"Integrability and nonlinearity in field theory”
XVII International conference on
"Geometry, Integrability and Quantization”
5–10 June 2015, Varna,
Bulgaria

Systems of MKdV equations related to the
affine Lie algebras

V. S. Gerdjikov
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

with D.M. Mladenov, A.A. Stefanov, S.K. Varbev
Sofia University ”St. Kliment Ohridski”, Bulgaria

and A. B. Yanovsky
Cape Town University
PLAN

- The inverse scattering method
- Hierarchies of integrable nonlinear evolution equations (NLEE)
- Reductions of polynomial bundles
- mKdV equations related to simple Lie algebras
- The ISM as a GFT
- Conclusions and open questions
Based on:

- V. S. Gerdjikov. Derivative Nonlinear Schrödinger Equations with
\(\mathbb{Z}_N \) and \(\mathbb{D}_N \)-Reductions. Romanian Journal of Physics, **58**, Nos. 5-6, 573-582 (2013).

- V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev. Integrable equations and recursion operators related to the affine Lie algebras \(A_r^{(1)} \). *ArXiv: 1411.0273v1 [nlin-SI]* Submitted to JMP.

The inverse scattering method

Lax representation:

\[
[L, M] \equiv 0, \\
L\psi \equiv i\frac{\partial \psi}{\partial x} + (U_1(x, t) - \lambda J)\psi(x, t, \lambda) = 0, \\
M\psi \equiv i\frac{\partial \psi}{\partial t} + (V_1(x, t) - \lambda K)\psi(x, t, \lambda) = 0,
\]

where J, K – constant diagonal matrices.

\[
\lambda^2 \quad \text{a)} \quad [J, K] = 0, \\
\lambda \quad \text{b)} \quad [U_1, K] + [J, V_1] = 0, \\
\lambda^0 \quad \text{c)} \quad iV_{1,x} - iU_{1,t} + [U_1, V_1] = 0.
\]

Eq. a) is satisfied identically.
Eq. b) is satisfied identically if:

\[U_1(x, t) = [J, Q_1(x, t)], \quad V_1(x, t) = [K, Q_1(x, t)], \]

Then eq. c) becomes the N-wave equation:

\[i \left[J, \frac{\partial Q_1}{\partial t} \right] - i \left[K, \frac{\partial Q_1}{\partial x} \right] + [[K, Q_1], [J, Q_1]] = 0. \]

Simplest non-trivial case:

\[N = 3, \quad \mathfrak{g} \simeq sl(3), \quad Q_1(x, t) = \begin{pmatrix} 0 & u_1 & u_3 \\ u_1^* & 0 & u_2 \\ u_3^* & u_2^* & 0 \end{pmatrix}. \]

Then the 3-wave equations take the form:

\[\begin{align*}
\frac{\partial u_1}{\partial t} - \frac{a_1 - a_2}{b_1 - b_2} \frac{\partial u_1}{\partial x} + \kappa \epsilon_1 \epsilon_2 u_2^* u_3 &= 0, \\
\frac{\partial u_2}{\partial t} - \frac{a_2 - a_3}{b_2 - b_3} \frac{\partial u_2}{\partial x} + \kappa \epsilon_1 u_1^* u_3 &= 0, \\
\frac{\partial u_3}{\partial t} - \frac{a_1 - a_3}{b_1 - b_3} \frac{\partial u_3}{\partial x} + \kappa \epsilon_2 u_1^* u_2^* &= 0,
\end{align*} \]
where
\[\kappa = a_1(b_2 - b_3) - a_2(b_1 - b_3) + a_3(b_1 - b_2). \]

Solving Nonlinear Cauchy problems by the Inverse scattering method

Find solution to the \(N \)-wave eqs. such that
\[Q_1(x, t = 0) = q_0(x). \]

\[
q_0 \rightarrow L_0 \quad L|_{t>0} \rightarrow q(x, t)
\]

\[
\begin{array}{c}
T(0, \lambda) \rightarrow II T(t, \lambda)
\end{array}
\]

Step I: Given \(Q_1(x, t = 0) = q_0(x) \) construct the scattering matrix \(T(\lambda, 0) \).
Jost solutions:

\[L\phi(x, \lambda) = 0, \quad \lim_{x \to -\infty} \phi(x, \lambda)e^{i\lambda Jx} = 1, \]
\[L\psi(x, \lambda) = 0, \quad \lim_{x \to \infty} \psi(x, \lambda)e^{i\lambda Jx} = 1, \]

\[T(\lambda, 0) = \psi^{-1}(x, \lambda)\phi(x, \lambda). \]

Step II: From the Lax representation there follows:

\[i \frac{\partial T}{\partial t} - \lambda[K, T(\lambda, t)] = 0, \]

i.e.

\[T(\lambda, t) = e^{-i\lambda Kt}T(\lambda, 0)e^{i\lambda Kt}. \]

Step III: Given \(T(\lambda, t) \) construct the potential \(Q_1(x, t) \) for \(t > 0 \).

For \(\mathfrak{g} \simeq sl(2) \) – GLM eq. – Volterra type integral equations

For higher rank simple Lie algebras – GLM eq. become very complicated.

But it can be reduced to Riemann-Hilbert problem.

Important: Thus the nonlinear Cauchy problem reduces to a sequence of three linear Cauchy problems; each has unique solution!
Hierarchies of integrable nonlinear evolution equations

We can choose more complicated M-operators:

for the NLS type eqs:

$$V(x, t, \lambda) = V_2(x, t) + \lambda V_1(x, t) - \lambda^2 K.$$

Then

$$i \frac{\partial T}{\partial t} - \lambda^2 [K, T(\lambda, t)] = 0,$$

for the MKdV type eqs:

$$V(x, t, \lambda) = V_3(x, t) + \lambda V_2(x, t) + \lambda^2 V_1(x, t) - \lambda^3 K.$$

$$i \frac{\partial T}{\partial t} - \lambda^3 [K, T(\lambda, t)] = 0,$$

With each Lax operator L one can relate a hierarchy of integrable NLEEE.
Reductions of Lax pairs

a) \(AU^\dagger(x, t, \epsilon \lambda^*) \hat{A} = -U(x, t, \lambda) \), \(AV^\dagger(x, t, \epsilon \lambda^*) \hat{A} = -V(x, t, \lambda) \),
b) \(BU^\dagger(x, t, \epsilon \lambda^*) \hat{B} = U(x, t, \lambda) \), \(BV^\dagger(x, t, \epsilon \lambda^*) \hat{B} = V(x, t, \lambda) \),
c) \(CUT(x, t, -\lambda) \hat{C} = -U(x, t, \lambda) \), \(CV^\dagger(x, t, -\lambda) \hat{C} = -V(x, t, \lambda) \),

where \(\epsilon^2 = 1 \) and \(A, B \) and \(C \) are elements of the group \(\mathfrak{G} \) such that \(A^2 = B^2 = C^2 = 1 \). As for the fundamental analytic solutions we have

a) \(A\xi^+, \dagger(x, t, \epsilon \lambda^*) \hat{A} = \hat{\xi}^-(x, t, \lambda) \),
b) \(B\xi^+, \dagger(x, t, \epsilon \lambda^*) \hat{B} = \xi^-(x, t, \lambda) \),
c) \(C\xi^+, T(x, t, -\lambda) \hat{C} = \hat{\xi}^-(x, t, \lambda) \),

For the \(\mathbb{Z}_N \)-reductions we may have:

\(D\xi^\pm(x, t, \omega \lambda) \hat{D} = \xi^\pm(x, t, \lambda) \),

\(DU(x, t, \omega \lambda) \hat{D} = U(x, t, \lambda) \), \(DV(x, t, \omega \lambda) \hat{D} = V(x, t, \lambda) \),

where \(\omega^N = 1 \) and \(D^N = 1 \).
NLS and MKdV eqs with $sl(n)$-series

DNLS type equations

Special examples of DNLS systems of equations can be found in VSG - 1988. We will give some particular examples when M operator is from second and third degree in λ.

Those equations admit the following Hamiltonian formulation

$$\frac{\partial q_i}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\delta H}{\delta q_{r+1-i}} \right).$$

The first interesting nontrivial case is when M is quadratic polynomial in λ and $g \simeq A_2^{(1)}$ algebra. The potential of L is given by

$$U(x,t,\lambda) = \begin{pmatrix} 0 & q_1 & q_2 \\ q_2 & 0 & q_1 \\ q_1 & q_2 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix},$$

where $\omega = e^{2\pi i/3}$. This gives us the system of integrable nonlinear partial
differential equations

\[i \frac{\partial q_1}{\partial t} + i \gamma \frac{\partial}{\partial x} (q_2^2) + \gamma \frac{\sqrt{3}}{3} \frac{\partial^2 q_1}{\partial x^2} = 0, \]

\[i \frac{\partial q_2}{\partial t} + i \gamma \frac{\partial}{\partial x} (q_1^2) - \gamma \frac{\sqrt{3}}{3} \frac{\partial^2 q_2}{\partial x^2} = 0. \]

The corresponding Hamiltonian is

\[H = \frac{i \gamma \sqrt{3}}{6} \left(q_2 \frac{\partial q_1}{\partial x} - q_1 \frac{\partial q_2}{\partial x} \right) - \frac{\gamma}{3} (q_1^3 + q_2^3). \]

In the case of $A_3^{(1)}$ algebra using the potential

\[U(x, t, \lambda) = \begin{pmatrix}
0 & q_1 & q_2 & q_3 \\
q_3 & 0 & q_1 & q_2 \\
q_2 & q_3 & 0 & q_1 \\
q_1 & q_2 & q_3 & 0
\end{pmatrix} - \lambda \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -i
\end{pmatrix}, \]

we obtain the system of integrable nonlinear partial differential equations
\[i \frac{\partial q_1}{\partial t} + 2i \gamma \frac{\partial}{\partial x} (q_2 q_3) + \gamma \frac{\partial^2 q_1}{\partial x^2} = 0, \]
\[i \frac{\partial q_2}{\partial t} + i \gamma \frac{\partial}{\partial x} (q_1^2) + i \gamma \frac{\partial}{\partial x} (q_3^2) = 0, \]
\[i \frac{\partial q_3}{\partial t} + 2i \gamma \frac{\partial}{\partial x} (q_1 q_2) - \gamma \frac{\partial^2 q_3}{\partial x^2} = 0. \]

The corresponding Hamiltonian is
\[H = \frac{i \gamma}{2} \left(q_3 \frac{\partial q_1}{\partial x} - q_1 \frac{\partial q_3}{\partial x} + \frac{1}{2} \frac{\partial}{\partial x} (q_2^2) \right) - \gamma q_2 (q_1^2 + q_3^2). \]

Systems of equations of mKdV type

These are equations with cubic dispersion laws, therefore the M-operators are also cubic polynomials in λ.

In the case of $A_1^{(1)}$ algebra, with the following potential
\[U(x, t, \lambda) = \begin{pmatrix} 0 & q_1 \\ q_1 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \]
we obtain the well-known focusing mKdV equation

\[\alpha \frac{\partial q_1}{\partial t} = -\frac{1}{4} \frac{\partial^3 q_1}{\partial x^3} - \frac{1}{2} \frac{\partial}{\partial x} (q_1^3), \]

where \(\alpha = \frac{a^3}{b} \). In this case the Hamiltonian is

\[H = \frac{1}{8\alpha} \left(\left(\frac{\partial q_1}{\partial x} \right)^2 - q_1^4 \right). \]

In the case of \(A_2^{(1)} \) algebra we obtain a trivial system of equations \(\partial_t q_1 = 0 \) and \(\partial_t q_2 = 0 \) and the corresponding Hamiltonian is bilinear with respect to \(q_1 \) and \(q_2 \).

In the case of \(A_3^{(1)} \) algebra the potential of the Lax operator is parameterized by

\[U(x, t, \lambda) = \begin{pmatrix} 0 & q_1 & q_2 & q_3 \\ q_3 & 0 & q_1 & q_2 \\ q_2 & q_3 & 0 & q_1 \\ q_1 & q_2 & q_3 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -i \end{pmatrix}, \]
which is related to the following system of mKdV type equations

\[
\begin{align*}
\alpha \frac{\partial q_1}{\partial t} &= \frac{1}{2} \frac{\partial}{\partial x} \left(\frac{\partial^2 q_1}{\partial x^2} + 3 \frac{\partial q_2}{\partial x} q_3 + 3q_1q_2^2 + q_3^3 \right), \\
\alpha \frac{\partial q_2}{\partial t} &= \frac{1}{4} \frac{\partial}{\partial x} \left(-\frac{\partial^2 q_2}{\partial x^2} + 3 \frac{\partial}{\partial x} (q_1^2 - q_3^2) + 12q_1q_2q_3 - 2q_2^3 \right), \\
\alpha \frac{\partial q_3}{\partial t} &= \frac{1}{2} \frac{\partial}{\partial x} \left(\frac{\partial^2 q_3}{\partial x^2} - 3 \frac{\partial q_2}{\partial x} q_1 + 3q_3q_2^2 + q_1^3 \right).
\end{align*}
\]

The corresponding Hamiltonian is

\[
H = \frac{1}{\alpha} \int_{-\infty}^{\infty} dx \left(\frac{1}{4} q_1^4 - \frac{1}{8} q_2^4 + \frac{1}{4} q_3^4 + \frac{3}{2} q_1q_2q_3 + \frac{1}{2} q_1q_2 \frac{\partial q_1}{\partial x} - \frac{1}{2} q_1^2 \frac{\partial q_2}{\partial x} \\
+ \frac{1}{2} q_2 \frac{\partial q_2}{\partial x} - \frac{1}{6} \left(\frac{\partial q_1}{\partial x} \right) \left(\frac{\partial q_3}{\partial x} \right) + \frac{1}{24} \left(\frac{\partial q_2}{\partial x} \right)^2 - \frac{1}{2} q_2q_3 \frac{\partial q_3}{\partial x} \\
+ \frac{1}{6} q_3 \frac{\partial^2 q_1}{\partial x^2} - \frac{1}{12} q_2 \frac{\partial^2 q_2}{\partial x^2} + \frac{1}{6} q_1 \frac{\partial^2 q_3}{\partial x^2} \right).
\]
The next example is related to $A_4^{(1)}$. The potential of the Lax operator now is

$$U(x, t, \lambda) = \begin{pmatrix}
0 & q_1 & q_2 & q_3 & q_4 \\
q_4 & 0 & q_1 & q_2 & q_3 \\
q_3 & q_4 & 0 & q_1 & q_2 \\
q_2 & q_3 & q_4 & 0 & q_1 \\
q_1 & q_2 & q_3 & q_4 & 0
\end{pmatrix} - \lambda \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \omega & 0 & 0 & 0 \\
0 & 0 & \omega^2 & 0 & 0 \\
0 & 0 & 0 & \omega^3 & 0 \\
0 & 0 & 0 & 0 & \omega^4
\end{pmatrix}, \quad \omega = e^{2\pi i/5}$$

The set of equations is

$$\alpha \frac{\partial q_1}{\partial t} = \frac{\partial}{\partial x} \left(\frac{c_1}{2s_1^2} \frac{\partial^2 q_1}{\partial x^2} + \frac{3}{2s_1} q_4 \frac{\partial q_2}{\partial x} + \frac{3}{2s_2} q_3 \frac{\partial q_3}{\partial x} + 3q_1q_2q_3 + q_2^3 + 3q_3q_4^2 \right),$$

$$\alpha \frac{\partial q_2}{\partial t} = \frac{\partial}{\partial x} \left(-\frac{c_2}{2s_2^2} \frac{\partial^2 q_2}{\partial x^2} - \frac{3}{2s_2} q_3 \frac{\partial q_4}{\partial x} + \frac{3}{2s_1} q_1 \frac{\partial q_1}{\partial x} + 3q_1q_2q_4 + q_4^3 + 3q_1q_3^2 \right),$$

$$\alpha \frac{\partial q_3}{\partial t} = \frac{\partial}{\partial x} \left(-\frac{c_2}{2s_2^2} \frac{\partial^2 q_3}{\partial x^2} + \frac{3}{2s_2} q_2 \frac{\partial q_1}{\partial x} - \frac{3}{2s_1} q_4 \frac{\partial q_4}{\partial x} + 3q_1q_3q_4 + q_1^3 + 3q_4q_2^2 \right),$$

$$\alpha \frac{\partial q_4}{\partial t} = \frac{\partial}{\partial x} \left(\frac{c_1}{2s_1^2} \frac{\partial^2 q_4}{\partial x^2} - \frac{3}{2s_1} q_1 \frac{\partial q_3}{\partial x} - \frac{3}{2s_2} q_2 \frac{\partial q_2}{\partial x} + 3q_2q_3q_4 + q_3^3 + 3q_2q_1^2 \right),$$
where

\[s_k = \sin \left(\frac{k\pi}{5} \right), \quad c_k = \cos \left(\frac{k\pi}{5} \right), \quad s_1 = \frac{1}{4}\sqrt{10 - 2\sqrt{5}}, \]

\[c_1 = \frac{1}{4}(1 + \sqrt{5}), \quad s_2 = \frac{1}{4}\sqrt{10 - 2\sqrt{5}}, \quad c_2 = \frac{1}{4}(\sqrt{5} - 1). \]

The Hamiltonian is

\[
H = \frac{2b}{3a^3} \int_{-\infty}^{\infty} dx \left(-\frac{c_1}{2s_1^2} \frac{\partial q_1}{\partial x} \frac{\partial q_4}{\partial x} + \frac{c_2}{2s_2^2} \frac{\partial q_2}{\partial x} \frac{\partial q_3}{\partial x} + q_1 q_3 + q_2 q_4 + q_3 q_4 \right.
\]

\[
+ \frac{3}{8s_1} \left(q_4^2 \frac{\partial q_2}{\partial x} - 2q_2 q_4 \frac{\partial q_4}{\partial x} + 2q_1 q_3 \frac{\partial q_1}{\partial x} - q_1^2 \frac{\partial q_3}{\partial x} \right) + 3q_1 q_2 q_3 q_4 + q_1^3 q_2 \]

\[
+ \frac{3}{8s_2} \left(q_2^2 \frac{\partial q_1}{\partial x} - 2q_1 q_2 \frac{\partial q_2}{\partial x} + 2q_3 q_4 \frac{\partial q_3}{\partial x} - q_3^2 \frac{\partial q_4}{\partial x} \right) \bigg). \]
Additional Involutions. Real Hamiltonian forms

Along with the \mathbb{Z}_{r+1}-reduction we can introduce one of the following involutions (\mathbb{Z}_2-reductions) on the Lax pair:

a) $K_0\kappa_1^{-1}U^\dagger(x, t, \kappa_1(\lambda))K_0 = U(x, t, \lambda), \quad \kappa_1(\lambda) = \omega^{-1}\lambda^*;$

b) $K_0\kappa_1^{-1}U^*(x, t, \kappa_1(\lambda))K_0 = -U(x, t, \lambda), \quad \kappa_1(\lambda) = -\omega^{-1}\lambda^*;$

c) $U^T(x, t, -\lambda) = -U(x, t, \lambda),$

where $K_0^2 = 1$. If we choose

$$K_0 = \sum_{k=1}^{r+1} E_{k,r-k+2}$$

then the action of K_0 on the basis is as follows

$$K_0 \left(J_s^{(k)} \right)^\dagger K_0 = \omega^k J_s^{(k)}, \quad K_0 \left(J_s^{(k)} \right)^* K_0 = \omega^{-k} J_{-s}^{(k)}.$$
An immediate consequences are the constraints on the potentials

a) \(K_0^{-1} Q^\dagger(x, t) K_0 = Q(x, t), \quad K_0^{-1} (J_0^{(1)})^\dagger K_0 = \omega^{-1} J_0^{(1)}, \)

b) \(K_0^{-1} Q^*(x, t) K_0 = -Q(x, t), \quad K_0^{-1} (J_0^{(1)})^* K_0 = \omega^{-1} J_0^{(1)}, \)

c) \(Q^T(x, t) = -Q(x, t), \quad (J_0^{(1)})^T = J_0^{(1)}. \)

Thus we obtain the algebraic relations below

a) \(q_j^*(x, t) = q_j(x, t), \quad \alpha = \alpha^*; \)

b) \(q_j^*(x, t) = -q_{r-j+1}(x, t), \quad \alpha = \alpha^*; \)

c) \(q_j(x, t) = -q_{r-j+1}(x, t), \)

where \(j = 1, \ldots, r, \) are compatible with the evolution of the mKdV equations.

If we apply case a) we get the same set of mKdV equations with \(q_1, q_2 \) and \(q_3 \) being purely real functions. In the case b) we put \(q_1 = -q_3^* = u \)
and \(q_2 = -q_2^* = iv \) and we get

\[
\alpha \frac{\partial v}{\partial t} = -\frac{1}{4} \frac{\partial^3 v}{\partial x^3} + \frac{3}{2} \frac{\partial^2}{\partial x^2} \left(u^2 - (u^*)^2 \right) - 3 \frac{\partial}{\partial x}(|u|^2 v) + \frac{1}{2} \frac{\partial}{\partial x} v^3,
\]

\[
\alpha \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^3 u}{\partial x^3} - \frac{3}{2} \frac{\partial}{\partial x} \left(u^* \frac{\partial v}{\partial x} \right) - \frac{3}{2} \frac{\partial}{\partial x} (uv^2) - \frac{\partial}{\partial x} (u^*)^3,
\]

where \(u \) is a complex function but \(v \) is a purely real function. The corresponding Hamiltonian is

\[
H = \frac{1}{\alpha} \left(\frac{1}{4} u^4 - \frac{1}{8} v^4 + \frac{1}{4} (u^*)^4 + \frac{3}{2} |u|^2 v^2 + \frac{i}{2} uv \frac{\partial u}{\partial x} - \frac{i}{2} u^2 \frac{\partial v}{\partial x} + \frac{i}{2} (u^*)^2 \frac{\partial v}{\partial x} + \frac{1}{6} \frac{\partial u}{\partial x} \right) - \frac{1}{24} \left(\frac{\partial v}{\partial x} \right)^2 - \frac{i}{2} u^* v \frac{\partial u^*}{\partial x} - \frac{1}{6} u^* \frac{\partial^2 u}{\partial x^2} + \frac{1}{12} v \frac{\partial^2 v}{\partial x^2} - \frac{1}{6} u \frac{\partial^2 u^*}{\partial x^2} \right).
\]

The case c) leads to the well known defocusing mKdV equation

\[
\alpha \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^3 u}{\partial x^3} - \frac{\partial}{\partial x} (u^3),
\]
where u is a complex function. The corresponding Hamiltonian is

$$H = -\frac{1}{4\alpha} \left(\left(\frac{\partial u}{\partial x} \right)^2 + u^4 \right).$$

And finally, considering $A_5^{(1)}$ algebra with \mathbb{D}_6-reduction, case c) we find

$$\alpha \frac{\partial u}{\partial t} = 2 \frac{\partial^3 u}{\partial x^3} - 2\sqrt{3} \frac{\partial}{\partial x} \left(u \frac{\partial v}{\partial x} \right) - 6 \frac{\partial}{\partial x} (uv^2),$$

$$\alpha \frac{\partial v}{\partial t} = \sqrt{3} \frac{\partial^2}{\partial x^2} (u^2) - 6 \frac{\partial}{\partial x} (u^2 v),$$

where u and v are complex functions. The Hamiltonian is given by

$$H = -\frac{1}{\alpha} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \sqrt{3}u^2 \left(\frac{\partial v}{\partial x} \right) + 3u^2 v^2 \right).$$
Figure 1: The contour for the RHP of L with \mathbb{Z}_6-symmetry.
ISP and RHP

Fundamental analytic solutions of $L \chi_n u(x, t, \lambda)$ and solutions to the RHP:

$$m_\nu(x, t, \lambda) = \chi(x, t, \lambda)e^{iJ\lambda x}.$$

The rays l_ν are defined by:

$$\text{Im } \lambda \alpha(J) = 0, \quad \Leftrightarrow \quad \alpha \in \delta_\nu \quad \Leftrightarrow \quad g_\nu \subset g.$$

The RHP is:

$$m_\nu^+(x, \lambda) = m_\nu^-(x, \lambda)e^{-iJ\lambda x}g_\nu(\lambda)e^{iJ\lambda x}$$

$$g_\nu(\lambda) = \hat{S}_\nu^-(\lambda)S_\nu^+(\lambda) = \hat{D}_\nu^-(\lambda)\hat{T}_\nu^+(\lambda)T_\nu^-(\lambda)D_\nu^+(\lambda).$$

Here $S_\nu^\pm(\lambda), T_\nu^\pm(\lambda), D_\nu^\pm(\lambda)$ are defined by the asymptotic of $m_\nu^\pm(x, \lambda)$ when $x \to \pm \infty$:

$$S_\nu^\pm(\lambda) = \lim_{x \to -\infty} (e^{iJ\lambda x}m_\nu^\pm(x, \lambda)e^{-iJ\lambda x}) = \lim_{x \to -\infty} e^{iJ\lambda x}\chi_\nu^\pm(x, \lambda)$$

$$T_\nu^\pm(\lambda)D_\nu^\pm(\lambda) = \lim_{x \to \infty} (e^{iJ\lambda x}m_\nu^\pm(x, \lambda)e^{-iJ\lambda x}) = \lim_{x \to +\infty} e^{iJ\lambda x}\chi_\nu^\pm(x, \lambda).$$

(2)
One could write $S_{\nu}^{\pm}, T_{\nu}^{\pm}, D_{\nu}^{\pm}$ also into the form

$$S_{\nu}^{\pm}(\lambda) = \exp \sum_{\alpha \in \delta_{\nu}^+} s_{\nu,\alpha}^{\pm}(\lambda) E_{\pm \alpha}, \quad T_{\nu}^{\pm}(\lambda) = \exp \sum_{\alpha \in \delta_{\nu}^+} t_{\nu,\alpha}^{\pm}(\lambda) E_{\pm \alpha} \quad (3)$$

$$D_{\nu,\alpha}^{\pm}(\lambda) = \exp(\pm \sum_{\alpha \in \pi_{\nu}} d_{\nu,\alpha}^{\pm}(\lambda) H_{\alpha}). \quad (4)$$

In other words $S_{\nu}^{\pm}, T_{\nu}^{\pm}, D_{\nu}^{\pm}$ belong to the subgroup G_{ν} with Lie algebra g_{ν}. The fact that the factors $S_{\nu}^{\pm}, T_{\nu}^{\pm}, D_{\nu}^{\pm}$ have the above form is a consequence of the following relations that hold for $\lambda \in l_{\nu}$

$$\lim_{x \to \pm \infty} \langle E_{-\alpha}, m_{\nu}^{\pm} E_{\beta} \hat{m}_{\nu}^{\pm} \rangle = 0, \quad \alpha, \beta \in \Delta, \quad \text{Im} \ (\lambda(\alpha - \beta)(J)) \neq 0$$

$$\lim_{x \to \pm \infty} \langle H, m_{\nu}^{\pm} E_{\beta} \hat{m}_{\nu}^{\pm} \rangle = 0, \quad \beta \in \Delta, \quad H \in \mathfrak{h}, \quad \text{Im} \ (\lambda \beta(J)) \neq 0$$

$$\lim_{x \to \pm \infty} \langle E_{\beta}, m_{\nu}^{\pm} H \hat{m}_{\nu}^{\pm} \rangle = 0, \quad \beta \in \Delta, \quad H \in \mathfrak{h}, \quad \text{Im} \ (\lambda \beta(J)) \neq 0. \quad (5)$$

The minimal sets of scattering data that determine uniquely $T(\lambda)$ and
\(Q(x, t) \) are

\[
\mathcal{T}_S = \bigcup_{\nu=0}^{2} \{ s_{\nu, \alpha}^\pm (\lambda) : \alpha \in \delta^+_{\nu}, \lambda \in l_{\nu} \} \tag{6}
\]

\[
\mathcal{T}_T = \bigcup_{\nu=0}^{2} \{ t_{\nu, \alpha}^\pm (\lambda) : \alpha \in \delta^+_{\nu}, \lambda \in l_{\nu} \}. \tag{7}
\]

Completeness of ‘squared solutions’ and generalized Fourier transforms.

Theorem The sets of ‘squared solutions’ \(e_{\nu, il}(x, \lambda) \) form complete sets of functions in \(\mathcal{M}_J \). The completeness relation has the form:

\[
\delta(x - y) \Pi_0 = \\
= \frac{1}{\pi} \sum_{\nu=0}^{2h-1} (-1)^\nu \int_{l_{\nu}} d\lambda (G_{\nu+1}(x, y, \lambda) - G_\nu(x, y, \lambda)) - 2i \sum_{j=1}^{N} \text{Res}_{\lambda = \lambda_j} G_\nu(x, y, \lambda)
\]
$$
\Pi_0 = \sum_{\alpha > 0} (E_\alpha \otimes E_{-\alpha} - E_{-\alpha} \otimes E_\alpha)
$$

$$
G_{\nu+1}(x, y, \lambda) = \sum_{\alpha \in \Delta^+_\nu} e_{\nu+1,\alpha}(x, \lambda) \otimes e_{\nu+1,-\alpha}(y, \lambda),
$$

$$
G_{\nu}(x, y, \lambda) = \sum_{\alpha \in \Delta^-_\nu} e_{\nu,-\alpha}(x, \lambda) \otimes e_{\nu,\alpha}(y, \lambda) + \sum_{s=1}^{2} h_{\nu,s}(x, \lambda) \otimes h_{\nu,s}(y, \lambda).
$$
Figure 2: The contours $\gamma_\nu = l_\nu \cup \gamma_{\nu,\infty} \cup l_{\nu+1}$.
Expansions over the ‘squared solutions’:

\[
Q(x, t) = \frac{i}{2\pi} \sum_{\nu=0}^{5} (-1)^{\nu} \alpha_\nu(J) \int_{l_\nu} d\lambda \left(s^+_{\alpha_\nu, \nu}(\lambda)e_{\nu+1; \alpha}(x, \lambda) - s^-_{\alpha_\nu, \nu}(\lambda)e_{\nu; -\alpha}(x, \lambda) \right) \\
+ \sum_{\text{DS}} \cdots
\]

(8)

\[
\text{ad } \frac{1}{J} \delta Q(x, t) = \\
\frac{i}{2\pi} \sum_{\nu=0}^{5} (-1)^{\nu} \int_{l_\nu} d\lambda \left(\delta s^+_{\alpha_\nu, \nu}(\lambda)e_{\nu+1; \alpha}(x, \lambda) + \delta - s^-_{\alpha_\nu, \nu}(\lambda)e_{\nu; -\alpha}(x, \lambda) \right) + \sum_{\text{DS}} \cdots
\]

(9)

e_{\alpha_\nu; \nu}(x, \lambda) are generalizations of \(e^{-i\lambda x} \). We need the analogs of \(id/dx \) for which \(i(d/dx)e^{-i\lambda x} = \lambda e^{-i\lambda x} \)

\[
(\Lambda_+ - \lambda)e_{\alpha_\nu; \nu}(x, \lambda) = 0, \quad (\Lambda_- - \lambda)e_{-\alpha_\nu; \nu}(x, \lambda) = 0,
\]

\[
\Lambda_{\pm}X(x) \equiv \text{ad } \frac{1}{J} \left(\frac{dX}{dx} + i \left[[J, Q(x)], \int_{\pm\infty} dy \left[[J, Q(y)], X(y) \right] \right] \right).
\]
In order to treat NLEE consider variations of the form:

$$\delta Q \simeq \frac{\partial Q}{\partial t} \delta t + \mathcal{O}((\delta t)^2), \quad (10)$$

and keep only first order of δt. Then we have the expansion:

$$i \text{ad}_J^{-1} \frac{\partial Q(x, t)}{\partial t} =$$

$$\frac{i}{2\pi} \sum_{\nu=0}^{5} (-1)^\nu \int_{l_\nu} d\lambda \left(i \frac{\partial s^+_{\alpha,\nu}}{\partial t} e_{\nu+1;\alpha}(x, \lambda) + i \frac{\partial s^-_{\alpha,\nu}}{\partial t} e_{\nu;\alpha}(x, \lambda) \right) + \sum_{DS} \cdots$$

$$\Lambda \text{ad}_J^{-1} [J^2, Q(x, t)] =$$

$$= \frac{i}{2\pi} \sum_{\nu=0}^{5} (-1)^\nu \alpha_{\nu}(J) \int_{l_\nu} d\lambda \lambda^3 \left(s^+_{\alpha,\nu}(\lambda) e_{\nu+1;\alpha}(x, \lambda) - s^-_{\alpha,\nu}(\lambda) e_{\nu;\alpha}(x, \lambda) \right) + \cdots$$
\[i \text{ad}_{J}^{-1} \frac{\partial Q(x, t)}{\partial t} + \Lambda \text{ad}_{J}^{-1}[J^{2}, Q(x, t)] \equiv \text{mKdV} = \]

\[
\frac{i}{2\pi} \sum_{\nu=0}^{5} (-1)^{\nu} \int_{\lambda_{\nu}} d\lambda \left(\left(i \frac{\partial s_{\alpha_{\nu}, \nu}^{+}}{\partial t} + \lambda^{3} s_{\alpha_{\nu}, \nu}^{+} \right) e_{\nu+1; \alpha}(x, \lambda) + \right.
\]

\[
+ \left(i \frac{\partial s_{-\alpha_{\nu}, \nu}^{-}}{\partial t} - \lambda^{3} s_{\alpha_{\nu}, \nu}^{-}(\lambda) \right) e_{\nu; -\alpha}(x, \lambda) \right) + \sum_{\text{DS}} \cdots = 0
\tag{11} \]

i.e. these mKdV equations are equivalent to the following linear equations

\[
i \frac{\partial s_{\alpha_{\nu}, \nu}^{+}}{\partial t} + \lambda^{3} s_{\alpha_{\nu}, \nu}^{+} = 0,
\]

\[
i \frac{\partial s_{-\alpha_{\nu}, \nu}^{-}}{\partial t} - \lambda^{3} s_{\alpha_{\nu}, \nu}^{-} = 0.
\tag{12} \]

These GFT linearize the NLEE of mKdV type!

Solving the RHP and soliton solutions

Assume we have a regular solution of the RHP
\[\xi_{\nu+1}^0(x, t, \lambda) = \xi_{\nu}^0(x, t, \lambda)G_{\nu}^0(x, t, \lambda) \]

Regular: \(\det m_{\nu}^0 \neq 0 \) for \(\lambda \in \Omega_{\nu} \)

Construct a new, singular solution of the RHP
\[\xi_{\nu}^1(x, t, \lambda) = u(x, t, \lambda)\xi_{\nu+1}^0(x, t, \lambda), \]

\(u(x, t, \lambda) \) is the dressing factor, which may have poles and zeroes in \(\lambda \). The regular solution corresponds to potential \(Q_0 \) of \(L \); we may even choose \(Q_0 = 0 \).

The new singular solution of RHP corresponds to new potential \(Q \) which will depend on additional parameters.

One soliton solution of first type:
\[u(x, t, \lambda) = 1 + \frac{1}{3} \left(\frac{A_1}{\lambda - \lambda_1} + \frac{J^{-1}A_1J}{\lambda \omega^2 - \lambda_1} + \frac{J^{-2}A_1J^2}{\lambda \omega - \lambda_1} \right) \] (13)

where \(A_1(\xi, \eta) \) is a \(3 \times 3 \) degenerate matrix of the form
\[A_1(x, t) = |n(x, t)\rangle\langle m^T(x, t)| \quad (A_1)_{ij}(x, t) = n_i(x, t)m_j(x, t). \] (14)
By construction $u(x, t, \lambda)$ satisfies the \mathbb{Z}_3-symmetry. The \mathbb{Z}_2-symmetry on $u(x, t, \lambda)$ can be put in the form

$$u(\xi, \eta, \lambda)A_0^{-1}u^\dagger(\xi, \eta, \lambda^*)A_0 = 1.$$

(15)

and leads to algebraic equations which allow us to express the components of $n_j(x, t)$ in terms of $m_k(x, t)$:

$$n_1 = \frac{2\lambda_1^3 m_3^*}{\lambda_1^2 m_3^* m_1 + |\lambda_1|^2 |m_2|^2 + \lambda_1^2, m_1^* m_3} = \frac{2i\rho_1 m_3}{2m_1 m_3 - m_2^2}$$

$$n_2 = \frac{2\lambda_1^3 m_2^*}{\lambda_1^2, m_3^* m_1 + \lambda_1^2 |m_2|^2 + |\lambda_1|^2 m_1^* m_3} = \frac{2i\rho_1}{m_2}$$

$$n_3 = \frac{2\lambda_1^3 m_1^*}{|\lambda_1|^2 m_3^* m_1 + \lambda_1^2, |m_2|^2 + \lambda_1^2 m_1^* m_3} = \frac{2i\rho_1 m_1}{m_2^2}.$$

(16)

After putting $\lambda_1 = i\rho_1$ we obtain the 1-soliton solution of the first
type for Tzitzeica eq.:

\[
\phi_{1s}(x,t) = \frac{1}{2} \ln \left| \frac{|\mu_{01}|^2 e^{-3x_1} \left(4 \cos^2(\tilde{\Omega}_1) - 6 \right) - 8|\mu_{01}|\mu_{02} \cos(\tilde{\Omega}_1) + \mu_{02}^2 e^{3x_1}}{4|\mu_{01}|^2 e^{-3x_1} \cos^2(\tilde{\Omega}_1) + 4|\mu_{01}|\mu_{02} \cos(\tilde{\Omega}_1) + \mu_{02}^2 e^{3x_1}} \right|.
\]

(17)

where

\[
x_1 = \frac{1}{2} \left(\rho_1 x - \frac{t}{\rho_1} \right), \quad \Omega_1 = \frac{\sqrt{3}}{2} \left(\rho_1 x + \frac{t}{\rho_1} \right).
\]

(18)

Note: it is not traveling wave solution; it may have singularities! In the limit \(\mu_{02} \to 0 \) we obtain a traveling wave solution of the form

\[
\phi(x,t) = \frac{1}{2} \ln \left[\frac{3}{2} \tanh^2 \left(\frac{\sqrt{3}}{2} (\rho_1 \xi + \rho_1^{-1} \eta) - \alpha_{01} \right) + \frac{1}{2} \right].
\]

(19)

One Soliton Solutions of Second Type
Now the anzatz for the dressing factor is

\[
 u(x, t, \lambda) = 1 + \frac{1}{3} \left(\frac{A_1}{\lambda - \lambda_1} + \frac{J^{-1} A_1 J}{\lambda \omega^2 - \lambda_1} + \frac{J^{-2} A_1 J^2}{\lambda \omega - \lambda_1} \right) \\
 - \frac{1}{3} \left(\frac{A_1^*}{\lambda + \lambda_1^*} + \frac{J^{-1} A_1^* J}{\lambda \omega^2 + \lambda_1^*} + \frac{J^{-2} A_1^* J^2}{\lambda \omega + \lambda_1^*} \right)
\]

which obviously satisfies the \(\mathbb{Z}_3 \)-reduction and the first \(\mathbb{Z}_2 \)-reduction.

Again we obtain an algebraic relations between \(n_j(x, t) \) in terms of \(m_k(x, t) \) which are more complicated:

\[
 |\mu\rangle = \begin{pmatrix} m_3 \\ m_2 \\ m_1 \\ m_3^* \\ m_2^* \\ m_1^* \end{pmatrix}, \\
 |\nu\rangle = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ n_1^* \\ n_2^* \\ n_3^* \end{pmatrix}, \\
 |\mu\rangle = \mathcal{M} |\nu\rangle
\]
where

\[
\mathcal{M} = \begin{pmatrix}
c_1 P_1 & 0 & 0 & \zeta_1 K_1 & 0 & 0 \\
0 & c_1 P_2 & 0 & 0 & \zeta_1 K_2 & 0 \\
0 & 0 & c_1 P_3 & 0 & 0 & \zeta_1 K_3 \\
\zeta_1 K_1^* & 0 & 0 & c_1 P_1^* & 0 & 0 \\
0 & \zeta_1 K_2^* & 0 & 0 & c_1 P_2^* & 0 \\
0 & 0 & \zeta_1 K_3^* & 0 & 0 & c_1 P_3^*
\end{pmatrix}
\] \tag{22}

The result is

\[
|\nu\rangle = \mathcal{M}^{-1} |\nu\rangle
\]

\[
\mathcal{M}^{-1} = \begin{pmatrix}
-c_1^* \tilde{P}_1^* & 0 & 0 & \zeta_1 \tilde{K}_1 & 0 & 0 \\
0 & -c_1^* \tilde{P}_2^* & 0 & 0 & \zeta_1 \tilde{K}_2 & 0 \\
0 & 0 & -c_1^* \tilde{P}_3^* & 0 & 0 & \zeta_1 \tilde{K}_3 \\
\zeta_1 \tilde{K}_1^* & 0 & 0 & -c_1 \tilde{P}_1 & 0 & 0 \\
0 & \zeta_1 \tilde{K}_2^* & 0 & 0 & -c_1 \tilde{P}_2 & 0 \\
0 & 0 & \zeta_1 \tilde{K}_3^* & 0 & 0 & -c_1 \tilde{P}_3
\end{pmatrix}
\] \tag{23}
where

\[\tilde{P}_s^* = \frac{P_s^*}{d_s}, \quad \tilde{P}_s = \frac{P_s}{d_s}, \quad \tilde{K}_s = \frac{K_s}{d_s}, \quad \tilde{K}_s^* = \frac{K_s^*}{d_1} \]

\[d_1 = \zeta_1 \zeta_1^* K_1 K_1^* - c_1 c_1^* P_1 P_1^* \quad d_2 = \zeta_1 \zeta_1^* K_2 K_2^* - c_1 c_1^* P_2 P_2^* \]

\[d_3 = \zeta_1 \zeta_1^* K_3 K_3^* - c_1 c_1^* P_3 P_3^*. \]

From the above equations we obtain \(|n\rangle\) in terms of \(\langle m^T|\)

\[n_1 = \frac{1}{d_1} (-c_1^* P_1^* m_3 + \zeta_1 K_1 m_3^*) \quad n_2 = \frac{1}{d_2} (-c_1^* P_2^* m_2 + \zeta_1 K_2 m_2^*) \]

\[n_3 = \frac{1}{d_3} (-c_1^* P_3^* m_1 + \zeta_1 K_3 m_1^*). \]

The explicit \(x, t\) dependence of \(m_j(x, t)\) is

\[m_1 = \omega^2 \mu_{01} e^{ix_1 - y_1} + \mu_{02} e^{ix_2 - y_2} + \omega \mu_{03} e^{ix_3 - y_3} \]

\[m_2 = \mu_{01} e^{ix_1 - y_1} + \mu_{02} e^{ix_2 - y_2} + \mu_{03} e^{ix_3 - y_3} \]

\[m_3 = \omega \mu_{01} e^{ix_1 - y_1} + \mu_{02} e^{ix_2 - y_2} + \omega^2 \mu_{03} e^{ix_3 - y_3} \]
where

\[x_1 = - \left(x \rho_1 + \frac{t}{\rho_1} \right) \cos \left(\beta_1 - \frac{2\pi}{3} \right), \quad y_1 = - \left(x \rho_1 - \frac{t}{\rho_1} \right) \sin \left(\beta_1 - \frac{2\pi}{3} \right) \]

\[x_2 = - \left(x \rho_1 + \frac{t}{\rho_1} \right) \cos (\beta_1), \quad y_2 = - \left(x \rho_1 - \frac{t}{\rho_1} \right) \sin (\beta_1) \]

\[x_3 = - \left(x \rho_1 + \frac{t}{\rho_1} \right) \cos \left(\beta_1 + \frac{2\pi}{3} \right), \quad y_3 = - \left(x \rho_1 - \frac{t}{\rho_1} \right) \sin \left(\beta_1 + \frac{2\pi}{3} \right) \]

(27)

We determine the 1-soliton solution for the second kind of solitons using exactly the same technique

\[\Phi = - \frac{1}{2} \ln \left| 1 - \frac{1}{\lambda_1} n_1 m_1 - \frac{1}{\lambda_1^*} n_1^* m_1^* \right|. \]

(28)

Multisoliton solutions \(N = N_1 + N_2 \) with \(N_1 \) solitons of first type and \(N_2 \) solitons of second type can also be derived: They would correspond to \(6N_1 + 12N_2 \) singularities of the RHP.
Reconstructing the potential $Q(x,t)$ from $u(x,t,\lambda)$

After constructing the dressing factor we use the fact that it satisfies the equation:

\[
 i \frac{\partial u}{\partial x} + (Q(x,t) - \lambda J)u(x,t,\lambda) - u(x,t,\lambda)(Q_0(x,t) - \lambda J) = 0, \quad (29)
\]

Take the limit $\lambda \to \infty$ and use that

\[
 \lim_{\lambda \to \infty} u(x,t,\lambda) = 1,
\]

and choose also $Q_0(x,t) = 0$. Then

\[
 Q(x,t) = \lim_{\lambda \to \infty} \lambda(J - u(x,t,\lambda)J\hat{u}(x,t,\lambda)) \quad (30)
\]

which allows you to express $Q(x,t)$ in terms of the residue $A_1(x,t) = |\vec{n}_1\rangle\langle m_1|$.

Figure 3: The discrete eigenvalues of L with \mathbb{Z}_3-symmetry and \mathbb{Z}_2-symmetries. Two types of discrete eigenvalues, two types of soliton solutions.
Conclusions and some open questions

- The mKdV eqs. are Hamiltonian. View the jets $U(x, t, \lambda)$ and $V(x, t, \lambda)$ as elements of co-adjoint orbits of some Kac-Moody algebra.

- Each of these eqs. has **two types** of soliton solutions. Find constraints on the soliton parameters that render them regular.

- One can derive their soliton interactions by evaluating the limits of the dressing factors for $x \to \pm \infty$.

Thank you for your attention!