ON SOME SEMIPARALLEL SURFACES IN EUCLIDEAN SPACES

Betül BULCA

Uludağ University, Art and Science Faculty, Department of Mathematics, Bursa-TURKEY
XVII. International Conference Geometry, Integrability and Quantization, June 5-10 2015, Varna, Bulgaria

1. Introduction

Let M a submanifold of a $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. Denote by \bar{R} the curvature tensor of the Vander Waerden-Bortoletti connection $\bar{\nabla}$ of M and h is the second fundamental form of M in \mathbb{E}^{n+d}.
The submanifold M is called semi-parallel (or semi-symmetric (Ferus, 1980)) if $\bar{R} \cdot h=0$ (Decruyenaere et. al, 1994). This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which $R \cdot R=0$ and a direct generalization of parallel submanifolds, i.e. submanifolds for which $\bar{\nabla} h=0$.

2. Basic Concepts

Let M be a smooth surface in n-dimensional Euclidean space \mathbb{E}^{n} given with the surface patch $X(u, v):(u, v) \in D \subset \mathbb{E}^{2}$. The tangent space to M at an arbitrary point $p=X(u, v)$ of M span $\left\{X_{u}, X_{v}\right\}$. In the chart (u, v) the coefficients of the first fundamental form of M are given by

$$
E=\left\langle X_{u}, X_{u}\right\rangle, F=\left\langle X_{u}, X_{v}\right\rangle, G=\left\langle X_{v}, X_{v}\right\rangle
$$

where \langle,$\rangle is the Euclidean inner product. We assume that$ $W^{2}=E G-F^{2} \neq 0$, i.e. the surface patch $X(u, v)$ is regular. For each $p \in M$, consider the decomposition $T_{p} \mathbb{E}^{n}=T_{p} M \oplus T_{p}^{\perp} M$ where $T_{p}^{\perp} M$ is the orthogonal component of the tangent plane $T_{p} M$ in \mathbb{E}^{n}, that is the normal space of M at p.

Let $\chi(M)$ and $\chi^{\perp}(M)$ be the space of the smooth vector fields tangent and normal to M respectively. Denote by ∇ and $\widetilde{\nabla}$ the Levi-Civita connections on M and \mathbb{E}^{n}, respectively. Given any vector fields X_{i} and X_{j} tangent to M consider the second fundamental map $h: \chi(M) \times \chi(M) \rightarrow \chi^{\perp}(M)$;

$$
\begin{equation*}
h\left(X_{i}, X_{j}\right)=\widetilde{\nabla}_{X_{i}} X_{j}-\nabla_{X_{i}} X_{j} ; 1 \leq i, j \leq 2 \tag{2.1}
\end{equation*}
$$

This map is well-defined, symmetric and bilinear.

For any normal vector field $N_{\alpha} 1 \leq \alpha \leq n-2$ of M, recall the shape operator $A: \chi^{\perp}(M) \times \chi(M) \rightarrow \chi(M)$;

$$
A_{N_{\alpha}} X_{i}=-\widetilde{\nabla}_{N_{\alpha}} X_{i}+D_{X_{i}} N_{\alpha} ; \quad 1 \leq i \leq 2 .
$$

where D denotes the normal connection of M in \mathbb{E}^{n} (Chen, 1973). This operator is bilinear, self-adjoint and satisfies the following equation:

$$
\begin{equation*}
\left\langle A_{N_{\alpha}} X_{i}, X_{j}\right\rangle=\left\langle h\left(X_{i}, X_{j}\right), N_{\alpha}\right\rangle, 1 \leq i, j \leq 2 \tag{2.2}
\end{equation*}
$$

The equation (2.1) is called Gaussian formula, and

$$
\begin{equation*}
h\left(X_{i}, X_{j}\right)=\sum_{\alpha=1}^{n-2} h_{i j}^{\alpha} N_{\alpha}, \quad 1 \leq i, j \leq 2 \tag{2.3}
\end{equation*}
$$

where $h_{i j}^{\alpha}$ are the coefficients of the second fundamental form h (Chen, 1973). If $h=0$ then M is called totally geodesic. M is totally umbilical if all shape operators are proportional to the identity map.

If we define a covariant differentiation $\bar{\nabla} h$ of the second fundamental form h on the direct sum of the tangent bundle and normal bundle $T M \oplus T^{\perp} M$ of M by

$$
\begin{equation*}
\left(\bar{\nabla}_{X_{i}} h\right)\left(X_{j}, X_{k}\right)=D_{X_{i}} h\left(X_{j}, X_{k}\right)-h\left(\nabla_{X_{i}} X_{j}, X_{k}\right)-h\left(X_{j}, \nabla_{X_{i}} X_{k}\right) \tag{2.4}
\end{equation*}
$$

for any vector fields X_{i}, X_{j}, X_{k} tangent to M. Then we have the Codazzi equation

$$
\begin{equation*}
\left(\bar{\nabla}_{X_{i}} h\right)\left(X_{j}, X_{k}\right)=\left(\bar{\nabla}_{X_{j}} h\right)\left(X_{i}, X_{k}\right) \tag{2.5}
\end{equation*}
$$

where $\bar{\nabla}$ is called the Vander Waerden-Bortoletti connection of M (Chen, 1973).

We denote R and \bar{R} the curvature tensors associated with ∇ and D respectively;

$$
\begin{align*}
R\left(X_{i}, X_{j}\right) X_{k} & =\nabla_{X_{i}} \nabla_{X_{j}} X_{k}-\nabla_{X_{j}} \nabla_{X_{i}} X_{k}-\nabla_{\left[X_{i}, X_{j}\right]} X_{k}(2.6) \\
R^{\perp}\left(X_{i}, X_{j}\right) N_{\alpha} & =h\left(X_{i}, A_{N_{\alpha}} X_{j}\right)-h\left(X_{j}, A_{N_{\alpha}} X_{i}\right) \tag{2.7}
\end{align*}
$$

The equation of Gauss and Ricci are given respectively by

$$
\begin{align*}
\left\langle R\left(X_{i}, X_{j}\right) X_{k}, X_{l}\right\rangle= & \left\langle h\left(X_{i}, X_{l}\right), h\left(X_{j}, X_{k}\right)\right\rangle \tag{2.8}\\
& -\left\langle h\left(X_{i}, X_{k}\right), h\left(X_{j}, X_{l}\right)\right\rangle \\
\left\langle R^{\perp}\left(X_{i}, X_{j}\right) N_{\alpha}, N_{\beta}\right\rangle= & \left\langle\left[A_{N_{\alpha}}, A_{N_{\beta}}\right] X_{i}, X_{j}\right\rangle \tag{2.9}
\end{align*}
$$

for the vector fields X_{i}, X_{j}, X_{k} tangent to M and N_{α}, N_{β} normal to M (Chen, 1973).

Let us $X_{i} \wedge X_{j}$ denote the endomorphism $X_{k} \longrightarrow\left\langle X_{j}, X_{k}\right\rangle X_{i}-\left\langle X_{i}, X_{k}\right\rangle X_{j}$. Then the curvature tensor R of M is given by the equation

$$
R\left(X_{i}, X_{j}\right) X_{k}=\sum_{\alpha=1}^{n-2}\left(A_{N_{\alpha}} X_{i} \wedge A_{N_{\alpha}} X_{j}\right) X_{k}
$$

It is easy to show that

$$
\begin{equation*}
R\left(X_{i}, X_{j}\right) X_{k}=K\left(X_{i} \wedge X_{j}\right) X_{k} \tag{2.10}
\end{equation*}
$$

where K is the Gaussian curvature of M defined by

$$
\begin{equation*}
K=\left\langle h\left(X_{1}, X_{1}\right), h\left(X_{2}, X_{2}\right)\right\rangle-\left\|h\left(X_{1}, X_{2}\right)\right\|^{2} \tag{2.11}
\end{equation*}
$$

(see, Guadalupe and Rodriguez, 1983).

The normal curvature K_{N} of M is defined by (see, Decruyenaere et. al, 1993)

$$
\begin{equation*}
K_{N}=\left\{\sum_{1=\alpha<\beta}^{n-2}\left\langle R^{\perp}\left(X_{1}, X_{2}\right) N_{\alpha}, N_{\beta}\right\rangle^{2}\right\}^{1 / 2} \tag{2.12}
\end{equation*}
$$

We observe that the normal connection D of M is flat if and only if $K_{N}=0$, and by a result of Cartan, this equivalent to the diagonalisability of all shape operators $A_{N_{\alpha}}$ of M, M is of flat normal connection in \mathbb{E}^{n}.
Further, the mean curvature vector \vec{H} of M is defined by

$$
\begin{equation*}
\vec{H}=\frac{1}{2} \sum_{\alpha=1}^{n-2} \operatorname{tr}\left(A_{N_{\alpha}}\right) N_{\alpha} \tag{2.13}
\end{equation*}
$$

3. Semiparallel Surfaces

Let M a smooth surface in n-dimensional Euclidean space \mathbb{E}^{n}. Let $\bar{\nabla}$ be the connection of Vander Waerden-Bortoletti of M. Denote the tensors $\bar{\nabla}$ by \bar{R}. Then the product tensor $\bar{R} \cdot h$ of the curvature tensor \bar{R} with the second fundamental form h is defined by

$$
\begin{aligned}
\left(\bar{R}\left(X_{i}, X_{j}\right) \cdot h\right)\left(X_{k}, X_{l}\right)= & \bar{\nabla}_{X_{i}}\left(\bar{\nabla}_{X_{j}} h\left(X_{k}, X_{l}\right)\right)-\bar{\nabla}_{X_{j}}\left(\bar{\nabla}_{X_{i}} h\left(X_{k}, X_{l}\right)\right) \\
& -\bar{\nabla}_{\left[X_{i}, X_{j}\right]} h\left(X_{k}, X_{l}\right)
\end{aligned}
$$

for all $X_{i}, X_{j}, X_{k}, X_{l}$ tangent to M.

3. Semiparallel Surfaces

The surface M is said to be semi-parallel if $\bar{R} \cdot h=0$, i.e. $\bar{R}\left(X_{i}, X_{j}\right) \cdot h=0$ ((Deprez, 1985), (Lumiste, 1988), (Deszcz, 1992), (Özgür et. all, 2002)). It is easy to see that
$\left(\bar{R}\left(X_{i}, X_{j}\right) \cdot h\right)\left(X_{k}, X_{l}\right)=R^{\perp}\left(X_{i}, X_{j}\right) h\left(X_{k}, X_{l}\right)$
$-h\left(R\left(X_{i}, X_{j}\right) X_{k}, X_{l}\right)-h\left(X_{k}, R\left(X_{i}, X_{j}\right) X_{l}\right)$.

First, we sketched the proof of the following result.

Lemma (Deprez, 1985)

Let $M \subset \mathbb{E}^{n}$ a smooth surface given with the patch $X(u, v)$. Then the following equalities are hold;

$$
\begin{align*}
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{1}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{11}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right)+2 K\right) h\left(X_{1}, X_{2}\right) \\
& +\sum_{\alpha=1}^{n-2} h_{11}^{\alpha} h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right), \\
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{2}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{12}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right)\right) h\left(X_{1}, X_{2}\right) \tag{3.2}\\
& +\left(\sum_{\alpha=1}^{n-2} h_{12}^{\alpha} h_{12}^{\alpha}-K\right)\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right),
\end{align*}
$$

Lemma (Cont.)

$$
\begin{aligned}
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{2}, X_{2}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{22}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right)-2 K\right) h\left(X_{1}, X_{2}\right) \\
& +\sum_{\alpha=1}^{n-2} h_{22}^{\alpha} h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right)
\end{aligned}
$$

Proof.

Substituting (2.3) and (2.2) into (2.7) we get

$$
\begin{align*}
R^{\perp}\left(X_{1}, X_{2}\right) N_{\alpha}= & h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right) \tag{3.3}\\
& +\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right) h\left(X_{1}, X_{2}\right)
\end{align*}
$$

Further, by the use of (2.10) we get

$$
\begin{align*}
& R\left(X_{1}, X_{2}\right) X_{1}=-K X_{2} \tag{3.4}\\
& R\left(X_{1}, X_{2}\right) X_{2}=K X_{1}
\end{align*}
$$

So, substituting (3.3) and (3.4) into (3.1) we get the result.

Semi-parallel surfaces in \mathbb{E}^{n} are classified by J. Deprez (Deprez, 1985):

Theorem

Let M a surface in n-dimensional Euclidean space \mathbb{E}^{n}. Then M is semi-parallel if and only if locally;
i) M is equivalent to a 2 -sphere, or
ii) M has trivial normal connection, or
iii) M is an isotropic surface in $\mathbb{E}^{5} \subset \mathbb{E}^{n}$ satisfying $\|H\|^{2}=3 K$.

4.1. Semiparallel tensor product surfaces in E4

In the following section, we will consider the tensor product immersions, actually surfaces in \mathbb{E}^{4}, which are obtained from two Euclidean plane curves. We recall definitions and results of (Decruyenaere et. all, 1993).
Let $c_{1}: \mathbb{R} \rightarrow \mathbb{E}^{2}$ and $c_{2}: \mathbb{R} \rightarrow \mathbb{E}^{2}$ be two Euclidean curves. Put $c_{1}(t)=(\gamma(t), \delta(t))$ and $c_{2}(s)=(\alpha(s), \beta(s))$. Then their tensor product surface is given by patch

$$
\begin{gather*}
f=c_{1} \otimes c_{2}: \mathbb{R}^{2} \rightarrow \mathbb{E}^{4} \\
f(t, s)=(\alpha(s) \gamma(t), \beta(s) \gamma(t), \alpha(s) \delta(t), \beta(s) \delta(t)) \tag{4.1.1}
\end{gather*}
$$

(see (Mihai et. all, 1994-1995), (Decruyenaere et. all, 1994), (Arslan and Murathan, 1994)).

If we take c_{1} as an unit plane circle centered at 0 and $c_{2}(s)=(\alpha(s), \beta(s))$ is an Euclidean plane curve. Then the surface patch becomes

$$
\begin{equation*}
M: \quad f(t, s)=(\alpha(s) \cos t, \beta(s) \cos t, \alpha(s) \sin t, \beta(s) \sin t) . \tag{4.1.2}
\end{equation*}
$$

An orthonormal tangent basis and normal space of M is given by
$X_{1}=\frac{1}{\left\|c_{2}\right\|} \frac{\partial f}{\partial t}, X_{2}=\frac{1}{\left\|c_{2}^{\prime}\right\|} \frac{\partial f}{\partial s}$
$N_{1}=\frac{1}{\left\|c_{2}^{\prime}\right\|}\left(-\beta^{\prime}(s) \cos t, \beta^{\prime}(s) \cot s, \alpha^{\prime}(s) \sin t,-\alpha^{\prime}(s) \sin t\right)$,
$N_{2}=\frac{1}{\left\|c_{2}\right\|}(-\beta(s) \sin t, \beta(s) \sin t, \alpha(s) \cos t,-\alpha(s) \cos t)$.

By covariant differentiation with respect to X_{1} and X_{2} a straightforward calculation gives

$$
\begin{align*}
\tilde{\nabla}_{X_{1}} X_{1} & =-a(s) X_{2}+b(s) N_{1} \\
\tilde{\nabla}_{X_{2}} X_{2} & =c(s) N_{1}, \tag{4.1.3}\\
\tilde{\nabla}_{X_{2}} X_{1} & =b(s) N_{2} \\
\tilde{\nabla}_{X_{1}} X_{2} & =a(s) X_{1}-b(s) N_{2}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{\nabla}_{X_{1}} N_{1} & =-b(s) X_{1}-a(s) N_{2} \\
\tilde{\nabla}_{X_{1}} N_{2} & =b(s) X_{2}+a(s) N_{1}, \tag{4.1.4}\\
\tilde{\nabla}_{X_{2}} N_{1} & =-c(s) X_{2} \\
\tilde{\nabla}_{X_{2}} N_{2} & =-b(s) X_{1},
\end{align*}
$$

where

$$
\begin{align*}
a(s) & =\frac{\alpha(s) \alpha^{\prime}(s)+\beta(s) \beta^{\prime}(s)}{\left\|c_{2}(s)\right\|^{2}\left\|c_{2}^{\prime}\right\|} \\
b(s) & =\frac{\alpha(s) \beta^{\prime}(s)-\beta(s) \alpha^{\prime}(s)}{\left\|c_{2}(s)\right\|^{2}\left\|c_{2}^{\prime}\right\|} \tag{4.1.5}\\
c(s) & =\frac{\alpha^{\prime}(s) \beta^{\prime \prime}(s)-\alpha^{\prime \prime}(s) \beta^{\prime}(s)}{\left\|c_{2}^{\prime}\right\|^{3}} .
\end{align*}
$$

are the differentiable functions.

By the use of (4.1.4) with (2.1) we get the following result.

Remark

We have suppose that c_{2} is not a straight line passing through the origin. In other case M is a plane (Guadalupe and Rodriguez, 1983).

Lemma

Let $f=c_{1} \otimes c_{2}$ be tensor product immersion of a plane circle c_{1} centered at 0 with any Euclidean planar curve $c_{2}(s)=(\alpha(s), \beta(s))$ then the shape operator matrices are

$$
A_{N_{1}}=\left[\begin{array}{ll}
b(s) & 0 \tag{4.1.6}\\
0 & c(s)
\end{array}\right], A_{N_{2}}=\left[\begin{array}{ll}
0 & -b(s) \\
-b(s) & 0
\end{array}\right] .
$$

Thus by the use of (2.7) together with (2.11) and (2.12) we get the following result.

Proposition

Let M a tensor product surface given with the surface patch (4.1.2). Then the Gaussian curvature K coincides with the normal curvature K_{N} of M. That is ;

$$
\begin{equation*}
K=K_{N}=b(s)(c(s)-b(s)) . \tag{4.1.7}
\end{equation*}
$$

By the use of (4.1.5) with (4.1.7) we get the following result.

Corollary

Let M a tensor product surface given with the surface patch (4.1.2). If M has vanishing Gaussian curvature then c_{2} is a logarithmic spiral given with the parametrization

$$
\alpha(s)=e^{\lambda s} \cos s, \beta(s)=e^{\lambda s} \sin s
$$

4.1. Semiparallel tensor product surfaces in \mathbb{E}^{4} 4.2. Semiparallel Vranceanu surfaces in \mathbb{E}^{4}
4.3. Semiparallel Meridian surfaces in \mathbb{E}^{4}

Theorem (Bulca and Arslan, 2014b)

Let M a tensor product surface in \mathbb{E}^{4} given with the surface patch (4.1.2). If M is semi-parallel then it has flat normal connection in \mathbb{E}^{4}.

Proof. Let M be a tensor product surface in \mathbb{E}^{4} given with the patch (4.1.2). Then by the use of (4.1.3) with (4.1.6) we get

$$
\begin{align*}
& h_{11}^{1}=b(s), h_{12}^{1}=h_{21}^{1}=0, h_{22}^{1}=c(s) \tag{4.1.8}\\
& h_{11}^{2}=0, h_{12}^{2}=h_{21}^{2}=-b(s), h_{22}^{2}=0
\end{align*}
$$

and

$$
\begin{align*}
h\left(X_{1}, X_{2}\right) & =-b(s) N_{2} \tag{4.1.9}\\
h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right) & =(b(s)-c(s)) N_{1}
\end{align*}
$$

Proof. [Cont] Further, substituting (4.1.8) and (4.1.9) into (3.2) and after some computation one can get
$\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{1}\right)=-b(s)(b(s)(c(s)-b(s))+2 K) N_{2}$
$\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{2}\right)=\left(b^{2}(s)-K\right)(b(s)-c(s)) N_{1}$
$\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{2}, X_{2}\right)=-b(s)(c(s)(c(s)-b(s))-2 K) N_{2}$
Suppose that, M is semi-parallel then by definition $\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{i}, X_{j}\right)=0,(1 \leq i, j \leq 2)$. So, we get

$$
\begin{align*}
b(s)(b(s)(c(s)-b(s))+2 K) & =0, \\
\left(b^{2}(s)-K\right)(b(s)-c(s)) & =0, \tag{4.1.10}\\
b(s)(c(s)(c(s)-b(s))-2 K) & =0 .
\end{align*}
$$

Proof [Cont.] So, substituting $K=b(s)(c(s)-b(s))$ into previous equation we obtain

$$
\begin{align*}
b^{2}(s)(c(s)-b(s)) & =0 \\
b(s)(b(s)-c(s))(2 b(s)-c(s)) & =0 \tag{4.1.11}\\
b(s)(c(s)-b(s))(2 b(s)-c(s)) & =0
\end{align*}
$$

So, two possible cases occur; either $b(s)=0$ or $b(s)=c(s)$. For the first case c_{2} is a straight line passing through the origin and the surface M becomes a plane. So we don't consider this case. Hence, $b(s)=c(s)$ which means that $R^{\perp}=0$ by (3.3) and (4.1.8). This is equivalent to say that M has vanishing normal curvature K_{N}. So, M has flat normal connection in \mathbb{E}^{4}.

4.2. Semiparallel Vranceanu surfaces in E4

Rotation surfaces were studied in (Vranceanu, 1977) by Vranceanu as surfaces in \mathbb{E}^{4} which are defined by the following parametrization;

$$
\begin{align*}
X(u, v)= & (r(v) \cos v \cos u, r(v) \cos v \sin u, \tag{4.2.1}\\
& r(v) \sin v \cos u, r(v) \sin v \sin u)
\end{align*}
$$

where $r(v)$ is a real valued non-zero function.

We choose a moving frame $\left\{X_{1}, X_{2}, N_{1}, N_{2}\right\}$ such that X_{1}, X_{2} are tangent to M and N_{1}, N_{2} are normal to M as given the following (see (Yoon, 2001)):
$X_{1}=\frac{\partial}{r(v) \partial u}=(-\cos v \sin u, \cos v \cos u,-\sin v \sin u, \sin v \cos u)$,
$X_{2}=\frac{\partial}{A \partial v}=\frac{1}{A}(B(v) \cos u, B(v) \sin u, C(v) \cos u, C(v) \sin u)$,
$N_{1}=\frac{1}{A}(-C(v) \cos u,-C(v) \sin u, B(v) \cos u, B(v) \sin u)$,
$N_{2}=(-\sin v \sin u, \sin v \cos u, \cos v \sin u,-\cos v \cos u)$
where

$$
\begin{aligned}
& A(v)=\sqrt{r^{2}(v)+\left(r^{\prime}\right)^{2}(v)}, \\
& B(v)=r^{\prime}(v) \cos v-r(v) \sin v, \\
& C(v)=r^{\prime}(v) \sin v+r(v) \cos v .
\end{aligned}
$$

Furthermore, by covariant differentiation with respect to X_{1} and X_{2} a straightforward calculation gives:

$$
\begin{align*}
\widetilde{\nabla}_{X_{1}} X_{1} & =-a(v) k(v) X_{2}+a(v) N_{1}, \\
\widetilde{\nabla}_{X_{2}} X_{2} & =b(v) N_{1}, \tag{4.2.2}\\
\widetilde{\nabla}_{X_{2}} X_{1} & =-a(v) N_{2},
\end{align*}
$$

where

$$
\begin{align*}
k(v) & =\frac{r^{\prime}(v)}{r(v)} \\
a(v) & =\frac{1}{\sqrt{r^{2}(v)+\left(r^{\prime}\right)^{2}(v)}}, \tag{4.2.3}\\
b(v) & =\frac{2\left(r^{\prime}(v)\right)^{2}-r(v) r^{\prime \prime}(v)+r^{2}(v)}{\left(r^{2}(v)+\left(r^{\prime}\right)^{2}(v)\right)^{3 / 2}}
\end{align*}
$$

are differentiable functions.

Thus by the use of (2.7) together with (2.11) and (2.12) we get the following result.

Proposition

Let M a Vranceanu surface given with the surface patch (4.2.1). Then the Gaussian curvature K of M is ;

$$
\begin{equation*}
K=K_{N}=a(v) b(v)-a^{2}(v) \tag{4.2.4}
\end{equation*}
$$

Corollary (Bulca and Arslan, 2014a)

Let M a Vranceanu surface given with the surface patch (4.2.1). If M is semi-parallel then M is a flat surface satisfying $r(v)=c_{1} e^{c_{2} v}$.

Proof.

Suppose the Vranceanu surface M is semi-parallel then by the use of (3.2) with (4.2.2) we get

$$
\begin{aligned}
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{1}\right)=\left(3 a^{2}(v)(a(v)-b(v))\right) N_{2} \\
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{2}\right)=(a(v)(a(v)-b(v))(2 a(v)-b(v))) N_{1} \\
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{2}, X_{2}\right)=a(v)\left(3 a(v) b(v)-2 a(v)^{2}-b(v)^{2}\right) N_{2} .
\end{aligned}
$$

Suppose that, M is semi-parallel then by (3.1) $\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{i}, X_{j}\right)=0,(1 \leq i, j \leq 2)$. Which implies that $a(v)-b(v)=0$. So, by (4.2.4) $K=K_{N}=0$. Further, from (4.2.3) we get the result.

4.3. Semiparallel Meridian surfaces in E4

In this section, we will consider the meridian surfaces in \mathbb{E}^{4} which is first defined by Ganchev and Milousheva (Ganchev and Milousheva, 2010). The meridian surfaces are one-parameter systems of meridians of the standard rotational hypersurface in \mathbb{E}^{4}. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard orthonormal frame in \mathbb{E}^{4}, and $S^{2}(1)$ be a 2 -dimensional sphere in $\mathbb{E}^{3}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$, centered at the origin O. We consider a smooth curve $C: r=r(v), v \in J, J \subset \mathbb{R}$ on $S^{2}(1)$, parameterized by the arc-length $\left(\left\|\left(r^{\prime}\right)^{2}(v)\right\|=1\right)$. We denote $t=r^{\prime}$ and consider the moving frame field $\{t(v), n(v), r(v)\}$ of the curve C on $S^{2}(1)$.

With respect to this orthonormal frame field the following Frenet formulas hold good:

$$
\begin{aligned}
r^{\prime} & =t ; \\
t^{\prime} & =\kappa n-r ; \\
n^{\prime} & =-\kappa t,
\end{aligned}
$$

where κ is the spherical curvature of C.

Let $f=f(u), g=g(u)$ be smooth functions, defined in an interval $I \subset \mathbb{R}$, such that

$$
\begin{equation*}
\left(f^{\prime}\right)^{2}(u)+\left(g^{\prime}\right)^{2}(u)=1, u \in I . \tag{4.3.1}
\end{equation*}
$$

In (Ganchev and Milousheva, 2010) Ganchev and Milousheva constructed a surface M^{2} in \mathbb{E}^{4} in the following way:

$$
\begin{equation*}
M^{2}: X(u, v)=f(u) r(v)+g(u) e_{4}, \quad u \in I, v \in J \tag{4.3.2}
\end{equation*}
$$

The surface M^{2} lies on the rotational hypersurface M^{3} in \mathbb{E}^{4} obtained by the rotation of the meridian curve $\alpha: u \rightarrow(f(u), g(u))$ around the $O e_{4}$-axis in \mathbb{E}^{4}. Since M^{2} consists of meridians of M^{3}, we call M^{2} a meridian surface (Ganchev and Milousheva, 2010). If we denote by κ_{α} the curvature of meridian curve α, i.e.,

$$
\begin{equation*}
\kappa_{\alpha}=f^{\prime}(u) g^{\prime \prime}(u)-f^{\prime \prime}(u) g(u)=\frac{-f^{\prime \prime}(u)}{\sqrt{1-f^{\prime 2}(u)}} . \tag{4.4.3}
\end{equation*}
$$

We consider the following orthonormal moving frame fields, $X_{1}, X_{2}, N_{1}, N_{2}$ on the meridian surface M^{2} such that X_{1}, X_{2} are tangent to M^{2} and N_{1}, N_{2} are normal to M^{2}. The tangent and normal space of M^{2} is spanned by the vector fields:

$$
\begin{aligned}
& X_{1}=\frac{\partial X}{\partial u}, \quad X_{2}=\frac{1}{f} \frac{\partial X}{\partial v} \\
& N_{1}=n(v), \quad N_{2}=-g^{\prime}(u) r(v)+f^{\prime}(u) e_{4} .
\end{aligned}
$$

By a direct computation we have the components of the second fundamental forms as;

$$
\begin{align*}
& h_{11}^{1}=h_{12}^{1}=h_{21}^{1}=0, \quad h_{22}^{1}=\frac{\kappa}{f}, \\
& h_{11}^{2}=\kappa_{\alpha} \quad h_{12}^{2}=h_{21}^{2}=0, \quad h_{22}^{2}=\frac{g^{\prime}}{f} . \tag{4.3.4}
\end{align*}
$$

Lemma

Let M be meridian surface in \mathbb{E}^{4} given with the parametrization (4.3.2) then the shape operator matrices are

$$
A_{N_{1}}=\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{\kappa}{f}
\end{array}\right], A_{N_{2}}=\left[\begin{array}{cc}
\kappa_{\alpha} & 0 \\
0 & \frac{g^{\prime}}{f}
\end{array}\right]
$$

and hence $K=\frac{\kappa_{\alpha} g^{\prime}}{f}$ and $K_{N}=0$, which implies that the meridian surface M^{2} is totally umbilical surface in \mathbb{E}^{4}.

In (Ganchev and Milousheva, 2009) Ganchev and Milousheva constructed three main classes of meridian surfaces:
I. $\kappa=0$; i.e. the curve C is a great circle on $S^{2}(1)$. In this case $N_{1}=$ const. and M^{2} is a planar surface lying in the constant 3-dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$. Particularly, if in addition $\kappa_{\alpha}=0$, i.e. the meridian curve is a part of a straight line, then M^{2} is a developable surface in the 3-dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$.
II. $\kappa_{\alpha}=0$, i.e. the meridian curve is a part of a straight line. In such case M^{2} is a developable ruled surface. If in addition $\kappa=$ const., i.e. C is a circle on $S^{2}(1)$, then M^{2} is a developable ruled surface in a 3 -dimensional space. If $\kappa \neq$ const.,i.e. C is not a circle on $S^{2}(1)$, then M^{2} is a developable ruled surface in \mathbb{E}^{4}. III. $\kappa_{\alpha} \kappa \neq 0$, i.e. C is not a circle on $S^{2}(1)$ and α is not a straight line. In this general case the parametric lines of M^{2} given by (4.3.2) are orthogonal and asymptotic.

We proved the following Theorem (Bulca and Arslan, 2015)

Theorem

Let M^{2} be a meridian surface in \mathbb{E}^{4} given with the parametrization (4.3.2). Then M^{2} is semi-parallel if and only if one of the following holds:
i) M^{2} is a developable ruled surface in \mathbb{E}^{3} or \mathbb{E}^{4} which considered in Case II of the classification above,
ii) the curve C is a circle on $S^{2}(1)$ with non-zero constant spherical curvature and the meridian curve is determined by

$$
\begin{aligned}
& f(u)= \pm \sqrt{u^{2}-2 a u+2 b} \\
& g(u)=-\sqrt{2 b-a^{2}} \ln \left(u-a-\sqrt{u^{2}-2 a u+2 b}\right)
\end{aligned}
$$

where $a=$ const, $b=$ const. In this case M^{2} is a planar surface lying in 3-dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$.

Proof. Let M^{2} be a meridian surface in \mathbb{E}^{4} given with the parametrization (4.3.2). Then by the use of (2.3) with (4.3.4) we see that

$$
\begin{aligned}
h\left(X_{1}, X_{2}\right) & =0 \\
h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right) & =-\frac{\kappa}{f} N_{1}+\left(\kappa_{\alpha}-\frac{g^{\prime}}{f}\right) N_{2}
\end{aligned}
$$

Further, substituting (4.3.5) and (4.3.4) into (3.2) and after some computation one can get

$$
\begin{aligned}
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{1}\right)=0, \\
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{2}\right)=-K\left(-\frac{\kappa}{f} N_{1}+\left(\kappa_{\alpha}-\frac{g^{\prime}}{f}\right) N_{2}\right), \\
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{2}, X_{2}\right)=0 .
\end{aligned}
$$

Proof [Cont.] Suppose that, M^{2} is semi-parallel then by definition

$$
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{i}, X_{j}\right)=0,1 \leq i, j \leq 2
$$

is satisfied. So, we get

$$
K\left(-\frac{\kappa}{f} N_{1}+\left(\kappa_{\alpha}-\frac{g^{\prime}}{f}\right) N_{2}\right)=0
$$

Hence, two possible cases occur; $K=0$ or $\kappa=0$ and $\kappa_{\alpha}-\frac{g^{\prime}}{f}=0$.

Proof [Cont.] For the first case $\kappa_{\alpha}=0$, i.e. the meridian curve is a part of a straight line. In such case M^{2} is a developable ruled surface given in the Case II. For the second case $\kappa=0$ means that the curve c is a great circle on $S^{2}(1)$. In this case M^{2} lies in the 3-dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$. Further, using (4.3.3) the equation $\kappa_{\alpha}-\frac{g^{\prime}}{f}=0$ can be rewritten in the form

$$
f(u) f^{\prime \prime}(u)-\left(f^{\prime}(u)\right)^{2}+1=0
$$

which has the solution

$$
\begin{equation*}
f(u)= \pm \sqrt{u^{2}-2 a u+2 b} \tag{4.3.6}
\end{equation*}
$$

Proof [Cont.] Consequently, by substituting (4.3.6) into (4.3.1) one can get

$$
g(u)=-\sqrt{2 b-a^{2}} \ln \left(u-a-\sqrt{u^{2}-2 a u+2 b}\right) .
$$

This completes the proof of the theorem.

5．References

䍰 Bulca，B．and Arslan，K．，Semi－parallel Wintgen Ideal Surfaces in \mathbb{E}^{n} ．Compt．Rend．del Acad．Bulgare des Sci．，67（2014）， 613－622．

㐭 Bulca，B．and Arslan，K．，Semi－parallel Tensor Product Surfaces in \mathbb{E}^{4} ．Int．Elect．J．Geom．，7（2014），36－43．

Bulca，B．and Arslan，K．，Semi－parallel Meridian Surfaces in \mathbb{E}^{4} ．Submitted to IEJG．

堛 Arslan，K．and Murathan，C．Tensor product surfaces of Pseudo－Euclidean Planar Curves，Geometry and Topology of Submanifolds，VII，World scientific，1994，71－75．

䡒 Chen，B．Y．，Geometry of Submanifolds，．Dekker，New York（1973）．

圊 Decruyenaere，F．，Dillen，F．，Mihai，I．，Verstraelen，L．，Tensor products of spherical and equivariant immersions．Bull．Belg． Math．Soc．－Simon Stevin，1（1994），643－648．

囯 Decruyenaere，F．，Dillen，F．，Verstraelen，L．，Vrancken，L，The semiring of immersions of manifolds．Beitrage Algebra Geom． 34（1993），209－215．
Deprez，J．，Semi－parallel surfaces in Euclidean space．J．Geom． 25（1985）．192－200．
围 Deszcz，R．，On pseudosymmetric spaces．Bull．Soc．Math． Belg．， 44 ser．A（1992），1－34．

Rerus，D．，Symmetric submanifolds of Euclidean space．Math． Ann．247（1980），81－93．
－Ganchev，G．and Milousheva，V．，Invariants and Bonnet－type theorem for surfaces in \mathbb{R}^{4} ．Cent．Eur．J．Math．8（2010），No．6， 993－1008．
围 Ganchev，G．and Milousheva，V．，Geometric Interpretation of the Invariants of a Surface in \mathbb{R}^{4} via the tangent indicatrix and the normal curvature ellipse．ArXiv：0905．4453v1（2009）．
（ Guadalupe，I．V．，Rodriguez，L．，Normal curvature of surfaces in space forms．Pacific J．Math．106（1983），95－103．
國 Lumiste，Ü．，Classification of two－codimensional semi－symmetric submanifolds．TRÜ Toimetised 803（1988）， 79－84．
囯 Mihai，I．and Rouxel，B．，Tensor product surfaces of Euclidean plane curves，Results in．Mathematics， 27 （1995），no．3－4， 308－315．

围 Mihai，I．，Rosca，R．，Verstraelen，L．，Vrancken，L．，Tensor product surfaces of Euclidean planar curves．Rend．Sem．Mat． Messina 3（1994／1995），173－184．
R Özgür，C．，Arslan，K．，Murathan，C．，On a class of surfaces in Euclidean spaces．Commun．Fac．Sci．Univ．Ank．series A1 51（2002），47－54．
目 Vranceanu，G．，Surfaces de Rotation Dans \mathbb{R}^{4} ．Romaine Math． Pures Appl．22（1977），857－862．

嗇 Yoon，D．W．，Rotational surfaces with finite type Gauss map in \mathbb{E}^{4} ．Indian J．Pure Appl．Math．32（2001），1803－1808．

THANK YOU

