LOW-TYPE SUBMANIFOLDS OF COMPLEX SPACE FORMS

IVKO DIMITRIĆ

1. Introduction

A submanifold $x: M^n \to E^N_{(K)}$ of (pseudo) Euclidean space is said to be of finite type in $E^N_{(K)}$ if the position vector x can be decomposed into a finite sum of vector eigenfunctions of the Laplacian Δ_M on M, viz.

(1) $x = x_0 + x_1 + \dots + x_k,$

where $x_0 = \text{const}$, $x_i \neq \text{const}$, and $\Delta x_i = \lambda_i x_i$, i = 1, ..., k. For a compact submanifold, x_0 is the center of mass. If λ_i are all different the submanifold is of Chen-type k, or simply of k-type. Note that 1-type submanifolds of a Euclidean E^N space are precisely those that are minimal in some hypersphere of the ambient space or minimal in E^N . This notion can be extended to submanifolds $x : M^n \to \overline{M}$ of a more general manifold \overline{M} as long as there is a reasonably "nice" embedding $\Phi : \overline{M} \to E^N_{(K)}$ of the ambient manifold \overline{M} into a suitable (pseudo) Euclidean space, in which case M is said to be of Chen-type k (via Φ) if the composite immersion $\Phi \circ x$ is of Chen-type k.

The complex projective space $\mathbb{C}P^m(4)$ and the complex hyperbolic space $\mathbb{C}H^m(-4)$ (jointly denoted by $\mathbb{C}Q^m(4c)$, $c = \pm 1$,) can be equivarianty embedded into a certain (pseudo) Euclidean space $E^N_{(K)}$ of suitable Hermitian matrices by the projection operators. In the case of $\mathbb{C}P^m$, this is the so-called first standard embedding. We will use the symbol $\Phi : \mathbb{C}Q^m(4c) \to E^N_{(K)}$ for the embedding that associates to every complex line in \mathbb{C}^{m+1} the operator (i.e. its matrix) of the orthogonal projection onto it.

Consider the standard Hermitian form Ψ_c on \mathbb{C}^{m+1} given by $\Psi_c(z, w) = c\bar{z}_0w_0 + \sum_{j=1}^m \bar{z}_jw_j$, $z, w \in \mathbb{C}^{m+1}$ and the quadric hypersurface $N^{2m+1} := \{z \in \mathbb{C}^{m+1} | \Psi_c(z, z) = c\}$. When c = 1, N^{2m+1} is the ordinary hypersphere S^{2m+1} of $\mathbb{C}^{m+1} = \mathbb{R}^{2m+2}$ and when c = -1, N^{2m+1} is the anti - de Sitter space H_1^{2m+1} in \mathbb{C}_1^{m+1} . The orbit space under the natural action of the circle group S^1 on N^{2m+1} defines $\mathbb{C}Q^m(4c)$. The standard embedding Φ into the set of Ψ -Hermitian matrices $H^{(1)}(m+1)$ is achieved by identifying a point, that is a complex line (or a time-like complex line in the hyperbolic case) with the projection operator onto it. Then one gets the following matrix representation of Φ at a point p = [z], where $z = (z_j) \in N^{2m+1} \subset \mathbb{C}_{(1)}^{m+1}$

(2)
$$\Phi([z]) = \begin{pmatrix} |z_0|^2 & cz_0\bar{z}_1 & \cdots & cz_0\bar{z}_m \\ z_1\bar{z}_0 & c|z_1|^2 & \cdots & cz_1\bar{z}_m \\ \vdots & \vdots & \ddots & \vdots \\ z_m\bar{z}_0 & cz_m\bar{z}_1 & \cdots & c|z_m|^2 \end{pmatrix}$$

The second fundamental form of this embedding is parallel and the image

(3)
$$\Phi(\mathbb{C}Q^m) = \{ P \in H^{(1)}(m+1) | P^2 = P, \text{tr} P = 1 \}$$

IVKO DIMITRIĆ

of the space form is contained in the intersection of the hyperplane {tr A = 1} with the hyperquadric of $H^{(1)}(m + 1)$ centered at I/(m + 1) and defined by the equation $\langle P - I/(m + 1), P - I/(m + 1) \rangle = \frac{cm}{2(m+1)}$, where I denotes the $(m+1) \times (m+1)$ identity matrix. A submanifold contained in this hyperquadric is said to be mass-symmetric if its center of mass is $\tilde{x}_0 = \frac{I}{m+1}$.

If now $x : M^n \to \mathbb{C}Q^m(4c)$ is an isometric immersion of a Riemannian n-manifold as a submanifold of a complex space form then we have the associated composite immersion $\tilde{x} = \Phi \circ x$, which realizes M as a submanifold of the (pseudo) Euclidean space $E_{(K)}^N := H^{(1)}(m+1)$, equipped with the usual trace metric $\langle A, B \rangle = \frac{c}{2} \operatorname{tr} (AB)$.

The study of finite-type submanifolds $x : M^n \to \mathbb{C}Q^m(4c)$ is then the study of the spectral behavior of the associated immersion $\tilde{x} = \Phi \circ x$ of M^n into $E^N_{(K)}$, i.e. of the possibility of decomposing \tilde{x} into finitely many eigenfunctions of Δ_M .

A k-type immersion x satisfies a polynomial equation in the Laplacian, $P(\Delta)(x - x_0) = 0$. The most promissing study is that of submanifolds of low type: 1, 2, or 3.

2. Some Classification Results

The study of 1-type submanifolds of $\mathbb{C}P^m$ was begun in works of A. Ros (1983-4) and parallel investigation for hypersurfaces of $\mathbb{C}H^m$ was carried out by O. J. Garay and A. Romero (1990). The complete classification of 1-type submanifolds of a non-flat complex space form $\mathbb{C}Q^m(4c)$ was achieved by Dimitric (1991, 1997). These submanifolds are of three kinds:

Theorem 1. (Dimitric, 1997) A smooth connected submanifold M^n of $\mathbb{C}Q^m(4c)$ is of 1-type if and only if it is one of the following

- (i) A canonically embedded complex space form of a lower dimension.
- (ii) A totally real minimal submanifold M^n of a canonically embedded $\mathbb{C}Q^n \subset \mathbb{C}Q^m$,
- (iii) ($\mathbb{C}P^m$ only) A geodesic sphere of radius $\arctan \sqrt{n+2}$ of a canonical $\mathbb{C}P^n \subset \mathbb{C}P^m$.

The next step was a study of 2-type submanifolds of non-flat complex space forms. An example of 2-type Kaehler submanifold of $\mathbb{C}P^m$ is a complex quadric hypersurface defined in homogeneous coordinates (z_0, z_1, \dots, z_m) by $z_0^2 + z_1^2 + \dots + z_m^2 = 0$. Ros characterized 2-type Kaehler submanifols of $\mathbb{C}P^m$ concluding that they are Einstein and parallel submanifolds. Udagawa refined the study to produce the following classification

Theorem 2. (Udagawa, 1986) Let $x : M^n \to \mathbb{C}P^m(4)$ be a full isometric holomorphic immersion of a compact Kähler manifold, which is not totally geodesic. Then $\tilde{x} = \Phi \circ x$ is of 2-type if and only if M is an Einstein Kähler parallel submanifold of degree 2, i.e. one of the following:

- (i) $\mathbb{C}P^n(1/2)$ with complex codimension n(n+1)/2.
- (ii) A complex quadric Q^n with complex codimension 1.
- (iii) $\mathbb{C}P^n \times \mathbb{C}P^n$ with complex codimension n^2 .
- (iv) $U(s+2)/U(2) \times U(s)$, $s \ge 3$, with cx codimension s(s-1)/2.
- (v) SO(10)/U(5) with cx dimension 10 and cx codimension 5.
- (vi) $E_6/Spin(10) \times T$ with cx dimension 16 and cx codimension 10.

In contrast to this situation, in $\mathbb{C}H^m(-4)$ we have the following

Theorem 3. (Dimitric and Djoric) There are no holomorphic immersions of Kaehler manifolds into $\mathbb{C}H^m$ which are of 2-type in $H^1_{\mathbb{C}}(m+1)$.

Minimal surfaces of type 2 in complex projective space were classified by Shen (1995) and the study of real hypersurfaces of type-2 in complex space forms yielded some of the more interesting classifications. Martinez and Ros (1984) and Udagawa (1987) considered minimal resp. CMC real hypersurfaces of $\mathbb{C}P^m$ which are of 2- type. Using a weaker assumption that a hypersurface is a Hopf hypersurface, which means that the structure vector field (the Reeb vector field) $U := -J\xi$ is principal for the shape operator, we produced a complete local classification of 2-type Hopf hypersurfaces both in $\mathbb{C}P^m$ and $\mathbb{C}H^m$.

Theorem 4. (Dimitric, 2011) Let M^{2m-1} be a Hopf hypersurface of $\mathbb{C}P^m(4)$. Then M^{2m-1} is of 2-type in H(m+1) via Φ if and only if it is an open portion of one of the following

- (i) A geodesic hypersphere of any radius r except for $r = \cot^{-1} \sqrt{\frac{1}{2m+1}}$;
- (ii) The tube of radius r = cot⁻¹ √ (k+1)/(m-k) about a canonically embedded totally geodesic CP^k(4) ⊂ CP^m(4), for any k = 1, ..., m 2;
 (iii) The tube of radius r = cot⁻¹ √ (2k+1)/(2(m-k)+1) about a canonically embedded
- $\mathbb{C}P^{k}(4) \subset \mathbb{C}P^{m}(4), \text{ for any } k = 1, ..., m 2.$
- (iv) The tube of radius $r = \cot^{-1}(\sqrt{m} + \sqrt{m+1})$ about the complex quadric $Q^{m-1} \subset \mathbb{C}P^m(4).$
- (v) The tube of radius $r = \cot^{-1} \sqrt{\sqrt{2m^2 1} + \sqrt{2m^2 2}}$ about the complex quadric $Q^{m-1} \subset \mathbb{C}P^m(4)$.

The same classification holds when M is assumed to have constant mean curvature (CMC) instead of being Hopf.

Theorem 5. Let M^{2m-1} be a real hypersurface of $\mathbb{C}H^m(-4)$, $(m \geq 2)$ for which we assume that it is a Hopf hypersurface or has constant mean curvature. Then M^{2m-1} is of 2-type in $H^1(m+1)$ via Φ if and only if it is (an open portion of) either a geodesic hypersphere of arbitrary radius r > 0 or a tube of arbitrary radius r > 0 about a totally geodesic complex hyperbolic hyperplane $\mathbb{C}H^{m-1}(-4).$

Regarding mass-symmetric hypersurfaces, from the analysis above we have

Corollary 1. A complete Hopf (or CMC) hypersurface of $\mathbb{C}P^m(4)$ is of 2type and mass-symmetric in the hypersphere of H(m+1) containing $\Phi(\mathbb{C}P^m)$ if and only if it is one of the hypersurfaces (tubes) in (ii), (iv) and (v) or the geodesic hypersphere of radius $\cot^{-1}(1/\sqrt{m})$. There exists no 2-type masssymmetric (in particular, no null 2-type) hypersurface of $\mathbb{C}H(-4)$.

Rulled hypersurfaces of $\mathbb{C}Q^n(4c)$ form another interesting class of real hypersurfaces but there are no such that are of 2-type. A hypersurface $M \subset$ $\mathbb{C}Q^m(4c)$ is said to be ruled if there is a foliation of M by complex hyperplanes $\mathbb{C}Q^{m-1}(4c)$. More preciselly given a regular curve $\gamma: I \to \mathbb{C}Q^n(4c)$. For each t let $M_t^{n-1}(4c)$ be a totally geodesic complex hypersurface which is orthogonal to the holomorphic plane $Span\{\dot{\gamma}, J\dot{\gamma}\}$. Then a ruled hupersurface $\bigcup_{t \in I} M_t^{n-1}(4c)$ is generated. A ruled hypersurface is non-Hopf. In fact its shape operator

IVKO DIMITRIĆ

satisfies

(4) $AU = \alpha U + \nu W \ (\nu \neq 0), \quad AW = \nu U, \quad AX = 0, \text{ for } X \perp U, W.$

The vector W is a unit vector of the projection of AU onto the holon morphic subspace U^{\perp} of TM.

Theorem 6. (Dimitric and Djoric) There exist no ruled hypersurface of $\mathbb{C}Q^n(4c)$ which is of 2-type in the (pseudo) Euclidean space $H^{(1)}(n+1)$ via the embedding by the projectors.

Real hypersurfaces, Kähler submanifolds, and totally real submanifolds are all examples of the so-called CR-submanifolds, extend the study of 2-type submanifolds of $\mathbb{C}Q^m$ to a general CR-submanifold of arbitrary dimension and codimension. We recall that a CR-submanifold is a submanifold M of an almost Hermitian manifold (\bar{M}, g, J) whose tangent space splits at each point into a direct sum of two complementary orthogonal distributions (subspaces) \mathcal{D} and \mathcal{D}^{\perp} of constant dimensions so that at each point $p \in M$,

 $T_pM = \mathcal{D}_p \oplus \mathcal{D}_p^{\perp}, \text{ with } J\mathcal{D}_p \subset \mathcal{D}_p \text{ and } J\mathcal{D}_p^{\perp} \subset T_p^{\perp}M.$

When dim $\mathcal{D}_p^{\perp} = 0$, a submanifold is said to be holomorphic, and when dim $\mathcal{D}_p = 0$ it is said to be totally real submanifold. Further, if dim $\mathcal{D}_p^{\perp} = 1$ at every point a CR-submanifold is said to be of maximal CR-dimension.

3. Some characterizations of 2-type CR submanifolds

Notation In the following we use the notation:

 A_{ξ} is the shape operator in the direction of a normal vector ξ

- D is the connection in the normal bundle $T^{\perp}M$.
- h is the second fundamental form of a submanifold
- $H = \frac{1}{n} \operatorname{tr} h$ is the mean curvature vector field
- Q is the (1,1) Ricci tensor on a submanifold
- $L\xi = (J\xi)_T$ is the tangential component of $J\xi$ for $\xi \in T_p^{\perp}M$
- $K\xi = (J\xi)_N$ is the normal component of $J\xi$ for $\xi \in T_p^{\perp}M$

The ancillary shape operator $\hat{\mathfrak{a}}$: $\xi \to \sum_r \operatorname{tr} (A_{\xi}A_r)e_r$ of a submanifold M is a symmetric endomorphism of $T^{\perp}M$. It is an endomorphism version of the tensor $T(\xi,\eta) = \operatorname{tr} (A_{\xi}A_{\eta})$. It plays a kind of a dual role to the Casorati operator $\sum_r A_r^2$ acting on the tangent space - both have trace equal to $||h||^2$.

Theorem 7. Let $x: M^n \to \mathbb{C}Q^m(4c)$ be a totally real isometric immersion of a Riemannian n-manifold into a non-flat complex space form of constant holomorphic sectional curvature 4c, $c = \pm 1$ and let $T^{\perp}M = \mathcal{V} \oplus \mathcal{W}$ be the orthogonal decomposition of the normal bundle into the totally real and holomorphic subbundles. Then if $\tilde{x} = \Phi \circ x : M^n \to H^{(1)}(m+1)$ is 2-type mass-symmetric immersion satisfying $\Delta^2 \tilde{x} - p\Delta \tilde{x} + q(\tilde{x} - I/(m+1)) = 0$, we have

- (i) The mean curvature α is constant.
- (*ii*) $tr A_{DH} = 0;$

LOW-TYPE SUBMANIFOLDS

- (*iii*) $\Delta^{\perp}H + \hat{\mathfrak{a}}(H) + [c(3n+4) p]H + 3cJ(LH) = 0;$
- $\begin{array}{l} (iv) \quad Q(X) L(\hat{\mathfrak{a}}(JX)) 2nA_HX kX + \frac{n^2}{2} \langle LH, X \rangle LH = 0, \ for \ every \\ X \in \Gamma(TM), \ where \ k = \frac{c}{4} [q + 2cf^2 + 4n(n+3) 2c(n+1)p] \ is \ a \ constant; \\ (v) \quad \langle JD_XH, Y, \rangle = \langle JD_YH, X \rangle, \ for \ every \ X, Y \in \Gamma(TM); \end{array}$
- (vi) $\frac{n^2}{2}\langle LH, X \rangle KH nK^2(D_XH) K(\hat{\mathfrak{a}}(JX)) = 0;$
- $\begin{array}{l} (vii) \quad \frac{n^2}{2} \langle KH, \xi \rangle LH + n \sum_i \langle D_{e_i}H, \xi \rangle e_i L(\hat{\mathfrak{a}}(J\xi)) = 0, \ for \ \xi \in \mathcal{W}; \\ (viii) \quad \frac{n^2}{2} \langle H, \xi \rangle H + \frac{n^2}{2} \langle KH, \xi \rangle KH + k'\xi n \sum_i \langle D_{e_i}H, K\xi \rangle Je_i + \hat{\mathfrak{a}}(\xi) K(\hat{\mathfrak{a}}(K\xi)) = 0, \\ for \ any \ \xi \in \mathcal{W} \ where \ k' = \frac{c}{4} [2cnp 4n(n+1) 2cf^2 q]. \end{array}$

Conversely, if (i) - (viii) hold then the immersion is mass-symmetric and of type ≤ 2 , provided that the polynomial $t^2 - pt + q = 0$ has simple real roots or M is compact.

For a Lagrangian immersion these conditions reduce to

Corollary 2. If $x: M^n \to \mathbb{C}Q^n(4c)$ is a Lagrangian immersion for which \tilde{x} is mass-symmetric and of 2-type then

- (i) $f := n\alpha = const;$
- (*ii*) tr $A_{DH} = 0$
- (*iii*) $\Delta^{\perp} H + \hat{\mathfrak{a}}(H) + [c(3n+1) p] H = 0;$
- (iv) $Q(X) J(\hat{\mathfrak{a}}(JX)) 2nA_HX kX + \frac{n^2}{2}\langle JH, X \rangle JH = 0$, for every $X \in TM$ (v) $\langle JD_XH, Y \rangle = \langle JD_YH, X \rangle$, for every $X, Y \in \Gamma(TM)$.

Corollary 3. Lagrangian submanifold M^n of $\mathbb{C}Q^n(4c)$ which is mass-symmetric and of 2-type via \tilde{x} has the following properties

- (i) $D_{JX}H = 0$, $\nabla_{JH}(JH) = 0$, and $A_H(JH) = Jh(JH, JH)$. In particular, the integral curves of JH are geodesics.
- (*ii*) If, in addition, DH = 0 then M is an \mathfrak{a} submanifold, i.e. $\mathfrak{a}(H) = 0$.
- (iii) If M is a Maslov submanifold with parallel mean curvature vector then Q(JH) = qJH, for a suitable constant q, i.e. JH is a principal vector of the Ricci endomorphism Q, and moreover $\mathfrak{a}(H) = 0$.

Theorem 8. Let M^n be a 3-type holomorphic submanifold fully immered in $\mathbb{C}Q^m(4c)$ satisfying a 3-type equation $\Delta^3 \tilde{x} + p\Delta^2 \tilde{x} + q\Delta \tilde{x} + r(\tilde{x} - \tilde{x}_0) = 0$. If M has constant scalar curvature τ then it is mass-symmetric in $H^{(1)}(m+1)$ and the following conditions hold:

- (i) $\tau = \frac{1}{8} \{ 4cn(n+2)(n+4) + 2pn(n+2) + cnq + \frac{rm}{2(m+1)} \};$
- (*ii*) $\sum_{i} (D_{e_{i}} \hat{a})(h(X, e_{i})) = \sum_{i} h(e_{i}, (\nabla_{e_{i}}Q)X);$ (*iii*) $\sum_{r,s} tr(A_{r}A_{s})A_{r}A_{s} = \frac{1}{2}\Delta Q Q^{2} + [\frac{p}{2} + c(3n+8)]Q aI;$

 $(iv) \ (\Delta^{\perp} \hat{\mathfrak{a}})\xi + 2\hat{\mathfrak{a}}^{2}(\xi) + [p + 4c(n+2)]\hat{\mathfrak{a}}(\xi) - 2\sum_{i} h(e_{i}, QA_{\xi}e_{i}) + b\xi = 0,$

for every $X \in \Gamma(TM)$ and $\xi \in \Gamma(T^{\perp}M)$, where $a = \frac{c}{16} [\frac{r}{m+1} + 4cq + 16p(n+2) + 16c(n+2)(3n+8)]$ and $b = n(n+2)(n+4) - \frac{cr}{8(m+1)}$ are constant. Conversely, conditions (i) – (iv) imply type ≤ 3 if the polynomial $t^3 + pt^2 + qt + r$ has simple real roots or M is compact.

Corollary 4. There exists no compact Kähler hypersurface of $\mathbb{C}Q^m$ which is of Chen 3-type and mass-symmetric in the hypersphere of $H^{(1)}(m+1)$ containing the image of $\mathbb{C}Q^m$ via Φ .