LOW-TYPE SUBMANIFOLDS
OF COMPLEX SPACE FORMS
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1. Introduction

A submanifold x : M"™ — E([}/() of (pseudo) Euclidean space is said to be of
finite type in E(I}ff) if the position vector x can be decomposed into a finite sum
of vector eigenfunctions of the Laplacian Ay, on M, viz.

(1) T=x0+T1+ -+ T,

where zy = const, x; # const, and Ax; = \x;, i =1,....,k. For a com-
pact submanifold, g is the center of mass. If \; are all different the submanifold
is of Chen-type k, or simply of k—type. Note that 1-type submanifolds of a
Euclidean EY space are precisely those that are minimal in some hypersphere
of the ambient space or minimal in EV. This notion can be extended to sub-
manifolds = : M™ — M of a more general manifold M as long as there is a
reasonably “nice” embedding ® : M — E(J\If() of the ambient manifold M into a
suitable (pseudo) Euclidean space, in which case M is said to be of Chen-type
k (via ®) if the composite immersion ® o z is of Chen-type k.

The complex projective space CP"(4) and the complex hyperbolic space
CH™(—4) (jointly denoted by CQ™(4c), ¢ = £1, ) can be equivarianty em-
bedded into a certain (pseudo) Euclidean space E(]\}’() of suitable Hermitian
matrices by the projection operators. In the case of CP™, this is the so-called
first standard embedding. We will use the symbol ® : CQ™(4c) — Eg}’{) for

the embedding that associates to every complex line in C™*! the operator (i.e.
its matrix) of the orthogonal projection onto it.

Consider the standard Hermitian form ¥. on C™*! given by W.(z,w) =
cZowg + E;nzl zjwj, z,w € C™*! and the quadric hypersurface N?m*1 =
{z € C™T1| U (z,2) = c}. When ¢ = 1, N?™*! is the ordinary hypersphere
S2mtl of C™H = R?™+2 and when ¢ = —1, N?™*! is the anti - de Sitter
space H?™ ! in CJ"*!. The orbit space under the natural action of the circle
group S on N2m*1! defines CQ™ (4c¢). The standard embedding ® into the set
of W—Hermitian matrices H® (m + 1) is achieved by identifying a point, that
is a complex line (or a time-like complex line in the hyperbolic case) with the
projection operator onto it. Then one gets the following matrix representation
of ® at a point p = [2], where z = (z;) € N?™T1 C C’(’I)H

|20]2  c20z1 - czoZm

2nzZo oz o cziEm
(2) (=)= . : :

ZmZo  CimZ1 o+ Clzml|?

The second fundamental form of this embedding is parallel and the image

(3) B(CQ™) ={Pec HY(m+1)|P?=P,trP =1}
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of the space form is contained in the intersection of the hyperplane {tr A =1}
with the hyperquadric of H®(m 4 1) centered at I/(m + 1) and defined by
the equation (P —I/(m+1), P—I/(m+1)) = 30miys Where I denotes the
(m+1)x (m~+1) identity matrix. A submanifold contained in this hyperquadric
is said to be mass-symmetric if its center of mass is To = -17.

If now z : M™ — CQ™(4c) is an isometric immersion of a Riemannian
n—manifold as a submanifold of a complex space form then we have the asso-
ciated composite immersion £ = ® o x, which realizes M as a submanifold of
the (pseudo) Euclidean space E(]}/() := HW(m + 1), equipped with the usual
trace metric (A, B) = $tr (AB).

The study of finite-type submanifolds x : M™ — CQ™(4c) is then the study
of the spectral behavior of the associated immersion £ = ® o z of M™ into
E(J\I’()7 i.e. of the possibility of decomposing Z into finitely many eigenfunctions
of AM

A k—type immersion x satisfies a polynomial equation in the Laplacian,
P(A)(z — x9) = 0. The most promissing study is that of submanifolds of low
type: 1, 2, or 3.

2. Some Classification Results

The study of 1-type submanifolds of CP™ was begun in works of A. Ros
(1983-4) and parallel investigation for hypersurfaces of CH™ was carried out
by O. J. Garay and A. Romero (1990). The complete classification of 1-type
submanifolds of a non-flat complex space form CQ™ (4c) was achieved by Dim-
itric (1991, 1997). These submanifolds are of three kinds:

Theorem 1. (Dimitric, 1997) A smooth connected submanifold M™ of CQ™ (4c)
is of 1-type if and only if it is one of the following

(i) A canonically embedded complex space form of a lower dimension .
(i) A totally real minimal submanifold M™ of a canonically embedded

cR™ c cQ™,
(ii) (CP™ only) A geodesic sphere of radius arctan~/n + 2 of a canonical
Cp™ c CpP™.

The next step was a study of 2-type submanifolds of non-flat complex space
forms. An example of 2-type Kaehler submanifold of CP™ is a complex quadric
hypersurface defined in homogeneous coordinates (zo, 21, , 2m) by 28 + 27 +
-+-+22, = 0. Ros characterized 2-type Kaehler submanifols of CP™ concluding
that they are Einstein and parallel submanifolds. Udagawa refined the study
to produce the following classification

Theorem 2. (Udagawa, 1986) Let x : M™ — CP™(4) be a full isometric
holomorphic immersion of a compact Kdhler manifold, which is not totally
geodesic. Then T = ® o x is of 2-type if and only if M is an Einstein Kahler
parallel submanifold of degree 2, i.e. one of the following:

(i) CP™(1/2) with complex codimension n(n + 1)/2.
(ii) A complex quadric Q™ with complex codimension 1.
(i) CP™ x CP™ with complex codimension n?.

(iv) U(s+2)/U(2) x U(s), s > 3, with cx codimension s(s —1)/2.

(v) SO(10)/U(5) with cx dimension 10 and cx codimension 5.

(vi) Eg/Spin(10) x T with cx dimension 16 and cx codimension 10.

In contrast to this situation, in CH™(—4) we have the following
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Theorem 3. (Dimitric and Djoric ) There are no holomorphic immersions of
Kaehler manifolds into CH™ which are of 2-type in HE(m + 1).

Minimal surfaces of type 2 in complex projective space were classified by
Shen (1995) and the study of real hypersurfaces of type-2 in complex space
forms yielded some of the more interesting classifications. Martinez and Ros
(1984) and Udagawa (1987) considered minimal resp. CMC real hypersurfaces
of CP™ which are of 2- type. Using a weaker assumption that a hypersurface
is a Hopf hypersurface, which means that the structure vector field (the Reeb
vector field) U := —J¢ is principal for the shape operator, we produced a
complete local classification of 2-type Hopf hypersurfaces both in CP™ and
CH™.

Theorem 4. (Dimitric, 2011) Let M?™~! be a Hopf hypersurface of CP™(4).
Then M*™=1 js of 2-type in H(m+1) via ® if and only if it is an open portion
of one of the following

(i) A geodesic hypersphere of any radius r except for r = cot™1 ,/ 27711+1;
(ii) The tube of radius r = cot™! ,/% about a canonically embedded
totally geodesic CP*(4) C CP™(4), for any k =1,...,m — 2;
(iii) The tube of radius r = cot™! /Q(ﬁﬁ about a canonically embedded
CP*(4) c CP™(4), for any k=1,....m — 2.
(iv) The tube of radius r = cot ™ (/m + v/m + 1) about the complex quadric
Qm~t c CP™(4).
(v) The tube of radius r = cot™* \/\/2m2 — 14+ v2m2 — 2 about the complex
quadric Q™1 C CP™(4).

The same classification holds when M is assumed to have constant mean
curvature (CMC) instead of being Hopf.

Theorem 5. Let M*™~! be a real hypersurface of CH™(—4), (m > 2) for
which we assume that it is a Hopf hypersurface or has constant mean curvature.
Then M?™=1 s of 2-type in H*(m + 1) via ® if and only if it is (an open
portion of ) either a geodesic hypersphere of arbitrary radius v > 0 or a tube of

arbitrary radius v > 0 about a totally geodesic complex hyperbolic hyperplane
CH™ Y(—4).

Regarding mass-symmetric hypersurfaces, from the analysis above we have

Corollary 1. A complete Hopf (or CMC) hypersurface of CP™(4) is of 2-
type and mass-symmetric in the hypersphere of H(m + 1) containing ®(CP™)
if and only if it is one of the hypersurfaces (tubes) in (ii), (iv) and (v) or
the geodesic hypersphere of radius cot~'(1/\/m). There exists no 2-type mass-
symmetric (in particular, no null 2-type) hypersurface of CH(—4).

Rulled hypersurfaces of CQ™(4c) form another interesting class of real hy-
persurfaces but there are no such that are of 2-type. A hypersurface M C
CQ™(4c) is said to be ruled if there is a foliation of M by complex hyperplanes
CQ™~(4c). More preciselly given a regular curve «y : I — CQ™(4c). For each t
let M}~ *(4c) be a totally geodesic complex hypersurface which is orthogonal to
the holomorphic plane Span{¥, J4}. Then a ruled hupersurface U;e; M~ (4c)
is generated. A ruled hypersurface is non-Hopf. In fact its shape operator
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satisfies
4) AU=aU+vW (v #£0), AW =vU, AX =0, for X L UW.

The vector W is a unit vector of the projection of AU onto the holonmorphic
subspace UL of TM.

Theorem 6. (Dimitric and Djoric) There exist no ruled hypersurface of CQ™(4c)
which is of 2-type in the (pseudo) Euclidean space HM) (n+1) via the embedding
by the projectors.

Real hypersurfaces, Kéhler submanifolds, and totally real submanifolds are
all examples of the so-called CR-submanifolds, extend the study of 2-type sub-
manifolds of CQ™ to a general CR-submanifold of arbitrary dimension and
codimension. We recall that a CR-submanifold is a submanifold M of an al-
most Hermitian manifold (M, g,.J) whose tangent space splits at each point
into a direct sum of two complementary orthogonal distributions (subspaces)
D and D+ of constant dimensions so that at each point p € M,

T,M =D, ®D,, with JD,CD, and JD, C T, M.

When dim Dj; = 0, a submanifold is said to be holomorphic, and when dim
D, = 0 it is said to be totally real submanifold. Further, if dim sz =1 at
every point a CR-~submanifold is said to be of maximal CR-dimension.

3. Some characterizations of 2-type CR submanifolds

Notation In the following we use the notation:

Ag is the shape operator in the direction of a normal vector £
D is the connection in the normal bundle T+ M.
h is the second fundamental form of a submanifold

H = Ltrh is the mean curvature vector field

@ is the (1, 1) Ricci tensor on a submanifold
LE = (J&)r is the tangential component of J¢ for € € TpJ-M
K¢ = (J€)n is the normal component of J¢ for € € Tle

The ancillary shape operator a : & — > tr(A¢A,)e, of a submanifold
M is a symmetric endomorphism of 7M. It is an endomorphism version of
the tensor T'(&,n) = tr (A¢A,). It plays a kind of a dual role to the Casorati
operator Y. A? acting on the tangent space - both have trace equal to ||h[%.

Theorem 7. Let z: M™ — CQ™(4c) be a totally real isometric immersion of
a Riemannian n—manifold into a non-flat complex space form of constant holo-
morphic sectional curvature 4c, ¢ = £1 and let T+M = V@W be the orthogonal
decomposition of the normal bundle into the totally real and holomorphic sub-
bundles. Then if # = ®ox : M™ — HM (m + 1) is 2-type mass-symmetric
immersion satisfying A%t — pAZ +q(Z — I/(m + 1)) = 0, we have

(i) The mean curvature c is constant.

(i) trApg = 0;
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(iii) A“H + a(H) + [e(3n +4) —p| H + 3] (LH) = 0
(iv) Q(X)—La(JX)) —2nAgX — kX + % (LH X)LH =0, for every
X e I(T'M), where k = $[q+ 2¢f* + 4n(n +3) — 2¢(n + 1)p] is a constant;
(v) (JDxH,Y,) = (JDyH,X>, for every X, Y € T(TM);
(vi) “(LH,X)KH —nK2?(DxH) — K(a(JX)) =0
(vii) % (KH,&)LH 0 (De, H €)ei = L(a(J€)) =0, for £ € W;
(viii) 5 ukd (H,§)H + & (KH KH+FKE—nd (Do, H,KE)Je; +a(é) — K(a(K¢€)) =
for any & € W where k' = £[2cnp — 4n(n+ 1) — 2¢f? — q].
Conversely, if (i) — (viii) hold then the immersion is mass-symmetric and of

type < 2, provided that the polynomial t> — pt + q = 0 has simple real roots or
M is compact.

For a Lagrangian immersion these conditions reduce to

Corollary 2. If x : M™ — CQ"™(4c) is a Lagrangian immersion for which & is
mass-symmetric and of 2-type then
(i) [ :=mna = const;
(ZZ) tI‘ADH =0
(iii) ATH +a(H) + [c(3n + 1) — p| H = 0;
(iv) Q(X)—J(@a(JX)) —2nAgX — kX + % <JH X)JH =0, for every X € TM
(v) (JDxH,Y)=(JDyH,X), for every X Y e I(TM).

Corollary 3. Lagrangian submanifold M™ of CQ™(4¢) which is mass-symmetric
and of 2-type via T has the following properties
(i) D;xH=0, V,;u(JH)=0, and Ag(JH)=Jh(JH,JH).
In particular, the integral curves of JH are geodesics.
(i) If, in addition, DH = 0 then M is an a— submanifold, i.e. a(H) = 0.
(iti) If M is a Maslov submanifold with parallel mean curvature vector
then Q(JH) = qJH, for a suitable constant ¢, i.e. JH is a principal
vector of the Ricci endomorphism @, and moreover a(H) = 0.

Theorem 8. Let M™ be a 3-type holomorphic submanifold fully immered in
CQ™ (4c) satisfying a 3-type equation A3T + pA%F + qAT + (% — o) = 0. If
M has constant scalar curvature T then it is mass-symmetric in H(l)(m +1)
and the following conditions hold:

(i) 7= g{4en(n+2)(n +4) + 2pn(n + 2) + cng + 2(m+1)}

(i) 225(De,@)(h(X, €3)) = 3; hlei, (Ve, Q) X);

(iii) 3, , tr(AsA) A A, = JAQ — Q'+ [ +¢(3n +8)]Q — al;

(i) (Ata)+2a%(&) + [p+4dc(n +2)] a(&) — 23, h(es, QAce;) + bE = 0,
for every X € T(TM) and & € T(T+M), where a= {50 (n+2)+
16¢(n+2)(3n+8)] and b = n(n+2)(n+4) — g5y are constant. Conversely,
conditions (i) — (iv) imply type < 3 if the polynomial t3 + pt® +qt +r has simple
real roots or M is compact.

Corollary 4. There exists no compact Kahler hypersurface of CQ™
which is of Chen 3-type and mass-symmetric in the hypersphere of H(%) (m+1)
containing the image of CQ™ via ®.



