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Black holes as elementary particles[ G.’t Hooft (1990), A. Sen (1995), C.F.E. Holzhey

and F. Wilczek (1992), A.Salam and J. Strathdee (1976)].

KERR-NEWMAN solution as Spinning Particle.

The experimentally observable parameters of an electron (mass m, spin J,

charge e and magnetic moment µ) indicate that its gravitational and elec-

tromagnetic fields correspond to Kerr-Newman (KN) black hole solution!

Spin of electron is extremely high, a = J/m >> m (a/m ≈ 1044 ), and black

hole horizons disappear, corresponding to ULTRA-EXTREME KN solu-

tion. No horizons - naked topological defect:

SINGULAR RING of Compton radius – branch line of space-time, forming

a door to a mirror world. TWO-SHEETED space-time!

CONFLICT BETWEEN GRAVITY AND QUANTUM THEORY:

REGULARIZATION of Kerr’s source: GRAVITATING SOLITON

The requirements:

1) Flat space-time INSIDE the soliton!

2) The exact Kerr-Newman solution OUTSIDE the soliton!

3) A smooth transition between internal and external metrics

determine UNAMBIGUOUSLY structure of the source as a “Bag-String-

Quark” system.
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SHAPE OF the BAG is uniquely determined by the KN metric

g
(KN)
µν = ηµν + 2H(KN)kµkν, where H(KN) =

mr−e2/2
r2+a2 cos2 θ

.

and ZERO GRAVITY SURFACE: H(KN) = 0 ⇒ r = e2/2m.
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Figure 1: Kerr’s oblate spheroidal coordinates cover space-time twice.
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The metric and vector potential Aµ
KN = Re e

r+ia cos θk
µ are collinear with Prin-

cipal Null Directions kµ controlled by the KERR THEOREM.
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PECULIARITIES:

1.- Shape of the KN soliton:
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Figure 2: The disk-like bubble for different ratio a/R.

2.- The quartic potential V (r) = λ(|ϕ|2 − Φ2)2, used in the known bag models

and in the known Nielsen-Olesen string model, doesn’t go. The KN-source

requires a few chiral fields Φi(r), i = 1, 2, 3.

3. - Twisted Kerr congruence kµ is controlled by the KERR THEOREM

which yields two solutions kµ± which determine TWO-SHEETED metric,

g±µν, vector potential Aµ
KN = Re e

r+ia cos θk
µ±, and the associated Dirac field !
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PECULIARITIES OF MIT-BAG AND KN-BAG MODELS.
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Figure 3: Illustration of the quark confinement in the
bag models. Vacuum field σ is determined by quartic
potential.
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Figure 4: The KN soliton bag model (Q-ball). Poten-
tial V (R) forms a narrow spike at the bag boundary.
The Higgs field H is confined inside the bag forming a
false-vacuum state.

KN-bag should have Vint = Vext = 0, and a narrow spike at the bag-boundary.

Formation of such a potential requires a few chiral fields Φi(r), i = 1, 2, 3.
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Supersymmetric field model of phase transition.

Triplet of the chiral fields Φ(i) = {H,Z,Σ}, where H is Higgs field.

Lagrangian

L = −1

4

3∑
i=1

F (i)
µνF

(i)µν − 1

2

3∑
i=1

(D(i)
µ Φ(i))(D(i)µΦ(i))∗ − V, (1)

covariant derivatives D(i)
µ = ∇µ + ieA

(i)
µ .

Superpotential

W = Φ(2)(Φ(1)Φ̄(1) − η2) + (Φ(2) + µ)Φ(3)Φ̄(3), (2)

determines the potential

V (r) =
∑
i

|∂iW |2, (3)

H ≡ Φ(1) is taken as Higgs field.

Vacuum states V(vac) = 0 are determined by the conditions ∂iW = 0. The

model yields two vacuum solutions:

(I) vacuum state inside the bag: |H| = η; Z = −µ; Σ = 0,

(II) external vacuum state: |H| = 0; Z = 0; Σ = η.

The Higgs field H is confined inside the bag. Gauge symmetry is broken ⇒
supersymmetric false vacuum state.
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Basic equations for interaction of the electromagnetic and the Higgs field

H(x) = |H|eiχ(x) confined inside the bubble:

D(1)
ν D(1)νH = ∂H∗V, (4)

∇ν∇νAµ = Iµ =
1

2
e|H|2(χ,µ+eAµ). (5)
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Figure 5: The Kerr surface ϕ = const. The Kerr congruence is tangent to singular ring at θ = π/2.

Peculiarities of the KN soliton model :

(i) closed flux of the KN electromagnetic potential forms a quantum Wil-

son loop
∮
eAφdφ = −4πma, which results in quantization of the soliton spin,

J = ma = n~/2, n = 1, 2, 3, ...,

(ii) the Higgs condensate forms a coherent vacuum state oscillating with

the frequency ω = 2m – oscillons, Q-balls (G.Rosen 1968, Coleman 1985).

7



Supersymmety, Bogomolnyi bound and stability.

The Einstein-Maxwell eqs. are trivially satisfied inside and outside the bubble.

Inside the bubble and at the boundary metric is flat.

Domain Wall is not rotating and Hamiltonian is simplified

H(ch) = T
0(ch)

0 =
1

2

3∑
i=1

[

3∑
µ=0

|D(i)
µ Φi|2 + |∂iW |2].

Although metric is flat, influence of gravity is saved in the shape of the

bag and in the twisted form of the electromagnetic field.

We must use the adapted Kerr coordinate system x+iy = (r+ia)eiϕ sin θ, z =

r cos θ, t = ρ− r, in which the KN vector potential takes the form

Aµdx
µ = −Re [(

e

r + ia cos θ
)](dr − dt− a sin2 θdϕ). (6)

The terms Aϕdϕ and Atdt may be separated by introducing the first order

equations

D(1)
t Φ1 = 0, D(1)

ϕ Φ1 = 0, (7)

which lead to consequences (i) and (ii), and these derivatives drop out of

the Hamiltonian.
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The rest of the Hamiltonian is reduced to integral over one Kerr variable r.

H(ch) = T
0(ch)

0 =
1

2

3∑
i=1

[|D(i)
r Φi|2 + |∂iW |2], (8)
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Figure 6: Axial section of the spheroidal domain wall phase transition.

Now one uses the suggested by Cvetiĉ & Rey TRICK allowing to transform

it to Bogomolnyi form

H(ch) = T
0(ch)

0 =
1

2

3∑
i=1

[|D(i)
r Φi − eiχi∂iW̄ |2 + 2Re e−iχi∂iW̄D(i)

r Φi] (9)

The angles χi are determined by phase of the oscillating Higgs field

Φ(x) ≡ Φ1(x) = |Φ1(r)|eiχ(t,ϕ). (10)
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They should be independent from r, and be chosen to cancel the square

terms. It yields χ1 = 2χ(t, ϕ), χ2 = χ3 = 0.

We obtain the first order Bogomolnyi equations

D(i)
r Φi = ∂W/∂Φi, D(i)

r Φ̄i = ∂W̄/∂Φ̄i. (11)

The KN source forms the stable BPS-saturated configuration.

Hamiltonian turns into full differential (Dr → ∂r due structure of W )

H(ch−r) = Re (∂W/∂Φi)∂rΦ
i = ∂W/∂r. (12)

Using the Kerr coordinate system
√
−g = (r2 + a2 cos2 θ) sin θ, and axial sym-

metry we obtain for the mass-energy of the bag

δMbag =

∫
dx3

√
−g T 0(ch)

0 = 2π

∫
drdθ(r2 + a2 cos2 θ) sin θ∂rW. (13)

Superpotential W (r) is constant inside and outside the source, and on the

boundary it has incursion ∆W = W (R + δ) −W (R − δ) = −µη2 . Integration

yields

δMbag = 2π∆W

∫ 1

−1

dX(R2 + a2X2) = 4π(R2 +
1

3
a2)∆W. (14)
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FERMIONIC SECTOR DIRAC EQUATION splits in the Weyl repre-

sentation into two equations

σµαα̇i∂µχ̄
α̇ = mϕα, σ̄µα̇αi∂µϕα = mχ̄α̇, (15)

the “left-handed” and “right-handed” electron fields, Weyl spinors.

One of them, say “left” field can be associated with spinor structure of the

Kerr congruence.

The Kerr theorem determines all the geodesic and shear free congruences

as analytical solutions of the equation

F (TA) = 0, (16)

where F is an arbitrary holomorphic function of the projective twistor vari-

ables

TA = {Y, ζ − Y v, u + Y ζ̄}, A = 1, 2, 3, (17)

and ζ = (x+ iy)/
√
2, ζ̄ = (x− iy)/

√
2, u = (z + t)/

√
2, v = (z− t)/

√
2 are the

null Cartesian coordinates of the Minkowski space xµ = (t, x, y, z) ∈M 4.

Projective spinor coordinate

Y = ϕ1/ϕ0, (18)

is equivalent to the Weyl two-component spinor ϕα.
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Two antipodally conjugate solutions of the Kerr theorem Y + = −1/Ȳ − de-

termine two Weyl spinor fields ϕα and χ̄α̇, corresponding to antipodal con-

gruences Y + = ϕ1/ϕ0 , Y − = χ̄1̇/χ̄0̇

For Y + we have

ϕα =

(
e−iϕ/2 cos θ2
eiϕ/2 sin θ

2

)
, (19)

and for Y − = −1/Ȳ +,

χ̄α̇ =

(
−e−iϕ/2 sin θ

2

eiϕ/2 cos θ2

)
. (20)

Only one of the fields, say “left”, k
(+)
µ (x) is “retarded” and corresponds

to the external KN solution. The field k
(−)
µ (x) = (1,−k), retains the time-like

direction and reflects the space orientation.

The spinor fields created by the Kerr theorem ϕα and χ̄α̇ correspond to

the left out-field and right-in fields, i.e. the retarded and advanced fields

correspondingly. Removing twosheetedness by the bag-source, we meet it

again from the external side!

The null vector fields kµ±(x) differ on the retarded and advanced sheets,

and generate different metrics

g±µν = ηµν + 2H(KN)k
±
µ k

±
ν . (21)
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The “left” and “right” Weyl components of the Dirac fields should be

positioned on SEPARATE SHEETS of the Kerr space-time.

This requirement disappears inside the bag, where the space is flat, and

both congruences k±µ (x) are consistent with the flat Minkowski space.
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Extending the left and right spinor fields inside the solitonic bag, we

obtain that they transfer into the flat Minkowski space, where the both

null congruences turn out to be compatible, so far as these congruences are

null with respect to the same flat sheet of the common internal Minkowski

space. Inside the soliton they are united into Dirac bispinor Ψ =

(
ϕα
χ̄α̇

)
,

corresponding to the massless Dirac equation

(γµ∂µ)Ψ(x) = 0, (22)

and the confined inside the bag Higgs field H adds the mass term, generating

the Dirac equation with VARIABLE mass term

m ≡ gH. (23)

The variable mass term is a typical feature of the bag models!
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The Dirac wave function, solution of the Dirac equation with variable

mass term, avoids the region with a large bare mass, and tends to get an

energetically favorable position. In the SLAC bag model [?] this problem

is solved by variational approach. The corresponding Hamiltonian is1

H(x) = Ψ†(
1

i
α⃗ · ∇⃗ + gβσ)Ψ, (24)

and the energetically favorable wave function has to be determined by min-

imization of the averaged Hamiltonian H =
∫
d3xH(x) under the normaliza-

tion condition
∫
d3xΨ†(x)Ψ(x) = 1. It yields

(
1

i
α⃗ · ∇⃗ + gβσ)Ψ = EΨ, (25)

where E appears as the Lagrangian multiplier enforcing the normalization

condition. Similar to results of the SLAC-bag model, one expects that the

Dirac wave function will not penetrate deep in the region of large bare mass

m = gη, and will concentrate in a narrow transition zone at the bag border

R − δ < r < R + δ. As it is explaned in SLAC model, narrow concentration

of the Dirac wave function is admissible for scalar potential which does not

lead to the Klein paradox.
1Here α and β are the known Dirac matrices.
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The exact solutions of this kind are known only for two-dimensional case,

and the corresponding variational problem should apparently be solved nu-

merically by using the ansatz Ψ̃ = f (x)Ψ(x), in which f (x) is a variable factor

for the Dirac solution based on the Weyl spinors ϕα, χ̄
α̇ consistent with the

corresponding outgoing and ingoing Kerr congruences.

The Dirac wave function is strongly deformed. In the conception of the

MIT- and SLAC- bag-models, a variational principle is used for obtaining

the states of minimal energy.

For the KN bag model, the correlations of the wave function with the Kerr

congruence is retained by deformations of the bag.

Solutions are localized in the narrow boundary of bubble – effectively similar

to that in the SLAC-bag model.
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Stringy deformations of bag: unification of the bare and dressed electron

Taking the bag model conception, we should also accept the dynamical point

of view that the bags are soft and may easily be deformed. By deformations

the bags may form stringy structures. Usually considered deformations of

the bags are radial and rotational excitations, forming the open strings, or

flux-tubes – a meson as a string joining the quark-antiquark pair.
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Figure 9: Non-rotating spherical bad (A), and rotating disk-like bags for different rotational parameters (B):
a/R = 3;(C): a/R = 7, (D):a/R = 10.

The bag-like source of KN solution without rotation, a = 0, represents

the Dirac model of a spherical ”extensible” electron, which has in rest the

classical electron radius re = e2/2m. The KN bag may be considered as the

spherical Dirac bag stretched by rotation to the disk of Compton radius.
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Figure 10: Regularization of the KN EM field. Section of the disk-like bag in equatorial plane. Distance from
positions of the boundary of the bag from position of the (former) singular ring acts as a cut-off parameter R.
(A)Axially symmetric KN solution gives a constant cut-off R = re. (B)The boundary of the bag is deformed
by a traveling wave, creating a circulating singular point of tangency (zitterbewegung).

It has been obtained long ago that the Kerr geometry is close related

with strings.

In particular, a closed string was associated with the Kerr singular ring.

After regularization, the role of this ring-string is played by the sharp

boundary of the disk-like bag.

Like the Kerr singular ring, it can serve as carrier of the traveling waves.
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It was shown that field structure of this string is similar to structure

of the fundamental string, obtained by Sen as a solitonic solution to low

energy string theory. The EM field is concentrated on the sharp border of

the disk-like source, forming a string-like frozen traveling wave with null

invariants

(E⃗ · H⃗) = 0, E2 −H2 = 0, [E ×H ] =
c

4π
P⃗ ∼ k⃗. (26)

By regularization of the source, the Kerr singular ring-string is regularized

with the cut-off parameter R, which for the axially symmetric KN solution

is the constant R = re. The null vector of the Kerr congruence kµ is tangent

to the Kerr singular ring, and since R << a this string is almost light-like,

and very close to the known pp-wave strings. However, the light-like KN

strings cannot be closed, since the points xµ(ϕ, t) and xµ(ϕ + 2π, t) do not

coincide. There is possibility to consider this string as open one and to

complete it to the consistent sum of the left add right modes,

We consider the above “frozen” solution as right mode of excitation and we

will complete it by the left counterpart, which can be found among other

admissible excitations.

The EM excitations of the Kerr background are defined by analytic function

A = ψ(Y, τ )/P 2 where Y = eiϕ tan θ
2 is a complex projective angular variable,

τ = t− r− ia cos θ is a complex retarded-time parameter and P = 2−1/2(1+Y Ȳ )
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for the Kerr geometry at rest. Vector potential is determined by function

ψ as follows (DKS)

Aµdx
µ = −Re [(

ψ

r + ia cos θ
)e3 + χdȲ ], χ = 2

∫
(1 + Y Ȳ )−2ψdY (27)
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Figure 11: The circular left mode, formed by traveling wave along the KN string, is completed by the time-like
right mode, formed by the frozen traveling wave of the stationary KH solution.

The simplest function ψ = −e corresponds to stationary KN solution.

The constant ψ = −e creates a frozen circular EM wave, which is locally

pp-wave “propagating” along the Kerr singular ring. By regularization, it

gets the constant cut-off parameter R = re.
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Along with many other possible stringy waves, interesting effect shows

the lowest wave solutions

ψ = e(1 +
1

Y
eiωτ ). (28)

It is easy to find a back-reaction of this excitation – the corresponding

the bag deformation. Boundary of the disk is very close to position of the

Kerr singular ring, and regularization of the KN source represents in fact a

cut-off parameter R = re, for the Kerr singularity. The EM traveling waves

will deform the bag surface.

Boundary of the deformed bag is determined similarly to the stationary

case from the condition H = 0.

Function ψ acts on the metric through the function H

H =
mr − |ψ|2/2
r2 + a2 cos2 θ

, (29)

and the condition H = 0 determines the boundary of disk R = |ψ|2/2m, which

acts as the cut-off parameter for EM field.
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One sees that solution

ψ = e(1 +
1

Y
eiωτ ) (30)

takes in equatorial plane cos θ = 0 the form ψ = e(1+ e−i(ϕ−ωt)), and the cut-off

parameter

R = |ψ|2/2m =
e2

m
(1 + cos(ϕ− ωt))

depends on ϕ− ωt.

Vanishing R at ϕ = ωt creates singular pole which circulates along the

ring-string, reproducing the known zitterbewegung of the Dirac electron.

This pole may be interpreted as a single end point of the ring-string, or as

a bare point-like electron, either as a light-like quark confined inside the

bag.

The mysterious zitterbewegung of the Dirac electron appears as a manifes-

tation of the ring-string traveling waves.
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CONCLUSION:

• Source of the KN solution represents a supersymmetric, BPS-saturated

soliton.

• BAG: Consistent implementation of the Dirac equation and emergence

the mass from the Yukawa coupling.

• BPS-bound determines unambiguously shape of the KN bag and its

stability,

• (e) Unification of the “dressed” and “pointlike” electron.

• Stringy structures and formation of the coherent bag-string-quark sys-

tem:

• Consistent space-time implementation gravity in the Standard Model.

• Structure of the gravitating KN bag admits extension to other particles

of the electroweak sector SM.

THANK YOU FOR ATTENTION!
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