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The inverse scattering method

The inverse scattering method for the N-wave equations — Zakharov,
Shabat, Manakov (1973).
Lax representation:

L, M| =0,
.0
le = Z% + (Ul(xat) o AJ)w(*/Eata )‘) — 07
My = zaa—zf + (Vi(z,t) — AK)Y(x,t, A) = 0,

where J, K — constant diagonal matrices.

A a) [J,K] =0,
A b) [Ula K] + [J7 Vl — 07
AV c) iVie — iU+ [U, V1] = 0.

Eq. a) is satisfied identically.



Eq. b) is satisfied identically if:
Ul(xvt) — [Jle(xat)]a Vl(xat) — [Kan(ajvt)]a

Then eq. ¢) becomes the N-wave equation:

| 0@ . 0Q1 _
05| = KSR ik @i Qi) =
Simplest non-trivial case:

0 U1 uUus

N =3, g =~ sl(3), Qi(z,t) = uj 0 ug

us us 0

Then the 3-wave equations take the form:

% B al — ao 8u1

(9t bl — b2 633

8”&2 as — as (9’&2

875 bz — b3 (9513

8u3 a; — as 0u3

E_bl—bg ox

+ %6162’&;1@ = 0,

*
+ rkejujusz = 0,

* ok
+ Keaujuy = 0,



where

K = al(bg — bg) — ag(bl — bg) + ag(b1 — bg)

Solving Nonlinear Cauchy problems by the
Inverse scattering method

Find solution to the N-wave eqs. such that

Q1(z,t =0) = qo(x).

g — Lo Lliso — q(z,t)

| Tm

T(0,)) — T(t,\)

Step I: Given Q1 (x,t = 0) = go(x) construct the scattering matrix
T(),0).



Jost solutions:

Lp(x, \) =0, lim ¢z, A\)e* =1,
r—r—0Q
L(z, ) =0, lim vz, A)eMT =1,

T(X,0) =~ (z, Nz, ).
Step II: From the Lax representation there follows:

oT
— — ANK,T(\ )] =
20 KT 1) = 0,
1.e. | |
T(\t) = e "IN 0)e ML

Step III: Given T'(\,t) construct the potential Q1 (x,t) for ¢ > 0.
For g ~ sl(2) — GLM eq. — Volterra type integral equations
For higher rank simple Lie algebras — GLM eq. become very complicated.
But it can be reduced to Riemann-Hilbert problem.

Important: Thus the nonlinear Cauchy problem reduces to a se-
quence of three linear Cauchy problems; each has unique solution!



Hierarchies of integrable nonlinear evolution
equations

We can choose more complicated M-operators:
for the NLS type eqs:

V(z,t,\) = Va(x,t) + A\Vi(z,t) — \K.

Then 97
i~ MK, T(\1)] =0,

for the MKdV type eqgs:
Viz,t,\) = Va(x,t) + A\Va(z, t) + N2 Vi(z,t) — VK.

ar
imr = MK, T\ 8)] =0,

With each Lax operator L one can relate a hierarchy of
integrable NLEE.



Reductions of Lax pairs

a) UT(:I: teN VA = —U(x,t,)),  AVT(z,t,eN)A = —V(x,t, ),
b) Us(z,t,eN")B = U(z,t,\), BV*(z,t,eX")B = V(x,t,\),
c) CUT(:I:, t,—\C = —U(z,t,\), CVi(z,t,—\C = =V (z,t,N),

where €2 = 1 and A, B and C are elements of the group & such that
A? = B? = C? = 1. As for the fundamental analytic solutions we have

a) APzt eN)A = (x,t, N,
b)  BEN*(x,t,eN)B = £ (x,t, \),
¢) Ot T(z,t,—NC = £ (x,t,N),
For the Zn-reductions we may have:
DEE(z,t,w\)D = €5 (z,t, \),
DU (z,t,wA\)D = U(z,t,)\), DV (z,t,w\)D =V (z,t,N),

where w® =1 and DV = 1.



NLS and MKdAdV eqs with s/(n)-series

DNLS type equations

Special examples of DNLS systems of equations can be found in VSG -
1988. We will give some particular examples when M operator is from
second and third degree in A.

Those equations admit the following Hamiltonian formulation

(9q7; . 0 OH
ot Oz \0gry1-i/)

The first interesting nontrivial case is when M is quadratic polyno-

mial in A and g ~ Agl) algebra. The potential of L is given by

0 g1 ¢ 100
U(SCJ,)\): g2 Oq1 — A Ow O ,
q q2 0 00 w?

where w = €2™%/3. This gives us the system of integrable nonlinear partial



differential equations

g B, V3 8%q
i T (63) + 3 a2

.0q2 0 9 \/§82%
i +wa—x(q1)—v 3 o2

= 0,

= 0.

The corresponding Hamiltonian is

ivV3 ( Oq1 dqo

Y
H = oan Y92\
6 \L2g, 4 zh;) 3(‘11 +a).

In the case of Aél) algebra using the potential

0 ¢1 g2 ¢3 10 0 O
B30 q@gge| [0z 0 0

Utz t,A) = @2 g3 0 @ Moo-10 |
g1 g2 g3 O 00 0 —1¢

we obtain the system of integrable nonlinear partial differential equations



dqy 5, BE
Zai + 20y (q243) +v8(h = 0,

O 0 0,
i T (q1)+w%(q3)—0,

5(13 5 0%q3 B

The corresponding Hamlltoman is

1y dq dq 1 0
H=— 5 <Q3a—; _Q18—3 + 58—((]%)) —vq2(q7 + G3).

Systems of equations of mKdV type

These are equations with cubic dispersion laws, therefore the M-operators
are also cubic polynomials in .

In the case of A§1> algebra, with the following potential

. 0 qi o 1 0
an= (2 %) -a (b )



we obtain the well-known focusing mKdV equation

%__103‘11 _lg( 3)
@8t_ 4 Ox3 28$q1’

where a = % In this case the Hamiltonian is

. 1 6’q1 : 4
Hm<<ax> %)-

In the case of AS) algebra we obtain a trivial system of equations
0;q1 = 0 and 0;q2 = 0 and the corresponding Hamiltonian is bilinear

with respect to ¢; and qs.

In the case of Aél) algebra the potential of the Lax operator is pa-

rameterized by

0 q1 g2 q3 10 0 0
30 ¢ | 0z 0 O
Ule.t, %) = g2 q3 0 1 Moo -1 0

g1 g2 g3 0 00 0

—1



which is related to the following system of mKdV type equations

o0 1 0 (0> 0
o ( 4y 32(13 +3q1q5 + Q3)

ot 20z \ Oz2 O

0qs 1 0 0% qo 0

dgs 10 (0°gs (96]2

5 20m ( 9p2 Sé’—(h +3q3¢5 + ¢

The corresponding Hamiltonian is

][ 1, 1,1 I 0q 1 ,0¢
H== [ dz(=¢"— n _ -

3
2@11926]3 + =
+lz%__ 99 0% L1 (0N 1 g
2q3 ox Oz 24 ox QQ2QS ox
1 5 )

n 0 q1 1 52@2 1
6% Ox? IQQQ Ox2 6




The next example is related to AS). The potential of the Lax oper-
ator now 1s

06116]2(1394\ (100 0 0\

1 0 q1 g2 g3 Ow 0 0 0 |
Uz, t, \)=| g3 g1 0 qtg2 | =2 00w? 0 0 |, w = 2/

g2 g3 ¢4 0 qu 00 0 w? 0

\ct @23 0/)  \00 0 0 w)

The set of equations is

dq1 0 (01 0%q 3 0g 3

3%
43~ + 3014205 + g5 + 3%(12) ,
2 I

Yot~ o 254 Ox? i 251 4 O T o
dq2 0 co 0%¢o 3 Oq 3 Oq 3 2
4 _ = [ _ _ 3 3
“ ot ox ( 25% Ox? 289 43 ox + S1 . ox T O01G294 7t Gy T+ 5013
0 co 02 3 0 3 0
@B _ 9 2 U743 q1 ) g4 6’(?; + 3¢193q4 + ¢} + 3‘1493)

2
o o — + —
ot  Ox \ 2s5 0x2  2so 2or T 2s
i (

C1 82Q4 3 0qs 3 dqo 3 5
_ . 3 3 :
23% o0x? 251 A ox 259 = ox T 9024394 T ¢3 + 99201

Y

Y



where

k k 1
Sp. = sin (%) : Ci. = COS (%) : S1 = Z\/lO — 2\[5,

1 1 1
6121(1—|—\/g), 8221\/10—2\/5, CQZZ(\/E—l).

The Hamiltonian is

7 2b /OO g (_ c1 0q1 0qs 2 0g2 Oq3

il 3, 3 3
- 3a® 259 Ox Ox i 255 Ox Ox st 4294 7 430

3 202 044 g1 293 3
— —2q2Qu— + 2q1q3 —=— — + 3 +
( 175 4244 Iz 4143 ) d1 9 414929394 T 4192

— 00

881

3 5 0q1 dq2 dqs3 > 044
S (P e SR O A G, Pk C R e L B
+ S5, <CJ2 B D25 + 243q4 9y B,



Additional Involutions. Real Hamiltonian forms

Along with the Z,i-reduction we can introduce one of the following
involutions (Zs-reductions) on the Lax pair:

a) KUl (x,t, k(M) Ko = Uz, t,\), r1(A) = w A%
b) Ko_lU*(a:,t,/fl()\))Ko = —Ul(z,t,\), k1(A) = —w A"
c) Ul (z,t,—\) = =Ul(z,t, N,

where K2 = 1. If we choose

then the action of Ky on the basis is as follows

Ko (J§’“>)T Ko =wrC-Dgm Ry (Jg’@)* Ko =wkJ®.



An immediate consequences are the constraints on the potentials

a) K 'QU(z,t)Ko = Q(x,1), Ko (I Ky = w1 gib,
b)  K7'Q*(z,t)Ko = —Q(z,1), K (I Ky = w g,
) QT (z,t) = —Q(z,1), (JINT = g4,

Thus we obtain the algebraic relations below

a) q; (r,t) = q;(x, 1), a=qa";
b) q; (I, t) — _C]r—j—|—1(fC,t)7 a=qa’;
c) gj(x,t) = —qr—j+1(z, 1),
where 5 = 1,...,r, are compatible with the evolution of the mKdV
equations.

If we apply case a) we get the same set of mKdV equations with ¢, ¢2
and g3 being purely real functions. In the case b) we put ¢1 = —¢35 = u



and g2 = —q5 = 1v and we get

v 19%v 3 9% , , o9 0 . 9 10 ,
0o = 1o T aiger (0 W)) =3 (ul ) + 550
a@_l@_ﬁg u*@ _§3<w2)_i(u*)3

ot  20x3 2 Ox ox 2 Ox ox ’

where u is a complex function but v is a purely real function. The
corresponding Hamiltonian is

1/1 1 1 3 i Ou 1 50V 1 ov
e (204 - 204 & 20V 4 2202 4 Lyl 1,200 L b 290
&<4u g +4(u) +2|u\ v +2uvaa; 2" 8az+2(u) Ox
N 1oul” 1 [ov\> i , ou* 1 *(92u_|_ 1 0% 1 o*u*
= — == ] —=zu"v — =+ === — =u
6|0x 24 \ Oz 2 Jdr 6 Ox? 12 0z? 6 Ox?

The case c) leads to the well known defocusing mKdV equation

@_183’&_ 8( 3
Yor T 2013 or




where u is a complex function. The corresponding Hamiltonian is

1 ou\”
H=—— L 4.
4o ((83}) T )
And finally, considering Aél) algebra with Dg-reduction, case c¢) we
find

(9u - 0%u Ov o 5

Ov 0% 0 5
Qs = \/3@ (u?) —6%(11, v),

where u and v are complex functions. The Hamiltonian is given by

ey () + e (5) o)



Ficure 1: The contour for the RHP of . with Zs-svmmetrv.



ISP and RHP

Fundamental analytic solutions of L x,u(x,t,\) and solutions to the

RHP: |
my (z,t, ) = x(x,t, \)e/*7.

The rays [,, are defined by:

Im Aa(J) = 0, & a € 0, & g, Cg.

The RHP is:

m}(x,\) =m, (z, )\)e_umg,,()\)eum

g(N) = S, (NS (N) =D, (NT,FNT, (A\)D;f(N).

v

(1)

Here ST ()\), T ()\), DX (M) are defined by the asymptotic of m>*(x, \)

v

when ©r — 4+00:

SE(\) = lim (e’“‘]xmf(:v,)\)e_i)“]x): lim e/ yE(x, \)

r—r— 00 r—r—00

TF(A\)DE(N) = lim (ei”xmf(w,)\)e_'v“]x) = lim 72"y

xT— 00 r——+0o0

(2, N).

(2)



One could write SF, TF, DF also into the form

Sy(N) =exp > sp0(MNEia, Ty (N) =exp Y  t5,(A)E+a (3)
a€d;f acsy

Dy o(A) = exp(£ ) dyo(MHa). (4)

aET,

In other words S, TF, DF belong to the subgroup G, with Lie algebra
g,. The fact that the factors SF,TF, D have the above form is a
consequence of the following relations that hold for A € [,

lim (E_o,mTEgmE) =0, «,B€A, Im (Mo — B)(J)) #0
T—r 00

lim (H, mEEgmE) =0, BeA, Heh, ImO\G(J)) #0
T—r =00

lim (Eg,mTHmE) =0, BeA, Hch, Im(N5(J)) #DO.
r—r=00

()

The minimal sets of scattering data that determine uniquely 7'(\) and



Q(z,t) are

2

Ts= | J{sEaN) taedf Ael,} (6)
r=0
2

Tr= | J{tE.(N) taedf Ael,}. (7)
v=0

Completeness of ‘squared solutions’ and generalized
Fourier transforms.

Theorem The sets of ‘squared solutions’ e, ;;(x, A) form complete sets
of functions in M ;. The completeness relation has the form:

5(56 — y)HO =

2h—1 N
1 .
= — § :(_1)'// ANGyi1(x,y, N) — G (z,y, \)) — 2i E Res x=x,Gu (7, y, \)
v=0 by j=1






Figure 2: The contours v, =, U7y 00 Ul 41.



Expansions over the ‘squared solutions’:
5

Q) = 5 31 auld) [ A (52,01 ) = 57, evi-ale V)
_ £y
- 5)
ad 7'6Q(x,t) =
- Vi_ou)'/ [ 0 8= 57, el ) 3
9

€a, (T, \) are generalizations of e™**. We need the analogs of id/dx
for which i(d/dx)e™% = \e™

(Ay — Nea,v(x,A) =0, (A —Ne_q,w(z,\) =0,

AeX (o) =ads (15 i |11 Q@) [ vl x| )

dx

T



In order to treat NLEE consider variations of the form:

Q

0Q = — ot + O((dt)?), (10)
and keep only first order of dt. Then we have the expansion:
zad_l 0Q(w, t)
L ot )
% I;)(—l)” /l,, d\ (z asg;’y evt+1:a(T,\) + iaséot‘”’y ey —al, )\)) + DZS e

Aad 7'J%,Q(x,t)] =
) 5
7

= V:O(_1)Va,,(J) /l dA N (55, v (Nevria(@,A) = 55, ,(Mew—al@,A)) +



~10Q(z, t)

+ Aad ;' [J%, Q(z,t)] = mKdV =

P < 832;“

% ZO(— ) / d\ (( 5’75 — )\3 + ) 61/—|—1;oz($7)\>+ (11)
+ (iasa;‘” ~ Mo, (A)) eo A) Z

i.e. these mKdV equations are equivalent to the followmg linear equa-
tions

Ost

z—gt” + A5 o v =0,

- (12)
i gZ” )\38;/71/ = 0.

These GFT linearize the NLEE of mKdV type!.

Solving the RHP and soliton solutions
The dressing Zakharov-Shabat method - (1974), Mikhailov - (1981)



Assume we have a regular solution of the RHP
B—I—l(xa ta )‘> — fg(xa t? )\)GB(ZE, ta >‘>

Regular: detm? # 0 for A € Q,
Construct a new, singular solution of the RHP

f,f(x,t, A) =u(x,t,\) 2+1(:1:,t, A),

u(x,t, \) is the dressing factor, which may have poles and zeroes in
A. The regular solution corresponds to potential )y of L; we may even
choose (g = 0.
The new singular solution of RHP corresponds to new potential () which
will depend on additional parameters.

One soliton solution of first type:

1 ( Ay J 1AL J‘2A1J2>

PN =1+ =
u(z,t,A) =1+ S VLS VR VLS VA W

3 (13)

where A1(&,7) is a 3 X 3 degenerate matrix of the form

Ar(z,t) = [n(@, ) (m" (2, 0)]  (A1)y(2,t) = ni(e, t)my(z,t). (14)



By construction u(x,t, \) satisfies the Zs-symmetry. The Zy-symmetry
on u(x,t,\) can be put in the form

u(€,n, \)Ag tul (&1, A7) A = 1. (15)

and leads to algebraic equations which allow us to express the compo-
nents of n;(x,t) in terms of my(z,t):

ny — 2\ _ 2ip1ms
Amimy + M 2ma|? + AT mims - 2mams —m3
B 2\3m _2ip;y 16
" AP mgmy + A2 ma|? + (A 2mimg e 1o
- Zjimi‘ _ Q’ipl;nl.
ArPmima + AT me|? + Aimims M,

After putting Ay = ip; we obtain the 1-soliton solution of the first



type for Tzitzeica eq.:

pron [Pe ™ (4 cos?(€h) - 6) — 8| 01|02 cos(1) + e’

1
d15(x,t) = 5 In

4|01 [2e=3%1 cos? () + 4| o1 | oz cos(21) + pdye3
(17)

where

x1=1<p1m—i>, leﬁ(mx—l—i). (18)

2 P1 2 P1

Note: it is not traveling wave solution;
it may have singularities! In the limit pgs — 0 we obtain a traveling
wave solution of the form

o(z,t) = %ln !3 tanh® <\/§(01€ +p1'n) — 0401) T (19)

2 2

One Soliton Solutions of Second Type




Now the anzatz for the dressing factor is

1 A JYAT JT2AL?
L) =1+ -

ulw, b, A) =1+ 4 (A—Al LD VIZIS VR W

LA AT T A

AN AP+ A Aw+ A

(20)

3

which obviously satisfies the Zs-reduction and the first Z,-reduction.

Again we obtain an algebraic relations between n;(z,t) in terms of
my(x,t) which are more complicated:

) )

mi ns

) = ms | V) = o ) =My (21)

nq

* k
mo U
\ mf / \ "} )




where

The result is

V) =

(Clpl 0 0 ClKl 0 0 \
0 01P2 0 0 ClKQ 0
M = 0 0 Clpg 0 0 C1K3
GKf 0 0 |aPFf 0 0
0 ClKS 0 0 Clpz* 0
\ 0 0 GKil 0 0 P
M)
[(—ciPf 0 0 |GEr 0 0 )
0 —c'Pf 0 0 GKy 0
0 0 —c'Pf| 0 0 K3
K0 0 [Py 0 0
0 “Ki 0 0 —caP, 0
\ 0 0 GKi| 0 0 —cby)

(22)

(23)



where

P*_Ps* ~_P8 o _KS % K;k
s ds ’ S ds, S ds ’ s dl
dl = C1CTK1KT — Cl(f{PlPl* C1CTK2K2 — 01€1P2P2*

d3 = C1CTK3K§ — (3101P3P3 .

From the above equations we obtain |n) in terms of (m?]

1 1
ny = p ( Clpl mg—l—C1K1m3) Ng = o ( 61P2 mg—l—C1K2m2)
1 2
1
3
(25)
The explicit x,¢ dependence of m;(z,t) is
my = w’pere ™ T + pg2e T2 4 wpgzet Y
= p101€" TN 4 figae" 2 T2 4 pigze 3T (26)

ms = w/mlele_yl + M0262X2—y2 + w2M036%X3—y3



3
t t
Ay = — (%01 T —> cos (B1) , Vo = — (33,01 — —) sin (31)
P1 P1
2
XSZ—(CEM-I-L)COS(@-FQ—W), ysz—(ilfm—i)Sin(&-F—ﬂ
P1 3 P1 3

(27)
We determine the 1-soliton solution for the second kind of solitons using
exactly the same technique

1
®=——1In
2

! 1 1, .
— —Mnimi — —n{m
)\11 1 X{l 1

. (28)

Multisoliton solutions N = Ny + Ny with Ny solitons of first type and

N5 solitons of second type can also be derived: They would correspond
to 6N1 + 12N, singularities of the RHP.



Reconstructing the potential Q(x,t) from u(x,t, \)

After constructing the dressing factor we use the fact that it satisfies the
equation:

@% Q) = M)ulz, b, ) — ulz, t, N (Qolx, ) — AJ) =0, (29)

Take the limit A — oo and use that

lim u(zx,t,\) =1,

A— 00

and choose also Q(x,t) = 0. Then

Q(zx,t) = )\li_)r{)lo AMJ —u(x, t, \)Ju(x,t,\)) (30)

which allows you to express Q(x,t) in terms of the residue Ai(x,t) =
731 ) (21|



Figure 3: The discrete eigenvalues of L with Zg-symmetry and Zo-
symmetries. Two types of discrete eigenvalues, two types of soliton
solutions.



Conclusions and some open questions

e The mKdV eqgs. are Hamiltonian. View the jets U(x,t, \) and
V(x,t,\) as elements of co-adjoint orbits of some Kac-Moody al-
gebra.

e Fach of these eqs. has two types of soliton solutions. Find con-
straints on the soliton parameters that render them regular.

e One can derive their soliton interactions by evaluating the limits
of the dressing factors for x — £o0.

Thank you for your
attention!



