + 2b

�
.

This completes the proof of the theorem.
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