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1. Weingarten Surfaces in R3

[25] Weingarten J., Über die Oberflächen, für welche einer der beiden

Hauptkrümmungshalbmesser eine Funktion des anderen ist, J. reine

angew. Math., 62 (1863), 160-173.

[26] Weingarten J., Über eine Eigenschaft der Flächen, bei denen der

eine Hauptkrümmungsradius eine Funktion des anderen ist, J. reine

angew. Math., 103 (1888), 184.

A surface S with principal curvatures ν1 and ν2 is a Weingarten sur-

face (W-surface) if there exists a function ν on S and two functions

(Weingarten functions) f, g of one variable, such that

ν1 = f(ν), ν2 = g(ν).



We proved in

[9] Ganchev G., Mihova V., On the invariant theory of Weingarten

surfaces in Euclidean space. J. Phys. A: Math. Theor. 43 (2010)

405210-405236.

that any W-surface admits locally special principal parameters - natural

principal parameters. With respect to these natural principal parame-

ters the functions

√
E exp

(∫
f ′dν

f − g

)
,
√

G exp

(∫
g′dν

g − f

)

are constants, E, G being the coefficients of the first fundamental form

on a W-surface.



With respect to natural principal parameters any W-surface S with

Weingarten functions f, g is determined uniquely up to motions by the

geometric function ν, which satisfies a non-linear partial differential

equation - the natural PDE of the surface S [9]. This result solves

the Lund-Regge reduction problem (Fokas - Gelfand [5], Lund - Regge

[14], Sym [18]) for W-surfaces in Euclidean space.

Parallel surfaces - a family of associated surfaces

Let S : z = z(u, v), (u, v) ∈ D be a surface, parameterized by principal

parameters and l(u, v) be the unit normal vector field of S. The parallel

surfaces of S are given by

S̄(a) : z̄(u, v) = z(u, v) + a l(u, v), a = const 6= 0, (u, v) ∈ D.



[10] Ganchev G., Mihova V., Natural PDE’s of Weingarten surfaces

with linear relation between their curvatures in Euclidean Space. (to

appear)

In Proposition 3.1 in [10] we prove that

The natural principal parameters of a given W-surface S are natural

principal parameters for all surfaces {S̄(a)}, which are parallel to S.

Theorem 3.2 [10] states that

The natural PDE of a given W-surface S is the natural PDE of any

surface S̄(a), a = const 6= 0, which is parallel to S.



2. On the Natural PDE’s of Minimal Surfaces in R3

Canonical Weierstrass principal representation of minimal sur-

faces Let M : z = z(x, y), (x, y) ∈ D ⊂ C be a minimal surface, free

of flat points, parameterized by canonical principal parameters. If the

normal curvature function ν(x, y) of M is positive, then it has locally

a representation of the type

z :

z1 = Re

(
1

2

∫ z

z0

w2 − 1

w′
dz

)
,

z2 = Re

(
− i

2

∫ z

z0

w2 + 1

w′
dz

)
,

z3 = Re

(
−

∫ z

z0

w

w′
dz

)
,

where w = w(z), z = x + iy is a holomorphic function in C satisfying

the condition w′ 6= 0.



We show that any minimal surface free of flat points can be en-

dowed locally by canonical asymptotic parameters. We prove a theo-

rem (Canonical Weierstrass asymptotic representation), which is the

”asymptotic” analogue to the above statement.

Theorem B. (Explicit solving of the natural PDE of minimal

surfaces) Any solution ν > 0 of the natural partial differential equation

of minimal surfaces

(1) ∆ ln ν + 2ν = 0

locally is given by the formula

(2) ν =
4(u2

x + u2
y)

(u2 + v2 + 1)2
, u2

x + u2
y > 0,

where w = u(x, y) + iv(x, y) is a holomorphic function in C.

Conversely, any function ν(x, y) of the type (2) is a solution to (1).



Question: When two holomorphic functions generate one and the same

solution to (1)?

O. Kassabov [23] obtained the following result:

Theorem. Let w and ŵ be two holomorphic functions generating one

and the same solution ν of the natural equation (1). Then

(3) ŵ =
−b̄ + ā w

a + b w
, a = const, b = const, |a|2 + |b|2 = 1.

Conversely, any two holomorphic functions related by (3) generate one

and the same solution to (1).



Now, let M be a minimal surface, free of flat points parameterized by

canonical principal parameters and F1 be the family of parametric lines

y = const. It follows from the Frenet type equations that the lines of

curvature from this family are regular curves. These lines of curvature

are plane curves if and only if the vector fields X, ∇XX and ∇X∇XX

are coplanar at any point, i.e.

(4) λxy − λxλy = 0 ⇐⇒ (e−λ)xy = 0 ⇐⇒
(

1√
ν

)

xy

= 0.

The well known fact that if the one family of lines of curvature are

plane curves, then the other family of lines of curvature are again plane

curves now follows immediately from (4).

Thus, the minimal surfaces whose lines of curvature are plane curves

are generated by the solutions ν(x, y) > 0 of (1) satisfying the additional

condition

(
1√
ν

)

xy

= 0.



Let M be a minimal surface, parameterized by canonical asymptotic

parameters. Then, the asymptotic lines from the family F1 : y = const

are generalized helices if and only if
(
(
√

α)y

α

)

x

= 0 ⇐⇒
(

1√
α

)

xy

= 0.

Here, again it follows immediately that if the one family of asymptotic

lines are generalized helices, then the other family of asymptotic lines

are also generalized helices.

The principal lines of a minimal surface M are plane curves if and

only if the asymptotic lines of the conjugate minimal surface M are

generalized helices.



Taking into account Theorem A, we formulate the classical result for

the minimal surfaces with plane curvature lines in the following form:

Examples 2.1. [13] Up to similarities, the minimal surfaces whose

principal lines are plane curves, are as follows:

(i) The Enneper minimal surface:

generating holomorphic function: w = z;

canonical principal representation:

(2.1) M :

z1 =
1

6
(x3 − 3xy2)− x

2
,

z2 =
1

6
(3x2y − y3) +

y

2
,

z3 = −1

2
(x2 − y2).



The normal curvature function ν of S is the following:

ν(x, y) =
4

[(x2 + y2) + 1]2
.

(ii) The Bonnet minimal surfaces:

generating holomorphic function: w = iek tan
z

2
, k = const ∈ R;

canonical principal representation:

(2.2) S̃(k) :

z1 = b cosx sinh y − ay,

z2 = −a sinx cosh y + bx,

z3 = cosx cosh y,

a = cosh k, b = sinh k.

In the case k = 0 the surface S̃(0) is the usual catenoid.



The normal curvature function ν of S̃(k) is as follows:

ν(x, y) =
1

( a cosh y − b cosx )2
.

The minimal surfaces whose asymptotic lines are generalized helices

are as follows.

Examples 2.2. All minimal surfaces whose asymptotic lines are gen-

eralized helices, up to similarity are the following:

(i) The Enneper minimal surface S .

The Enneper surface S (2.1) is congruent to its associated minimal

surfaces. Hence, S is the unique minimal surface whose principal lines

are plane curves and simultaneously its asymptotic lines are generalized

helices.



(ii) The conjugate surfaces to the Bonnet minimal surfaces:

generating holomorphic function: w = iek tan
eiπ

4 z

2
, k = const ∈ R;

canonical principal representation:

S̃(k) :

z1 = a
x− y√

2
− b sin

x− y√
2

cosh
x + y√

2
,

z2 = b
x + y√

2
− a cos

x− y√
2

sinh
x + y√

2
,

z3 = −sin
x− y√

2
sinh

x + y√
2

,

a = cosh k, b = sinh k.

In the case k = 0 the surface S̃(0) is the usual helicoid.

The normal curvature function ν of S̃(k) is as follows:

ν(x, y) =
1

( a cosh x+y√
2
− b cos x−y√

2
)2

.



3. The Natural PDE’s of Space-like Minimal Surfaces in R3
1

Theorem. (Explicit solving of the natural PDE of minimal space-

like surfaces) Any solution ν > 0 of the natural partial differential

equation of minimal space-like surfaces

(3.1) ∆ ln ν − 2ν = 0

locally is given by the formula

(3.2) ν =
4(u2

x + u2
y)

(u2 + v2 − 1)2
, u2

x + u2
y > 0,

where w = u(x, y) + iv(x, y) is a holomorphic function in C.

Conversely, any function ν(x, y) of the type (3.2) is a solution to (3.1).



4. The Natural PDE’s of Time-like Minimal Surfaces in R3
1

Theorem. (Explicit solving of the natural PDE of minimal time-

like surfaces) Any solution ν = n(x, y) > 0 of the natural partial

differential equation of minimal time-like surfaces

(4.1) (ln ν)xx − (ln ν)yy = 2ν

locally is given by the formula

(4.2) ν =
4(u2

x − u2
y)

(u2 − v2 − 1)2
, u2 − v2 < 1, u2

x − u2
y > 0,

where w = u(x, y)+jv(x, y) is a holomorphic function in the Minkowski

plane R2
1 considered as the algebra of double numbers.

Conversely, any function ν(x, y) of the type (4.2) is a solution to (4.1).



5. The System of natural PDE’s of a minimal surface in R4

By minimal non-superconformal surface in the four-dimensional Eu-

clidean space R4 we mean a surface (M, z), z : M → R4 with zero

mean curvature, whose ellipse of curvature is not a circle. Studying

minimal surfaces in R4, T. Itoh [12] proved that any minimal non-

superconformal surface admits locally special isothermal parameters

(u, v). These parameters are characterized by the following conditions:

z2
u = z2

v
zu · zv = 0
σ2(zu, zu)− σ2(zu, zv) = 1
σ(zu, zu) · σ(zu, zv) = 0 ,

where σ(X, Y ) denotes the second fundamental form of M.



It can be proved that these parameters are uniquely determined up to

renumbering, signs and additive constants. Thus if (ũ, ṽ) is another

pair of such parameters we have:

ũ = εu + a
ṽ = δv + b

or
ũ = εv + a
ṽ = δu + b ,

where
ε, δ = ±1
a, b = const .

Further we shall call these parameters canonical parameters of the

minimal non-superconformal surface M in R4.



On the base of the existence of canonical parameters, R. de Azevero

Tribuzy and I. Guadalupe [24] proved the following:

Theorem. The Gauss curvature K and the curvature of the normal

connection κ (the normal curvature) of a minimal non-superconformal

surface in R4, parameterized by canonical parameters, satisfy the fol-

lowing system of partial differential equations:

(1)
(K2 − κ2)

1
4 ∆ln |κ −K| = 2(2K − κ)

(K2 − κ2)
1
4 ∆ln |κ+ K| = 2(2K + κ) .

Conversely, any solution (K, κ) to system (1) determines locally uniquely

(up to a motion in R4) a minimal non-superconformal surface with

Gauss curvature K and normal curvature κ.



We call (1): the system of natural PDE’s of minimal surfaces in R4

and our aim is to solve locally explicitly this system.

Remark. Introducing natural parameters on any minimal non-super-

conformal surface in R4 reduces the number of the invariants deter-

mining the surface to two: K and κ. Further, these two invariants

satisfy the system of two natural PDE’s and determine the minimal

non-superconformal surface uniquely up to a motion. It is clear that

the number of the invariants and the number of the PDE’s can not

be reduced further. Therefore this solves the reduction problem of

Lund-Regge for minimal non-superconformal surfaces in R4.



In [8] G. Ganchev and K. Kanchev proved the following

Theorem 1.(Explicit solving of the system of natural PDE’s of

minimal surfaces in R4) Let K and κ be a solution to the system of

natural PDE’s (1). Then we have locally:

(2)

K =
−8|g′1g′2|

(|g1|2 + 1)(|g2|2 + 1)

( |g′1|2
(|g1|2 + 1)2

+
|g′2|2

(|g2|2 + 1)2

)

κ =
8|g′1g′2|

(|g1|2 + 1)(|g2|2 + 1)

( |g′1|2
(|g1|2 + 1)2

− |g′2|2
(|g2|2 + 1)2

)

for some pair of holomorphic functions (g1, g2) in C with g′1g′2 6= 0.

Conversely, for any such pair of holomorphic functions (g1, g2), the

functions K and κ given by (2), satisfy the system (1).



Theorem 2. Let (g1, g2) and (ĝ1, ĝ2) be two pairs of holomorphic

functions generating one and the same solution (K,κ) of the system

(1) of natural PDE’s of minimal surfaces in R4. Then:

(3) ĝk =
−b̄k + āk gk

ak + bk gk
,

where ak = const, bk = const, |ak|2 + |bk|2 = 1; (k = 1;2).

Conversely, any two pairs of holomorphic functions related by the above

formula, generate one and the same solution of (1).



Remark. The conditions for the constants ak and bk in Theorem 2

mean that

(
āk −b̄k
bk ak

)
is a special unitary matrix in the group SU(2).

Therefore we can state Theorem 2 in the following equivalent form:

Theorem 2a. Two pairs of holomorphic functions (g1, g2) and (ĝ1, ĝ2)

generate one and the same solution (K,κ) of the system (1) iff the

pair (ĝ1, ĝ2) is obtained from the pair (g1, g2) by linear fractional trans-

formations with matrices in SU(2).



In

G. Ganchev, V. Milousheva, Timelike surfaces with zero mean curva-

ture in Minkowski 4-space. Israel Journal of Mathematics, 196 (2013),

1, 413-433

we gave the systems of natural PDE’s of minimal surfaces in R4 and

R4
1 in the following form



Minimal surfaces in R4

∆X = 2 eX coshY

∆Y = 2 eX sinhY

Minimal space-like surfaces in R4
1

∆X = 2 eX cosY

∆Y = 2 eX sinY

Minimal time-like surfaces in R4
1

∆hX = 2 eX cosY

∆hY = 2 eX sinY
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