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The presentation

Summary of the results

The Cayley maps for the Lie algebras su(1, 1) and so(2, 1) converting
them into the corresponding Lie groups SU(1, 1) and SO(2, 1) along
their natural vector parameterizations are examined. Additionally
the explicit form of the covering map SU(1, 1) → SO(2, 1) and
its sections are presented. Finally, the vector-parameter forms of
the Lie groups SU(2) and SU(1, 1) are compared and some of their
applications are addressed.
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Vector-parameter form of SU(1,1)

Vector-prameter form of the map SU(1,1) → SO(2,1)

This research is made within a bigger project which is about
parameterizing Lie groups with small dimension and its
application in physics.

In [4] the Cayley maps for the Lie algebras su(2) and so(3)
and the corresponding Lie groups SU(2) and SO(3,R) are
examined.

Parameterizations are used to describe Lie groups in an easier
and more intuitive way. Let G be a finite dimensional Lie
group with Lie algebra g. A vector parameterization of G is a
map g→ G , which is diffeomorphic onto its image. Besides
the exponential map, there are other alternatives to achieve
parameterization. We make use of the Cayley map

Cay(X) = (I + X)(I− X)−1. (1.1)
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Consider the Lie algebra so(2, 1) with basis

P1 =

 0 0 0
0 0 −1
0 −1 0

 , P2 =

 0 0 −1
0 0 0
−1 0 0

 , P3 =

 0 1 0
−1 0 0

0 0 0

.(2.1)

The commutation relations of these matrices are as follows:

[P1,P2] = −P3, [P2,P3] = P1, [P3,P1] = P2. (2.2)

Any C ∈ so(2, 1) has a unique representation

c 7→ C = c.P =

 0 c3 −c2

−c3 0 −c1

−c2 −c1 0

 , c = (c1, c2, c3). (2.3)

The Hamilton–Cayley theorem applied to C from (2.3) reads as

C3 = (1− c.(ηc))C (2.4)
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where η =

 1 0 0
0 1 0
0 0 −1

. The Cayley map applied for so(2, 1) is

H(c) = Cayso(2,1)(C) = (I + C)(I− C)−1. (2.5)

One checks immediately that I− C is invertable if only if
c.(ηc) 6= 1 and in this case we can explicitly calculate

H(c) = Cayso(2,1)(C) = (I + C)(I +
1

1− c.(ηc)
C +

1

1− c.(ηc)
C2)

= I +
2

1− c.(ηc)
C +

2

1− c.(ηc)
C2 (2.6)

=
2

1− c.(ηc)

 1− c2
1 c1c2 + c3 −c1c3 − c2

c1c2 − c3 1− c2
2 c2c3 − c1

c1c3 − c2 −c2c3 − c1 1 + c2
3

− I.
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If H(c1),H(c1) are two SO(2,1) elements represented by the
vector parameters and c1, c2 and c1.(ηc1) 6= 1, c2.(ηc2) 6= 1 and
1 + c2.(ηc1) 6= 0. Then

H(c3) = H(c2)H(c1), c3 = 〈c2, c1〉SO(2,1) =
c2 + c1 + c2 f c1

1 + c2.(ηc1)
(2.7)

where c2 f c1 := η(c2× c1). Equation (2.7) is the vector-parameter
form of SO(2,1) obtained by the parameterization given by the
Cayley map. The same result was obtained independently by usage
of pseudo-quaternions [3]. Note that in the elliptic case, i.e.,
1 > c.(ηc) > 0 there exists n ∈ R2,1 such that n.(ηn) = 1 and

c = tanh
θ

2
n. (2.8)

In the hyperbolic case, i.e., c.(ηc) < 0 there exist n ∈ R2,1 such

that n.(ηn) = −1 and c = tan
θ

2
n.
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Structure of su(1, 1)

Let us consider the Lie algebra su(1, 1) with R−basis

e1 =

(
0 1
1 0

)
, e2 =

(
0 i
−i 0

)
, e3 =

(
i 0
0 −i

)
· (3.1)

The matrices E1,E2 and E3 defined by

E1 =
1

2
e1, E2 =

1

2
e2, E3 =

1

2
e3 (3.2)

also form a R−basis of su(1, 1). Also

[E1,E2] = −E3, [E2,E3] = E 1, [E3,E1] = E2. (3.3)

Obviously, the map

m1E1 + m2E2 + m3E3 −→ m1P1 + m2P2 + m3P3 (3.4)

is a linear isomorphism between the Lie algebras su(1, 1) and
so(2, 1).
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Let M = m.E =

 i
m3

2

m1

2
+ i

m2

2m1

2
− i

m2

2
−i m3

2

 ∈ su(1, 1). The

Hamilton–Cayley theorem applied to M reads as

M2 =
m

2
· (ηm

2
)I (3.5)

The Cayley map applied for su(1, 1) is

L(m) = Caysu(1,1)(M) = (I + M)(I−M)−1. (3.6)

Let us define

∆m = 1− m2
1 + m2

2 −m2
3

4
= 1− m

2
· (ηm

2
) (3.7)

which is exactly det (I−M). Thus, Caysu(1,1) is well-defined when
∆m 6= 0.
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In this case we have (I−M)−1 =
1

∆m
(I + M) and thus we can

explicitly calculate

L(m) = Caysu(1,1)(M) =
1

∆m
(I + M)2 =

1

∆m
(I + 2M + M2) =

2−∆m

∆m
I +

2

∆m
M

(3.8)

=
2−∆m

∆m
I +

2

∆m
m.E =

1

∆m

(
2−∆m + im3 m1 + im2

m1 − im2 2−∆m − im3

)
.

(3.9)

Now direct calculation shows that det (L(m)) = 1 and also

L(m)†ηL(m) = η, η =

(
−1 0

0 1

)
. Thus L(m) ∈ SU(1, 1).
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To invert the Cayley map Caysu(1,1) : su(1, 1) −→ SU(1, 1) let us
consider an arbitrary SU(1, 1) matrix

L(α1, α2, β1, β2) =

(
α1 + iα2 β1 + iβ2

β1 − iβ2 α1 − iα2

)
, α2

1 + α2
2 − β2

1 − β2
2 = 1.

L ∈ =Caysu(1,1) if and only if there exist m ∈ R3 : ∆m 6= 0 such
that Caysu(1,1)(A(m)) = L. This is only possible if α1 6= −1 and in
this case the inversion is

(m1,m2,m3) =
2

1 + α1
(β1, β2, α2). (3.10)

Finally, the Cayley acts

Caysu(1,1) : {m.E ∈ su(1, 1) ; ∆m 6= 0}
−→{L(α1, α2, β1, β2) ∈ SU(1, 1) ; α1 6= −1}.
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Theorem

Let M,A ∈ su(1, 1)

M = m.E , m = (m1,m2,m3), A = a.E , a = (a1, a2, a3)

be such that ∆m 6= 0,∆a 6= 0 and

(a.(ηa))(m.(ηm)) + 8a.(ηm) + 16 6= 0. (3.11)

Let L(m) = Caysu(1,1)(M),W(a) = Caysu(1,1)(A). Then, if

L̃ = W.L is the composition of the images in SU(1, 1) then

L̃ = Caysu(1,1)(Ã) where Ã = m̃.E and

m̃ =
(1 +

m

2
· (ηm

2
))a + (1 +

a

2
· (η a

2
))m + a fm

1 + 2
a

2
· (ηm

2
) +

(a
2
· (η a

2
)
)(m

2
· (ηm

2
)
) · (3.12)
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Idea for proof 1

Let us calculate

W(a).L(m) =

(
2−∆a

∆a
I +

2

∆a
a.E

)(
2−∆m

∆m
I +

2

∆m
m.E

)
(??)
=

(2−∆a)(2−∆m) + a ·m
∆a∆m

I +
(2−∆m)a + (2−∆a)m + a fm

∆a∆m
· E .

Now, the condition for existence of m̃ is

(2−∆a)(2−∆m) + a ·m
∆a∆m

6= −1⇔ 1 + (1−∆a)(1−∆m) + 2
a

2
· (ηm

2
) 6= 0.(3.13)

and after simplification we obtain that it is equivalent to (3.11).
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Idea for proof 2

Thus, m̃ exists and is such that

2−∆m̃

∆m̃
=

(2−∆a)(2−∆m) + a.(ηm)

∆a∆m
(3.14)

2

∆m̃
m̃ =

(2−∆m)a + (2−∆a)m + a fm

∆a∆m
· (3.15)

From (3.14) we immediately find

∆m̃ =
∆a∆m

1 + 2
a

2
· (ηm

2
) +

(a
2
· (η a

2
)
)(m

2
· (ηm

2
)
) 6= 0 (3.16)

and thus after some algebraic simplifications the composition law
in vector-parameter form follows.
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It is well know fact that SU(1, 1) is isomorphic as a group to the
real special linear group of order 2, i.e., SL(2,R) by the map

ϕ : SL(2,R)→ SU(1, 1),
(3.17)

ϕ

((
a b
c d

))
=

(
1√
2

(
1 i
i 1

))−1(
a b
c d

)
1√
2

(
1 i
i 1

)
.

Now, to automatically obtain the vector-parameter form we need
to invert ϕ and calculate ϕ−1(L(m)) where m ∈ R3, ∆m 6= 0. A
straight forward calculation shows that

ψ(m) := ϕ−1(L(m)) = M(m) =
1

∆m

(
2−∆m + m2 m1 + m3

m1 −m3 2−∆m −m2

)
.

We have

trL(m) = trM(m) =
4− 2∆m

∆m
, ∆m 6= 0. (3.18)
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In a straight forward manner we obtain that if ∆m 6= 0 then

M(m) is


hyperbolic if ∆m < 1 ⇔ m.(ηm) > 0

elliptic if ∆m > 1 ⇔ m.(ηm) < 0

parabolic if ∆m = 1 ⇔ m.(ηm) = 0.

(3.19)

Corollary

In the terms of Theorem 1, for the composition vector m̃ we have

M(m̃) is


hyperbolic if ξζ > 0

elliptic if ξζ < 0

parabolic if ξ = 0

ξ = ξ(a,m) = (a + m).(η(a + m)),

ζ = ζ(a,m) = (4 + (a.m))2 − (a fm).(η(a fm)).
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Consider the homomorphism map [1] ϕ : SU(1, 1) −→ SO(2, 1)

which sends the SU(1, 1) matrix L =

(
α β

β α

)
where

α = α1 + iα2, β = β1 + iβ2 and αα− ββ = 1 into

ϕ(L) =


−1

2
(β2 + β

2 − α2 − α2)
i

2
(α2 + β

2 − α2 − β2) i(αβ − αβ)

− i

2
(β2 − β2 − α2 + α2)

1

2
(α2 + β

2
+ α2 + β2) αβ + αβ

i(αβ − αβ) αβ + αβ αα + ββ

 .

The homomorphism map ϕ is a double cover with kerϕ = {±I}
and SU(1, 1)/Z2

∼= SO(2, 1). We are interested in the
vector-parameter form of ϕ.
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Consider the SU(1, 1) matrix L(m) = Caysu(1,1)(m). We have

α =
2−∆m

∆m
+ i

m3

∆m
, β =

m1

∆m
+ i

m2

∆m
· (4.1)

Substitution of (4.1) in (4.1) leads to the matrix ϕ(m) = H(m)
i.e.,

2

∆2
m

(
m2

2 −m2
3 m1m2 + m3(2−∆m) m1m3 + m2(2−∆m)

m1m2 −m3(2−∆m) m2
1 −m2

3 −m2m3 + m1(2−∆m)
−m1m3 + m2(2−∆m) m2m3 + m1(2−∆m) m2

1 + m2
2

)
+ I.

This vector parameter form will allow us to obtain the connection
between the vector parameter in SO(2,1) and its cover SU(1,1).
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Theorem

Let L(m) is an SU(1, 1) element, represented by the

vector-parameter m such that
m

2
· (ηm

2
) 6= −1. Then in SO(2, 1)

this element is represented by H(c) where

c = − ηm

1 +
m

2
· (ηm

2
)
· (4.2)

On the other hand, if c represents the SO(2, 1) element H(c), then
the in SU(1, 1) the elements represented by the vector-parameters

m+(c) =
−2− 2

√
1− c.(ηc)

c.(ηc)
ηc, m−(c) =

−2 + 2
√

1− c.(ηc)

c.(ηc)
ηc

correspond to H(c).
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Moreover, the following relations hold

m+.(ηm−) = 4, (m+.(ηm+))(m−.(ηm−)) = 16 (4.3)

m+ = − 4

m−.(ηm−)
m−, m− = − 4

m+.(ηm+)
m+. (4.4)
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Idea for proof 1

Let us equate the following expressions from H(c) (cf. (??)) and
H(m) (cf. (4.2))

trH(c) = trH(m) (4.5)

H(c)1,2 −H(c)2,1 = H(m)1,2 −H(m)2,1

H(c)1,3 + H(c)3,1 = H(m)1,3 + H(m)3,1, (4.6)

H(c)2,3 + H(c)3,2 = H(m)2,3 + H(m)3,2.

Equation (4.5) is equivalent to

2

1− c.(ηc)
(3− c.(ηc))− 3 =

4

∆2
m

m.(ηm) + 3 (4.7)

from where after some algebraic manipulation

2

1− c.(ηc)
= 2

(2−∆m)2

∆2
m

· (4.8)
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Idea for proof 2

Equation (4.6) reads as

4

1− c.(ηc)
c3 = 4

2−∆m

∆2
m

d3 (4.9)

where as (??) reads as

−4

1− c.(ηc)
c2 = 4

2−∆m

∆2
m

d2,
−4

1− c.(ηc)
c1 = 4

2−∆m

∆2
m

d1.(4.10)

It is obvious that from (4.9) and (4.10)

1

1− c.(ηc)
c = −2−∆m

∆2
m

ηm (4.11)

and thus substituting (4.8) into (4.11) we obtain the result (4.2).
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Idea for proof 3

Let us find the vector-parameter form of the sections of the
homomorphism i.e., invert (4.2). From it we have obtain

c.(ηc) =
−ηm

1 +
m

2
· (ηm

2
)
· η −ηm

1 +
m

2
· (ηm

2
)

=
m.(ηm)(

1 +
m.(ηm)

4

)2
·(4.12)

This leads to the quadratic equation for x = m.(ηm)

c.(ηc)x2 + 8(c.(ηc)− 2)x + 16c.(ηc) = 0. (4.13)

Note that the expression 1− c.(ηc) = 1− x

(1 +
x

4
)2

and straight

forward calculus shows that 1− c.(ηc) ≥ 0 with 1− c.(ηc) = 0 if
only if x = 4. Thus, equation (4.13) has two real roots

m+.(ηm+) = 4
2− c.(ηc)± 2

√
1− c.(ηc)

c.(ηc)
· (4.14)
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Idea for proof 4

Direct calculation shows that

1 +
m±

2
· (ηm±

2
) =
−2∓ 2

√
1− c.(ηc)

c.(ηc)
(4.15)

and thus the two sections of (4.2) are

m+(c) =
−2− 2

√
1− c.(ηc)

c.(ηc)
ηc, m−(c) =

−2 + 2
√

1− c.(ηc)

c.(ηc)
ηc.(4.16)

Note that the properties (4.3) follow directly from (4.14) and
(4.16).
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Remark

Note that if we assume the axis-rapidity representation of SO(2,1)
elliptic vector-parameter

c = tanh
θ

2
n, n.(ηn) = 1, θ ∈ R (5.1)

then for m+(c) and m−(c) we obtain

m−(c) = −2 tanh
θ

4
ηn, m+(c) = −2

1

tanh
θ

4

ηn = −2 coth
θ

4
ηn.(5.2)

If we assume the representation of SO(2,1) hyperbolic
vector-parameter

c = tan
θ

2
n, n.(ηn) = −1, θ ∈ [0, π) (5.3)

then for m+(c) and m−(c) we obtain

m−(c) = 2 tan
θ

4
ηn, m+(c) = 2

1

tanh
θ

4

ηn = −2 cot
θ

4
ηn.(5.4)VELIKO D. DONCHEV, CLEMENTINA D. MLADENOVA, IVÄILO M. MLADENOVVector Parameter Forms of SU(1,1), SL(2,R) and Their Connection with SO(2,1)
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VELIKO D. DONCHEV, CLEMENTINA D. MLADENOVA, IVÄILO M. MLADENOVVector Parameter Forms of SU(1,1), SL(2,R) and Their Connection with SO(2,1)



Introduction
Vector-parameter form of SO(2,1)
Vector-parameter form of SU(1,1)

Vector-prameter form of the map SU(1,1) → SO(2,1)

Thank you for your attention!
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